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ABSTRACT: 

In this study, a Random Forest (RF) based land covers classification method is presented to predict the types of land covers in Miyun area. 

The returned full-waveforms which were acquired by a LiteMapper 5600 airborne LiDAR system were processed, including waveform 

filtering, waveform decomposition and features extraction. The commonly used features that were distance, intensity, Full Width at Half 

Maximum (FWHM), skewness and kurtosis were extracted. These waveform features were used as attributes of training data for generating 

the RF prediction model. The RF prediction model was applied to predict the types of land covers in Miyun area as trees, buildings, 

farmland and ground. The classification results of these four types of land covers were obtained according to the ground truth information 

acquired from CCD image data of the same region. The RF classification results were compared with that of SVM method and show better 

results. The RF classification accuracy reached 89.73% and the classification Kappa was 0.8631.  

1. INTRODUCTION

Airborne Light Detection and Ranging (LiDAR) is a well-

developed technique for 3D terrain modelling, which is finding 

increased usage in many different areas of application, such as 

environment monitoring, disaster assessment, and land covers 

classification. Compared to discrete return system, full-waveform 

LiDAR systems can record the entire backscattered waveform of 

the targets. The waveform features reflecting the properties of 

targets can be retrieved from the waveforms and are now 

extensively used for a large variety of land covers classification 

(Mallet, 2009). This paper aims to study the land cover 

classification using full-waveform LiDAR data. 

As an important step in full-waveform LiDAR data processing, 

waveform decomposition techniques have progressed in recent 

years. Waveform features can be extracted through waveform 

decomposition. Land covers classification based on full-waveform 

features has been widely researched. The used features are usually 

intensity, width, pulse number, skewness and kurtosis (Mallet, 

2008; Zaletnyik, 2010; Li, 2016).  

In terms of classification, Waldhauser has developed models to 

automatically classify ground cover and soil types. Using the logic 

of machine learning, the advantages of supervised and 

unsupervised methods have been critically reviewed. The results 

showed that the supervised classifiers were preferred since they 

offer a higher flexibility (Waldhauser, 2014). The most commonly 

used are decision tree, Support vector machines (SVM) and 

Random Forests (RF) classification methods. Molijn has used 

decision tree to distinguish between four different types of terrain: 

snow, rock, ice and water based on width, reflectivity, saturation 

energy and kurtosis. However, the overall classification accuracy is 

only 74% (Molijn, 2011). Many researchers have investigated the 

waveform features for land covers classification using SVM 

(Bretar, 2009; Tseng, 2015). Some scholars have compared RF 

classification and SVM classification, and showed that RF 

provides better classification accuracy (Dechesne, 2016). Chehata 

has studied different lidar features, multi-echo and full-waveform 

to classify urban scenes into four classes: buildings, vegetation, 

natural ground and artificial ground. The Random Forests 

classification using selected variables provide an overall accuracy 

of 94.35% (Chehata, 2009). Niemeyer has integrated a Random 

Forest classifier into a Conditional Random Field (CRF) 

framework for classifying urban LiDAR point clouds. (Niemeyer, 

2014). Blomley has used Random Forest classifier for classifying 

airborne laser scanning data. Moreover, they have demonstrated 

that the consideration of multi-scale, multi-type neighbourhoods as 

the basis for feature extraction leads to improved classification 

results in comparison to single-scale neighbourhoods as well as in 

comparison to multi-scale neighbourhoods of the same type 

(Blomley, 2016).  

In this paper, RF classification using full-waveform features, i.e. 

distance, intensity, FWHM (Full Width at Half Maximum), 

skewness and kurtosis was presented to predict the types of land 

covers as trees, buildings, farmland and ground. The classification 

result was compared with that of SVM method. The RF 

classification method shows higher classification accuracy. 

Moreover, the adaptability of the RF method was verified. 

2. THEORY

2.1. Waveform processing method 

Full-waveform LiDAR system records the entire backscattered 

waveform signals from targets, which are actually a sum of partial 

scattering response signals convolved with the scanner's system 

waveform. Thus it not only provides 3D point clouds, but also 
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obtains abundant information of the targets. By waveform 

processing, this information can be extracted. The waveform 

processing includes these parts: waveform filtering and waveform 

decomposition.  

2.1.1 Waveform filtering 

Before waveform decomposition, the noise of the waveforms 

needs to be removed. The widely used filtering methods include 

Wiener filter and Gaussian smoothing. However, the Wiener filter 

is very sensitive to the noise (Jutzi, 2006). Thus the raw 

waveforms are smoothed using a Gaussian filter (Brenner, 2003). 

For the Gaussian smoothing, it is crucial to select an appropriate 

width of the Gaussian kernel for each echo pulse reflected from the 

complex terrain. In this paper, the kernel width which is commonly 

described by the FWHM is defined via the standard deviation 

(sigma) of the transmitted pulse. 

Figure. 1 shows the raw waveform and the filtered waveform of an 

echo. It can be seen that Gaussian filter has certain smooth effect 

on the raw echo waveform. 
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Figure 1.  Raw waveform and the filtered waveform.

2.1.2 Waveform decomposition 

Since common laser transmitted pulse is modulated as Gaussian 

pulse, and the scattering of laser pulse for most targets can be 

approximated by a Gauss reflection, so the backscattered 

waveform component can be modelled as a Gaussian function. But 

when the targets are non-planar or an inclined plane, big errors 

would generate during waveform initialization and decomposition 

if Gaussian function is still used as the kernel function for 

modeling. Therefore, generalized Gaussian function was used for 

waveform modeling in this paper which can better represent the 

backscattered patterns from different targets (Zhou, 2015).  

2

2
1 1

( ) ( ) exp( )
2

j
N N

j

j j

j j j

t
f t f t S









 


      (1) 

Where, ( )f t  is a waveform, ( )jf t is the individual components of 

the waveform, N is the components number, 
j  is the component 

position,
j is the pulse width of individual components, 

j is the 

component shape factor. 

The waveform decomposition procedures include initial 

parameters estimation and waveform fitting. In this paper, the first 

derivative is applied to estimate peak locations. The amplitude of 

the peak is extracted from the waveform at the peak location. 

Second derivative and first derivative are combined to calculate the 

width of the components. In the fitting step, the classical 

Levenberg-Marquardt (LM) algorithm is used to solve the 

nonlinear curve fitting problem. Then the components parameters 

can be obtained (Duong, 2010). 
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Figure 2. Filtered waveform and decomposition results. 

2.1.3 Waveform features extraction 

Waveform features can be determined through the component 

parameters. The extracted features include distance, intensity, 

FWHM, skewness and kurtosis. Distance indicates the distance 

from laser transmitter to the target, which is determined by 

estimating the position of the waveform component. Ideally the 

peak position is considered as component position and the time lag 

is used to calculate the distance (Mallet, 2009). Intensity is a 

combination of emitted energy, distance, atmosphere attenuation 

and reflective capability of illuminated targets. In practice, the 

echo amplitude is most commonly regarded as intensity (Wagner, 

2008). FWHM denotes the extension of waveform in the incident 

direction. It is closely related to geometry of targets and terrain 

slope (Duong, 2010). Skewness characterizes the degree of 

asymmetry of a distribution around its mean and kurtosis measures 

the relative peakedness and flatness of a distribution (Brenner, 

2003).  

Some factors, such as angle of incidence, atmospheric, range, 

surface characteristics, etc., have influence on the waveform 

features. To reduce such influence and further improve the 

effectiveness of waveform features for land cover classification, 

this work has made a comprehensive correction over some 

extracted waveform features. The detailed methodology was 

introduced in published article (Zhou, 2015). 

2.2. Random Forest classification 

Classification via Random Forest is performed in two phases. In 

the training phase the extracted features associated class labels is 

used to train a classifier.  

In this paper, RF is chose as the classification method, since it is 

general and effective on many classification problems. Moreover, 

RF is robust to outliers and gives internal estimates of feature 

importance (Breiman, 2001).  

RF operates by constructing a multitude of decision trees. Decision 

trees are built by choosing the most discriminative features in the 

feature vector, as a node to separate the training data according to 

their known class labels. As we know, Decision trees adapt to 

small variations and noise in the training data which results in 

overfit. Random forests overcome this issue by creating a large 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-263-2017 | © Authors 2017. CC BY 4.0 License.

 
264



number of decision trees. For each decision tree, random subsets of 

the training data are chosen and on each node only a random subset 

of the features are used. The parameters to be specified are the 

number of involved decision trees and the tree depth. In the 

experiments, we use a Random Forest with 20 trees and a tree 

depth of 
d 

 

,,, where d equals the number of extracted features ,i.e. 

d=5. The tree depth is the number of features M, randomly chosen 

at each node, is considered as the single user-defined adjustable 

parameter. (Gislason, 2006).   

For classification, each tree in the Random Forests gives a unit 

vote for the most popular class at each input instance. The label of 

input instance is determined by a majority vote of the trees. RF 

classifier aims at providing the highest prediction performance for 

the training data set (Oesau, 2015). 

In the testing phase, the feature vector with unknown class labels is 

provided as input for classification by using the trained classifier. 

Aside from classification, Random Forests provide measures of 

features importance based on the permutation importance measure 

which was shown to be a reliable indicator (Strobl, 2007). When 

the training set for a particular tree is drawn by sampling with 

replacement, about one-third of the cases are left out of the sample 

set. These out-of-bag (OOB) data can be used to estimate the test 

accuracy and the permutation importance measure. This avoids the 

user to manually select relevant attributes.  

 

3. EXPERIMENT AND ANALYSIS 

3.1. Experiment data 

The captured data of Miyun area, in Beijing, was used in this paper. 

The full-waveform data was acquired by the LiteMapper 5600 

airborne LiDAR system. The average density of the point clouds 

was 4points/m2. In this paper, a piece of experimental area 

containing about 385530 points was selected to study the RF 

classification. The CCD image of the selected area was shown in 

Figure 4 (a).  

 

3.2. Experiment procedure  

The flow chart of the experiment is shown in Figure 3. Firstly, the 

returned waveforms were smoothed using a Gaussian filter as 

mentioned above. Then waveforms were decomposed using LM 

algorithm. Features including distance, intensity, FWHM, 

skewness and kurtosis were extracted.  The CCD image and 

pseudo color maps illustrating the values of extracted features, 

shown as Figure 4, were given and clearly illustrated the certain 

differences of each feature for different kinds of land cover types.  

Secondly, 1000 features vectors for each typical land cover type 

were selected as the training data to train RF classifier according to 

the CCD image of the experiment region. Based on the 5 selected 

features, the Random Forests classification was run and variable 

importance was computed for each class. Underlying parameters 

have been fixed to M = 2 which means that two features are 

considered at each split and the number of trees was set 

experimentally to 20. Then the received waveforms reflected from 

typical land cover were divided into trees, buildings, farmland and 

ground using the RF classifier. Finally, the pseudo color 

classification image depicting the values of land cover types of 

Miyun area was generated and the results were evaluated. 

 

Waveform filtering by Gaussian filter

RF classifier training using waveform  

features 

Classification using RF classifier

Pseudo color maps generation for 

classification results

Waveform decomposition  using LM 

algorithm 

Waveform features extraction 

 

Figure 3.  Flow chart for land cover classification of Miyun area 

based on full-waveform LiDAR data  

 
(a) CCD image   

  
(b) Distance 

 
(c) Intensity 
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(d) FWHM 

 
(e) Kurtosis     

 
(f) Skewness 

Figure 4.   The CCD image and pseudo color maps of waveform 

features 

 

3.3. Experiment results  

The RF classification results are given in Figure 5. The green, red, 

wathet and yellow areas respectively represent trees, buildings, 

farmland and ground. The classification results of RF were 

compared with that of SVM, which has been studied in our 

previous work (Zhou, 2016). The SVM classification results are 

shown in Figure 6. It can be seen that by using the features we can 

effectively distinguish different types of land covers based on RF 

method. While for SVM, many building points are incorrectly 

classified as trees, as the purple rectangle shows; many farmland 

points are incorrectly classified as trees, as the orange rectangle 

shows. From the figures, we can see that the RF has better 

classification results than SVM. 

 

 
Figure 5.  RF classification results of Miyun area  

 

Figure 6.  SVM classification results of Miyun area  

6400 instances of these four land cover types, except the training 

data, were selected to calculate the classification accuracy. The 

ground truth information was acquired manually according to CCD 

image, as shown in Figure 4 (a). The confusion matrix for the RF 

and SVM classification results of these four land cover types of 

Miyun area were obtained and shown in Table 1 and Table 2, 

respectively. The overall classification accuracy for RF and SVM 

method are 89.73% and 0.8631, respectively. While the 

classification Kappa for RF and SVM method were 82.17% and 

0.7623, respectively. It can be seen that the RF has higher 

classification accuracy. 

Truth 

Classification 
Trees Buildings Farmland Ground Total 

Trees 1598 143 0 264 2005 

Buildings 2 1209 0 0 1211 

Farmland 0 0 1600 0 1600 

Ground 0 248 0 1336 1584 

Total 1600 1600 1600 1600 6400 

Table 1. Confusion matrix of the RF classification results 

Truth 

Classification 
Trees Buildings Farmland Ground Total 

Trees 1567 695 123 23 2408 

Buildings 28 638 0 0 666 

Farmland 0 0 1477 0 1477 

Ground 5 267 0 1577 1849 

Total 1600 1600 1600 1600 6400 

Table 2. Confusion matrix of the SVM classification results 
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In order to verify the adaptability of the RF method, another piece 

of data in Miyun area was classified using the same training model. 

It shows that the classification results are generally good, but there 

are also some misclassification between trees and buildings, trees 

and farmland. Therefore, the RF method has certain adaptability 

but should be further improved. 

 

(a) CCD image 

 

(b) RF classification results of Miyun area 

Figure 7.  CCD image and RF classification results of another area 

3.4. Analysis  

From the above results, we can see that the RF method has better 

classification results than that of SVM method. However, there are 

also some classification errors for RF method. From Figure 4 we 

can see that some area on the upside of the Figure was “trees” in 

fact; however it was classified to be “buildings”, as the pink 

rectangle shows in Figure 5. As shown in the second row and the 

second column in Table 1, we can also see that the most confusion 

in prediction by RF classifier was between “buildings” and “trees”. This 

was possibly resulted from the similar distance of “buildings” and 

“trees”. Prediction errors were also generated from “trees” and 

“ground”, as shown in the second row and the fifth column in 

Table 1, which was because that the ground points are beside the 

trees points, and the area of ground points is small, when selecting 

the test data, some tress points are selected to be ground points. 

 

4. CONCLUSIONS 

In this paper, the returned waveforms were smoothed using a 

Gaussian filter and waveform decomposition was implemented. 

Then waveform features were extracted. RF classifier was 

generated to classify the types of land covers in Miyun area as 

trees, buildings, farmland and ground. The RF classification results 

were compared with that of SVM method and show better results. 

The RF classification accuracy reached 89.73% and the 

classification Kappa was 0.8631. In the future work, for obtaining 

better classification results, more geometric 3D and 2D features 

will be extracted and correlation between the features will be 

analysed. The adaptability of classification method will be further 

improved. 
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