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ABSTRACT: 

With the evolution of the LiDAR technology, multispectral airborne laser scanning systems are currently available. The first 

operational multispectral airborne LiDAR sensor, the Optech Titan, acquires LiDAR point clouds at three different wavelengths 

(1.550, 1.064, 0.532 m), allowing the acquisition of different spectral information of land surface. Consequently, the recent studies 

are devoted to use the radiometric information (i.e., intensity) of the LiDAR data along with the geometric information (e.g., height) 

for classification purposes. In this study, a data clustering method, based on Gaussian decomposition, is presented. First, a ground 

filtering mechanism is applied to separate non-ground from ground points. Then, three normalized difference vegetation indices 

(NDVIs) are computed for both non-ground and ground points, followed by histograms construction from each NDVI. The Gaussian 

function model is used to decompose the histograms into a number of Gaussian components. The maximum likelihood estimate of 

the Gaussian components is then optimized using Expectation – Maximization algorithm. The intersection points of the adjacent 

Gaussian components are subsequently used as threshold values, whereas different classes can be clustered. This method is used to 

classify the terrain of an urban area in Oshawa, Ontario, Canada, into four main classes, namely roofs, trees, asphalt and grass. It is 

shown that the proposed method has achieved an overall accuracy up to 95.1% using different NDVIs. 

* Corresponding author

1. INTRODUCTION

Over the past two decades, airborne LiDAR data have been 

used in urban applications (Yan et al., 2015). Numerous studies 

have focused on extracting one object type in urban scenes, 

such as separation of ground from non-ground points in order to 

generate digital terrain models (DEMs) (Bartels et al. 2006), 

building extraction (Huang et al., 2013), road extraction 

(Samadzadegan et al., 2009) and curbstones mapping (Zhou and 

Vosselman, 2012). The number of extracted classes has been 

extended to three main urban classes, including ground, 

vegetation and buildings (Samadzadegan et al., 2010). 

Nowadays, multi-classes extraction is a very important topic for 

building 3D city models, maps updating and emergency 

purposes. However, most of recent studies focus on geometric 

characteristics of the LiDAR data (Xu et al., 2014; Blomley et 

al., 2016). 

Recently, Teledyne Optech has launched the world’s first 

airborne multispectral LiDAR sensor “Optech Titan”. This 

sensor acquires LiDAR data in three channels C1, C2, and C3 at 

wavelengths of 1.550 m, 1.064 m, and 0.532 m, 

respectively. The data are acquired at pulse repetition 

frequencies (PRF) ranges from 50 to 300 kHz/channel, 

maximum combined PRFs of 900 kHz. The sensor’s scan 

frequency and scan angle is up to 210 Hz and ±30°, 

respectively. The typical altitude ranges from 300 to 2000 m 

above ground level (AGL) in all channels for topographic 

applications, and from 300 to 600 m AGL in C3 for bathymetric 

applications. 

In the past year, a few investigations have been reported on the 

use of the Optech Titan multispectral LiDAR data for different 

applications. Fernandez-Diaz et al. (2016) presented an 

overview on the use of the Titan data in land cover 

classification, measuring water depths in shallow water areas 

and forestry mapping. Most investigations have focused on 

extracting one or two objects, such as vegetation mapping 

(Nabucet et al., 2016), road mapping (Karila et al., 2017), 

discrimination of vegetation from built-up areas (Morsy et al., 

2016a), or land/water classification (Morsy et al., 2017a).  

The multispectral Titan data have been explored for land cover 

classification by converting the LiDAR points into raster images 

(Bakuła et al., 2016; Morsy et al., 2016b; Zou et al. 2016). In 

Morsy et al. (2016b), raster images were created from the three 

recorded intensity values and the LiDAR height was used to 

create a digital surface model (DSM). A maximum likelihood 

classifier was then applied to each single intensity image, the 

combined three intensity images, and the combined three 

intensity images with DSM. The combined intensity images 

demonstrated an overall accuracy of 65.5% for classifying the 

terrain into six classes with an improvement of 17% more than 

the single intensity images. Moreover, the use of DSM 

increased the overall accuracy to 72.5%. Zou et al. (2016) 

segmented the LiDAR images into objects based on multi-

resolution segmentation integrating different scale parameters. 

The objects were then classified based on a set of indices, 

namely NDVI, ratio of green, ratio of returns counts, and 

difference of elevation. The used method achieved above 90% 

overall accuracy for classifying the terrain into nine classes.  
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In this paper, we present a clustering method of multispectral 

LiDAR data collected by the Optech Titan sensor for land cover 

classification. The points’ elevations are first used to separate 

non-ground from ground points. The recorded intensity values 

at the three wavelengths of the sensor are then used to calculate 

three NDVIs, followed by constructing NDVIs’ histograms. The 

Gaussian function model is used to decompose the histograms 

into a number of Gaussian components. The intersection points 

of those components are used as threshold values to cluster the 

non-ground or ground points into roofs and trees or asphalt and 

grass, respectively. 

2. STUDY AREA AND DATASET

The proposed clustering method was tested on a data subset 

covering an urban area in Oshawa, Ontario, Canada. The study 

area includes a variety of land objects such as building roofs, 

sidewalks, road surface, grass, shrubs, power lines, cars and 

trees. A flight mission was conducted on September 3rd, 2014 in 

order to acquire multispectral LiDAR data using the Optech 

Titan sensor. A subset with a dimension of 490 m by 470 m was 

clipped for testing, and the LiDAR data are shown in Figure 1. 

 
Figure 1. LiDAR point clouds from C2 colorized by elevation 

(upper) and intensity (lower) 

The Optech Titan sensor acquired the LiDAR data in the three 

channels from 1075 m flying height with scanning angle of 

±20°. The data were collected at 200 kHz/channel PRF and 40 

Hz scan frequency. The tested LiDAR data contains about 

796226, 825176, and 742158 points from C1, C2, and C3, 

respectively. Since the 3D reference points are not available, a 

number of polygons were digitized from an aerial image (Figure 

2). Within those polygons, all points were labelled as reference 

points for the roofs, asphalt and grass classes, while only the 

canopy points of the trees class were labelled as reference points 

for the trees class. However, all the understory vegetation or 

ground points are classified. Table 1 provides the number of 

reference points for each class with total number of reference 

points equals to 36421. 

Figure 2. Aerial image with the reference polygons 

Class Roofs Trees Asphalt Grass 

Number of points 111776 12315 5973 6957 

Table 1. The number of the reference points 

3. METHODOLOGY

The multispectral LiDAR data clustering was applied directly to 

the 3D point clouds. The LiDAR points from the three channels 

were first combined and three intensity values for each single 

LiDAR point were estimated (Morsy et al., 2017b). For any 

point in C1, the median intensity value from C2, IC2, and C3, 

IC3, was estimated using the neighbouring points within a 

searching circle of 1 m radius from C2 and C3, respectively. 

The same applied for C2 and C3, so that each single LiDAR 

point has six attributes: x, y, z, IC1, IC2 and IC3. The LiDAR data 

clustering method was then conducted as shown in Figure 3. 

Figure 3. The clustering method workflow 
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3.1 Ground Filtering  

 

The first step in the clustering method is to separate non-ground 

from ground points. Thus a ground filtering mechanism was 

applied to the LiDAR points in order to accomplish this step. 

The points’ elevations were first sorted in ascending order. 

Then, a statistical analysis – skewness balancing was applied in 

order to label the higher elevations as non-ground points. The 

slope of each point with respect to its neighbouring points was 

then calculated and a threshold value (S_thrd) was applied in 

order to label additional non-ground points. In addition, few 

points with higher elevations were not labelled as non-ground 

points. Therefore, the remaining points were filtered using a 

moving circle with radius (r) and height threshold value 

(H_thrd) in order to label ground points.  

 

3.2 NDVIs’ Histograms Construction   

 

The three raw intensity values IC1, IC2 and IC3 were employed to 

form three NDVIs, namely NDVIC2-C1, NDVIC2-C3, and NDVIC1-

C3, which were defined in Morsy et al. (2016a), for non-ground 

and ground points as follows: 

 

 
 

 
 

 
 

 

 
Figure 4. NDVIC2-C3 histograms constructed from non-ground 

points (upper) and ground points (lower) 

 

A histogram of each NDVI, which ranges from -1 to1, was 

constructed with a bin size of 0.1. Figure 4 shows examples of 

NDVIs’ histograms. Thus, a total of six histograms were 

constructed (three for non-ground points and three for ground 

points).  

 

3.3 Gaussian Decomposition 

 

A sum of Gaussian distributions G(x), described by Persson et 

al. (2005), was used to fit each NDVI histogram as follows: 

 

 
Where, 

x : the bin value  

N : the number of Gaussian components 

pj : relative weight of the Gaussian (j)  

fj(x) : the Gaussian function and defined as: 

 

 
 

Where,  

 j : the mean of Gaussian (j) 

 σj : the standard deviation of Gaussian (j) 

 

To be able to model the histograms, the parameters N, j and σj 

have to be estimated. Since either the non-ground or ground 

NDVIs’ histograms will be clustered into two classes (i.e., roofs 

and trees or asphalt and grass), the number of Gaussian 

components was selected to equal 2 (i.e., N=2). The peak 

detection algorithm was used to detect all histograms’ peaks and 

their locations (i.e., the mean values) (Jutzi and Stilla, 2006). 

The location of the highest two peaks was then used as the 

mean values (j) of the two Gaussian components. Based on the 

fact that the single Gaussian has two inflection points, the zero 

crossing of the second derivative was used to obtain the 

positions of the inflection points of each Gaussian component, 

and hence the Gaussian’s half width (σj) was calculated (Hofton 

et al., 2000). 

 

For each Gaussian component (j), the pj, j and σj were fitted 

using the maximum likelihood estimate with Expectation – 

Maximization (EM) algorithm (Dempster et al., 1977). 

Following the notation of the EM algorithm described by 

Persson et al. (2005), the expectation (E) step computes the 

probability (wij) that each data bin (xi) belongs to Gaussian (j), 

starting with that the two Gaussians have equal relative weights 

(pj), using the following equation: 

 

 
 

The maximization (M) step computes the maximum likelihood 

estimates of the parameters (pj, µj and σj) as follows: 

 

 
 

(7) 

(2) 

(3) 

(1) 

(5) 

(4) 

(6) 
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Where, 

yi : the amplitude at bin xi 

n : the number of histogram’s bins  

 

The two steps are repeated until convergence or a maximum 

number of iterations were achieved. The process stops when 

either (1) the difference between any iteration and the previous 

iteration is less than 0.001, or (2) the number of iterations is 

greater than 1000 (Oliver et al., 1996). The quality of the fitted 

Gaussians of the full waveform LiDAR data has been evaluated 

using the following formula as defined by Hofton et al. (2000) 

and Chauve et al. (2007): 

 

 
 

Thus, the quality factor ξ should be less than a prescribed 

accuracy. Similarly, in this paper, the quality of the fitted 

Gaussians was tested using the aforementioned equation. 

According to Chauve et al. (2007), a histogram was considered 

to be well fitted if ξ was less than 0.5. The intersection point of 

the two adjacent Gaussian components was used as a threshold 

value (NDVI_thrd) to cluster the LiDAR data of non-ground 

and ground histograms into two classes each. If a point had zero 

intensity value in any two channels, as a result of points’ 

combination and intensity estimation, this point was labelled as 

unclassified point. 

 

4. RESULTS AND DISCUSSION 

The LiDAR data were clustered into four classes, namely roofs, 

trees, asphalt and grass. The accuracy assessment was 

conducted through the creation of confusion matrices, and 

hence the overall accuracies and kappa statistics were 

calculated. After the LiDAR points from the three Titan 

channels were combined, a ground filtering mechanism based 

on the skewness balancing and the points’ slopes with respect to 

neighbouring points was applied. Thus, if the point’s slope was 

greater than a threshold value (S_thrd=10), the point was 

labelled as a non-ground point. The consideration of the points’ 

slopes makes the ground filtering mechanism applicable for not 

only flat but also sloped terrains. The output ground points were 

filtered using a moving circle with radius (r=10 m), so if the 

height difference was greater than a threshold value (H_thrd=1 

m), the point was labelled as a non-ground point and the 

remaining points were labelled as ground points.  

 

The three NDVIs were subsequently calculated using Equations 

1, 2 and 3. NDVIs’ histograms were then constructed and 

normalized for non-ground and ground points. A sum of two 

Gaussian distributions was used to model the histograms using 

EM algorithm. The fitting results of the non-ground and ground 

histograms are shown in Figure 5 and 6, respectively. The ξ of 

the fitted Gaussians are provided in Table 2. 

 

 

 

 
Figure 5. Gaussian decomposition of the non-ground NDVIs’ 

histograms; a) NDVIC2-C1, b) NDVIC2-C3, and c) NDVIC1-C3 

 

 

(8) 

(9) 

(10) 

(a) 

(c) 

(a) 

(b) 
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Figure 6. Gaussian decomposition of the ground NDVIs’ 

histograms; a) NDVIC2-C1, b) NDVIC2-C3, and c) NDVIC1-C3 

 

 NDVIC2-C1 NDVIC2-C3 NDVIC1-C3 

Non-ground 0.34 0.06 0.08 

Ground 0.03 0.10 0.15 

Table 2. The ξ of the fitted Gaussians 

 

Although the calculated ξ for all fitted Gaussians are less than 

the prescribed accuracy 0.5, some Gaussians are over-fitted as 

shown in Figure 5a and Figure 6c, whereas ξ was reduced from 

0.34 to 0.08 and from 0.15 to 0.09, respectively when only one 

Gaussian component was fitted using non-linear least squares. 

However, in this case, the NDVI_thrd cannot be obtained, and 

hence the data cannot be separated into two different classes. 

Thus, other modelling functions could better fit those 

histograms as mentioned in (Chauve et al., 2007), such the 

Lognormal function, where the NDVI_thrd = +σ or the 

generalized Gaussian function, where the NDVI_thrd can be 

obtained from the intersections of two adjacent components. 

 

4.1 Results Based on Gaussian Decomposition 

 

Table 3 lists the NDVI_thrd obtained from the intersection of 

the two Gaussian components for both non-ground and ground 

histograms. The vegetation (i.e., trees or grass) has high 

reflectance at C1, C2 and C3. As a result, the calculated NDVIs 

of the vegetation points exhibited higher values than the built-

up areas (i.e., roofs or asphalt). So that, for a particular point, if 

NDVIC2-C1, NDVIC2-C3 or NDVIC1-C3 ≤ NDVI_thrd, the point 

was labelled as roofs or asphalt; otherwise, it was labelled as 

trees or grass. Figure 6 shows the classified point clouds based 

on the three NDVIs. The confusion matrices and overall 

accuracies are provided in Table 4, 5 and 6.  

 

 

 

 

 

 
Figure 7. Classified LiDAR points based on a) NDVIC2-C1, b) 

NDVIC2-C3, and c) NDVIC1-C3 

 

 NDVIC2-C1 NDVIC2-C3 NDVIC1-C3 

Non-ground 0.07 0.43 0.27 

Ground 0.01 0.37 0.44 

Table 3. Intersection points of Gaussian components 

(NDVI_thrd) 
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Classification 

data 

Reference data 

 Roofs  Trees   Asphalt   Grass 

User’s 

Acc. (%) 

Unclassified 0 323 4 7 

Roofs 10851 3979 0 19 73.1 

Trees 325 8013 0 130 94.6 

Asphalt 0 0 5900 568 91.2 

Grass 0 0 69 6233 98.9 

Producer’s 

Acc. (%) 
97.1 65.1 98.8 89.6 

Overall accuracy: 85.1%, overall Kappa statistic: 0.797. 

Table 4. Confusion matrix based on NDVIC2-C1 

Classification 

data 

Reference data 

 Roofs  Trees   Asphalt   Grass 

User’s 

Acc. (%) 

Unclassified 0 323 4 7 

Roofs 10452 540 0 7 95.0 

Trees 724 11452 0 142 93.0 

Asphalt 0 0 5960 32 99.5 

Grass 0 0 9 6769 99.9 

Producer’s 

Acc. (%) 
93.5 93.0 99.8 97.3 

Overall accuracy: 95.1%, overall Kappa statistic: 0.933. 

Table 5. Confusion matrix based on NDVIC2-C3 

Classification 

data 

Reference data 

 Roofs      Trees   Asphalt   Grass 

User’s 

Acc. (%) 

Unclassified 0 323 4 7 

Roofs 6791 162 0 0 97.7 

Trees 4385 11830 0 149 72.3 

Asphalt 0 0 5956 2532 70.2 

Grass 0 0 13 4269 99.7 

Producer’s 

Acc. (%) 
60.8 96.1 99.7 61.4 

Overall accuracy: 79.2%, overall Kappa statistic: 0.715. 

Table 6. Confusion matrix based on NDVIC1-C3 

As aforementioned the non-ground NDVIC2-C1 histogram 

(Figure 5a) was over-fitted, which affected the threshold value 

definition (shifted to the right). As a result, about 34.9% of the 

tree points were omitted (65.1% producer accuracy), and those 

points were wrongly classified as roofs. This omission caused a 

misclassification of the roofs class with about 26.9% (73.1% 

user accuracy). Similarly, ground NDVIC1-C3 histogram was 

over-fitted (Figure 6c) and the threshold value was shifted to the 

right as well. Thus, about 38.6% of the grass points were 

omitted (61.4% producer accuracy) and mainly classified as 

asphalt. In addition, about 39.2% (60.8% producer accuracy) of 

the roofs’ points were wrongly classified as trees when NDVIC1-

C3 was used.  

Generally, there are three sources of classification errors, 

including the unclassified class with maximum error of 1.9%, 

the ground filtering with maximum error of 2.1%, and the 

NDVIs’ histograms clustering. It should be point out that most 

of the unclassified non-ground points are power lines. Since the 

power lines points were only recorded in C1, the intensity 

values of those points were set to zero in C2 and C3, and hence 

labelled as unclassified points. This is useful for further 

extraction of more urban classes.   

4.2 Comparison with Previous Studies 

Previous studies achieved overall classification accuracies from 

85% to 89.5%. The multispectral aerial/satellite imagery was 

combined with normalized digital surface model derived from 

LiDAR data (Huang et al., 2008; Chen et al., 2009) or 

combined with LiDAR height and intensity data (Charaniya et 

al., 2004; Hartfield et al., 2011; Singh et al., 2012). Compared 

to previous studies, the presented work in this research used the 

LiDAR data only and achieved an overall accuracy of 95.1% 

based on NDVIC2-C3.  

Morsy et al. (2017b) used Jenks natural breaks optimization 

method to cluster the NDVIs histograms of the non-ground and 

ground points into the same four classes. We applied the same 

clustering method to the tested dataset in this research for 

comparison. Table 7 provides the NDVI_thrd values for the 

non-ground and ground NDVIs using Jenks breaks 

optimization. Table 8 shows a comparison between the overall 

accuracies achieved using Gaussian decomposition, proposed in 

this research, and Jenks natural breaks optimization method, 

presented by Morsy et al. (2017b). 

NDVIC2-C1 NDVIC2-C3 NDVIC1-C3 

Non-ground -0.01 0.32 0.36 

Ground -0.02 0.29 0.34 

Table 7. NDVI_thrd values obtained from Jenks natural breaks 

optimization 

Gaussian 

decomposition 

Jenks natural breaks 

optimization 

NDVIC2-C1 85.1 86.7 

NDVIC2-C3 95.1 94.7 

NDVIC1-C3 79.2 89.9 

Table 8. Comparison of overall accuracies (%) 

The achieved overall accuracy based on NDVIC2-C1 and 

NDVIC2-C3 is very close, while the use of NDVIC1-C3 

demonstrated a difference in the overall accuracy of 10.7%.  

This is mainly because that a significant improvement of roofs 

and grass detection was achieved using Jenks breaks 

optimization. 

5. CONCLUSIONS

This paper presented a multispectral airborne laser scanning 

data clustering method for land cover classification of urban 

areas. The multispectral data were collected by the Optech Titan 

sensor operating in three channels with wavelengths of 1.550 

m, 1.064 m, and 0.532 m. The 3D LiDAR points in the

three channels were combined and three intensity values were

assigned to each single LiDAR point as a pre-processing step.

The clustering method starts with separating non-ground from

ground points, followed by NDVIs computation. NDVIs’

histograms were subsequently constructed and each histogram

was decomposed into two Gaussian components. The

intersection point of the two Gaussian components was then

used as a threshold value to cluster non-ground points into roofs

and trees, and ground points into asphalt and grass. This method

achieved overall accuracies of 85.1%, 95.1%, and 79.2% using

NDVIC2-C1, NDVIC2-C3, and NDVIC1-C3, respectively.

The use of Gaussian decomposition succeeds in finding 

threshold values in order to cluster the NDVIs histograms into 

four urban classes. However, in some cases, Gaussian 
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components were over-fitted. As a result, the threshold value 

definition was affected and caused classification errors. Using 

other modelling could perform better in fitting the NDVIs 

histograms and obtaining the threshold values. The presented 

research work demonstrates the potential use of multispectral 

LiDAR data in land cover classification. In addition, compared 

to previous studies, the Gaussian decomposition achieved 

higher overall accuracy. Further investigations will be devoted 

to combine the results obtained from the three NDVIs. 
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