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ABSTRACT: 

Edge detection has been one of the major issues in the field of remote sensing and photogrammetry. With the fast development of 

sensor technology of laser scanning system, dense point clouds have become increasingly common. Precious 3D-edges are able to be 

detected from these point clouds and a great deal of edge or feature line extraction methods have been proposed. Among these methods, 

an easy-to-use 3D-edge detection method, AGPN (Analyzing Geometric Properties of Neighborhoods), has been proposed. The AGPN 

method detects edges based on the analysis of geometric properties of a query point’s neighbourhood. The AGPN method detects two 

kinds of 3D-edges, including boundary elements and fold edges, and it has many applications. This paper presents three applications 

of AGPN, i.e., 3D line segment extraction, ground points filtering, and ground breakline extraction. Experiments show that the 

utilization of AGPN method gives a straightforward solution to these applications. 

1. INTRODUCTION

Benefiting from the advances in sensor technology for both 

airborne and ground-based mobile laser scanning, dense points 

clouds have become increasingly common, and the need for new 

approaches to address these point clouds has become increasingly 

important (Lin et al., 2015). In contrast to the 2D remote sensing 

imagery, a laser scanning point cloud is a swarm of points with 

XYZ coordinates (Zhang and Lin, 2017), and thus describes the 

3D topographic profiles of natural surfaces. Therefore, laser 

scanning point clouds provide more geometric information than 

2D images. However, it is a double-edged sword, which brings 

difficulties to extract low-level features. Among these low-level 

features, edges play an important role in a series of applications. 

To extract edges from laser scanning point clouds, 2D image 

processing methods cannot be applied directly due to the 

complex storage structure and scattered spatial neighborhood of 

3D point clouds. 

According to the aspect of process, current 3D edge detection 

methods can be divided into two categories. The first category is 

called “indirect method”, it first converts 3D point cloud into 

image or registers 3D-point cloud and image, then, 2D edges are 

detected in image utilizing image processing, finally, 2D edges 

are back-projected into 3D-point cloud as 3D edges (Li et al. 

2013; Poullis 2013). But, when the “indirect methods” convert 

3D point cloud into image, some spatial geometric information 

may be lost. The second category is called “direct method”, it 

extracts 3D edges from 3D-point cloud directly (Sampath et al. 

2010; Demarsin et al. 2007; Borges et al. 2010; Truong-Honget 

al. 2013). However, the “direct methods” must utilize the 

processes of point cloud segmentation or object recognition as 

supplements, their procedures are complex. Moreover, the most 
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serious shortcoming of “direct methods” is that they cannot 

detect all kinds of edges in 3D point clouds. 

To address the problems of direct methods, Ni et al. (2016) 

proposed an easy-to-use 3D edge detection method which is 

named AGPN (Analyzing Geometric Properties of 

Neighborhoods). It includes two main steps: edge detection and 

feature line tracing. In the edge detection step, AGPN first 

analyzes geometric properties of each query point’s 

neighborhood, and then combines RANSAC (RANdom SAmple 

Consensus) and angular gap metric (Gumhold et al., 2001) to 

detect edges. In the feature line tracing step, feature lines are 

traced by a hybrid method based on region growing and model 

fitting in the detected edges (Ni et al., 2016). Moreover, this study 

defines 3D-edges as “3D discontinuities of the geometric 

properties in the underlying 3D-scene”. AGPN method is able to 

extract two kinds of edges, i.e., boundary elements and fold edges, 

which include almost all types of edges in a laser scanning point 

cloud.  AGPN method is able to be applied to a number of 

airborne laser scanning (ALS) point cloud applications, such as 

DLG (Digital Line Graphic) generation, building reconstruction, 

etc. In this paper, we focus on three applications, i.e., straight line 

segment extraction, ALS point cloud filtering, and ground 

breakline extraction.  

To extract straight line segments from ALS point clouds, there 

are still two groups of methods, i.e., indirect methods, and direct 

methods. The procedure of indirect methods for extracting 

straight line segments is similar to that for 3D-edge detection. For 

this kind of methods, the study (Lin et al., 2015) is a typical 

approach. It project a 3D point cloud into multi-view images, and 

then employs a new 2D line segment detector LSD (Von Gioi, 

2010) to extract lines in 2D images, which forwards by a back-

projection procedure. This method (Lin et al., 2015) is robust and 
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high-efficiency, however obtains 3D line segments in 2D space 

and the abundant geometric information of 3D point clouds is 

wasted. Direct methods mainly aim at the extraction of plane 

intersection lines (Borges et al, 2010) or break lines (Sampath 

and Shan, 2010). These methods first segment a laser scanning 

point cloud into planes, and then detect the relationship between 

different planes. If there are two adjacent planes, these studies 

intersect them and compute the plane intersection lines based on 

plane model coefficients. However, there are two drawbacks: (1) 

the task to fit a small and narrow plane is difficult, and (2) when 

the data become complex, these methods may generate 

unexpected lines at non-planar surfaces (Lin et al., 2015). 

 

High-resolution DTMs (Digital Terrain Models) are essential for 

many geographic information system (GIS)-related analysis and 

visualization (Zhang et al., 2003). Ground surfaces derived from 

ALS point clouds meet this need, and a great deal of studies focus 

on it which are so called filtering. Among the existing ALS point 

cloud filtering methods, Axelsson’s method (Axelsson, 1999) 

which utilizes TIN to densify the initial ground surface, makes an 

excellent performance, and it has been integrated into the 

commercial software TerraSolid. A group of filtering algorithm 

(Sohn and Dowman, 2002, Zhang and Lin, 2013, Lin and Zhang, 

2014) which are called progressive-densification-based filters are 

derived from it. However, discontinuities in the bare ground pose 

great challenges to Axelsson’s method (Zhang and Lin, 2013). 

To solve this problem, point cloud segmentation has been 

integrated into this method. In this case, constructing TIN using 

points in the initial ground surface is redundancy, therefore, Lin’s 

method (Lin et al., 2016) utilize feature points of each surface 

segment to construct TIN. If smoothness segmentation (Zhang 

and Lin, 2013) is utilized, the surface depicted by a segment may 

be rugged and full of short break lines. Only utilizing boundaries 

to depict a surface segment is unreasonable. 

 

To generate high quality DEMs (Digital Elevation Models), 

breaklines should also be considered as constraints in 

interpolating the grid DEMs or fixed edges in the TINs (Yang et 

al., 2016). Breaklines are classified into three types, i.e., jump 

breaklines, crease breaklines, and curvature breaklines 

(Brugelmann, 2000). To extract breaklines, ground points should 

be first extracted, then ground breaklines are generated from 

these ground points. Currently, there are few studies paying 

attention on ground breakline extraction. For example, Yang et 

al. (2016) presents a feasible way based on range images. The 

method converts point clouds into range images, and the 

abundant geometric information in point clouds is wasted. The 

3D-edges which include boundary elements and fold edges 

detected by AGPN method make the direct way possible and may 

solve this problem. 

 

According to the aforementioned review of the existing methods 

for ALS point cloud processing, AGPN has the capacity to 

improve the procedures for straight line segment extraction, ALS 

point cloud filtering, and ground breakline extraction. In the 

following sections, we will present how to improve these existing 

methods utilizing the 3D-edges detected by AGPN. We first 

present an overview of the AGPN method in Section 2. Next, the 

design of improving these existing methods is shown in Section 

3, and then, experimental validation of these improvements are 

shown in Section 4. At last, we give a conclusion in Section 5. 

 

 

2.  A REVIEW OF THE AGPN METHOD 

There are two steps in AGPN, i.e., 3D-edge detection and feature 

line tracing, which are able to be found in Ni et al., (2016). The 

procedure of feature line tracing is briefly reviewed herein, 

because there are some changes in the feature line tracing when 

we improve the application of straight line segment extraction. 

 

The feature line tracing of AGPN is a region-growing-based 

method. The key step of feature line tracing is the neighbourhood 

refinement. The method first obtains the nearest neighbors of a 

query point by using the kd-tree algorithm. Next, a straight line 

model is fitted by the RANSAC algorithm, and then, the nearest 

neighbors are divided into inliers and outliers. The inliers 

containing the query point are the refined nearest neighbors. 

Otherwise, the outliers are processed iteratively by the RANSAC 

algorithm until the updated inliers contain the query point. 

 

The feature line tracing procedure is composed of the following 

steps: 

 

a. Select a query point as the initial seed in the extracted edges. 

Then, the initial seed is added to a point queue. If all the 

edge points are traversed, go to the end. 

b. Select a point in the current point queue as the current seed. 

The refined neighborhood of the current seed is determined. 

c. Compute the principle direction of the current seed based on 

its refined neighborhood, and compute each neighbor’s 

principle direction in the same way. If a neighbor’s principle 

direction is similar to that of the current seed, the neighbor 

will be added into the current point queue. 

d. Iterative the steps b-c until all the points in the current point 

queue are traversed. 

e. Iterative the steps a-d until all the points in the extracted edges 

are traversed. 

 

Results of the AGPN method are shown in figures 1-2. From the 

result, we can find that all the 3D edges are detected (see figure 

1), and feature lines in the extracted edges are traced (see figure 

2). 

 

 

Figure 1. The 3D-edge detection result of a curve building 

facade, the left picture is the input point cloud, the middle 

picture is the 3D-edges detected by the employed AGPN 

method, and right picture is a small area of the middle one. 
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(a)                                             (b)                           

Figure 2. The result of the feature line tracing procedure in 

AGPN, (a) is the extracted feature lines, different colours 

indicate different feature lines, (b) is the extracted straight line 

segments. 

 

3.  APPLICATIONS OF ALS POINT CLOUD DATA 

In this part, we focus on three applications of ALS point cloud 

data, i.e., straight line segment extraction, ALS point cloud 

filtering, and ground breakline extraction. 

 

3.1  Straight line segment extraction 

To extract 3D straight line segment, we borrow the idea from 2D 

image processing. For the commonly used straight line extraction 

method in 2D image, edges are first extracted from the image. 

Then, a further step of edge linking is performed to determine 

which contour the edge belong to. At last, straight line segment 

is extracted from the linked edges, and its line model coefficients 

are computed. The AGPN method which detects two types of 3D-

edges lays the foundation of this procedure in a 3D case. We first 

employ AGPN method to detect edges in this paper, next, amend 

the feature line tracing procedure to extract straight lines. Finally, 

3D line model coefficients will be computed, and endpoints will 

be determined to depict a 3D straight line segment. This 

procedure is straightforward, however, have not been studied. 

The flowchart of this procedure is shown in figure 3. 

 

Particularly, the feature line tracing step in AGPN method should 

be amended to extract straight line segment. The reason is that 

the feature line tracing step in AGPN is designed for smooth 

curves rather than straight lines. To extract straight feature lines, 

the step c in Section 2 should be changed, i.e., the comparison of 

principle directions between the current seed and current 

neighbours should be replaced by the comparison between the 

initial seed and the current neighbors. 

 

After straight feature lines are traced, the coefficients of 3D-line 

model constructed by the points in the same feature line are 

computed. Let 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) for 𝑖 = 1,2,… , 𝑁, be the points in 

each feature line. First, the covariance matrix of these points are 

estimated according to the following formula: 

𝑀 =
1

𝑁−1
∑ (𝑝𝑖 − 𝑝𝑢)(𝑝𝑖 − 𝑝𝑢)

𝑇𝑁
𝑖=1 ,                (1) 

where 𝑝𝑢 is the mean vector of all the points in the feature line. 

Next, the eigenvectors and eigenvalues are computed. Then the 

eigenvector 𝑑 = (𝑎, 𝑏, 𝑐) according to the largest eigenvalue is 

the principle direction of the 3D-line. The equation of the 3D-line 

model is: 
𝑥−𝑥𝑝𝑢

𝑎
=

𝑦−𝑦𝑝𝑢

𝑏
=

𝑧−𝑧𝑝𝑢

𝑐
 ,                       (2) 

where (𝑥𝑝𝑢 , 𝑦𝑝𝑢 , 𝑧𝑝𝑢) is the coordinates of 𝑝𝑢. 

To depict the 3D-line model, the endpoints of a straight line 

segment is determined. First, all the points 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) for 

𝑖 = 1,2,… , 𝑁  are projected onto the computed 3D-line model. 

Then, the minimum and maximum extents of these projected 

points are considered as the two endpoints of a straight line 

segment. 

 

 

Figure 3. 3D straight line segment extraction method. 

 

3.2  ALS point cloud filtering 

This study aims at applying AGPN method to progressive-

densification-based filters with an assist of point cloud 

segmentation. This kind of filtering methods is composed of four 

steps, i.e., point cloud segmentation, initial ground segment 

selection, initial TIN construction, and iterative densification. To 

relieve the computational burden of initial TIN construction, Lin 

et al. (2016) have proposed a way that feature points are utilized 

to replace all the points in a surface segment. Then, the initial 

TIN is constructed by the feature points in the initial ground 

segments, and each segment is depicted by its feature points in 

the iterative densification procedure. If the feature points are 

boundaries without fold edges (Ni et al., 2016) and the segment 

is in a region composed of smooth surfaces and rugged terrains, 

these feature points cannot depict the geometric properties of the 

region. The reason is that the ground breaklines and jump edges 

in rugged terrains are missed in these feature points. 

 

AGPN method which detects boundary elements and fold edges 

is able to deal with the rugged terrains in a region, hence the 3D-

edges detected by AGPN are utilized to replace the commonly 

used boundaries of surfaces. The flowchart of the improved ALS 

point cloud filtering procedure is shown in figure 4.  
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Figure 4. The improved ALS point cloud filtering method. 

 

3.3  Ground breakline extraction 

According to the aforementioned review of the ground breakline 

extraction methods for ALS point clouds, current methods often 

convert ground points into range images. The latest approach 

(Yang et al., 2016) utilizes this idea and achieves an excellent 

performance. However, handling ALS point clouds with 3D 

geometric information by converting to 2D image with relatively 

poor spatial information is confused. According to the definition 

of ground breaklines (Brugelmann, 2000), the ground breaklines 

include three types, i.e., jump edges, crease edges, and curvature 

edges. The three types of ground breaklines are shown in figure 

5. These types of breaklines are able to be detected by AGPN 

according to the definition of the 3D edges in Ni et al., (2016). 

AGPN method gives an alternative way to extract ground 

breaklines directly without converting 3D point clouds into range 

images. 

 

 

Figure 5. Three types of ground breaklines defined in 

Brugelmann, (2000). 

 

The ground breakline extraction method only includes three steps. 

First, ground points are extracted by an ALS point cloud filtering 

method. In this paper, we use Axelsson’s filtering method 

(Axelsson, 2000). Then, 3D-edges are detected by AGPN. At last, 

the detected 3D-edges are linked to breaklines. 

 

It is notable that AGPN is also utilized in the aforementioned 

filtering method. The two utilizations of AGPN are different. In 

the aforementioned filtering method, the AGPN is utilized to 

extract 3D-edge points for each segment, while it is employed to 

perform the ground points in the ground breakline extraction. 

 

4.  EXPERIMENTS RESULTS AND DISCUSSION 

To validate the ideas in this paper, we implement all the related 

methods for ALS point clouds data using C++ language and the 

Point Cloud Library (PCL). The experiments are conducted on a 

workstation running Microsoft Windows 7 (× 64) with two 16-

Core Intel Xeon E5-2650, 64GB Random Access Memory (RAM) 

and 3TB hard disk. 

 

4.1  Testing data 

Two datasets are involved in our experiments. The first one is a 

publicly available ALS dataset which is obtained by the 

University of Iowa in 2008. The data are collected to survey the 

Iowa River Flood along the Iowa River and Clear Creek 

Watershed. The data collection is funded by NSF Small Grant for 

Exploratory Research (SGER) program. The dataset is able to be 

accessed in OpenTopology. An urban area is selected, and is 

utilized to test the performance of straight line segment extraction. 

The buildings in the urban area has complex roof structures 

which are depict by the ALS point clouds in detail. The average 

point spacing of the testing area is 0.6m. In contrast with ground-

based laser scanning point cloud data, ALS point cloud data 

presents more building roofs rather than building facades. 

Therefore, some methods designed for ground-based laser 

scanning point cloud data are not suitable for ALS point cloud 

data. The original paper (Ni et al., 2016) which proposes the 

AGPN method tests the performance using dense point cloud 

obtained by ground-based laser scanning system. The 

performance of AGPN method for ALS point cloud with 

relatively sparse points and large point spacing is unknown. 

Therefore, the area of ALS point cloud data is not only utilized 

to test the straight line segment extraction, but also utilized to test 

the performance of AGNP method for ALS point cloud data. The 

area is shown in figure 6, and coloured by elevation. 

 

The second one is the ISPRS testing dataset for ALS point cloud 

filtering, which is published by ISPRS Commission III, Working 

Group III. The dataset is obtained by an Optech ALTM scanner 

over the Vaihingen/Enz test field and the Stuttgart city center. It 

includes eight sites consisting different terrains: four urban sites 

and four rural/wooded sites. To facilitate the testing of different 

filtering methods, the dataset also provides 15 reference samples 

of sub-areas. The characteristics of the dataset are shown in 

Sithole and Vosselman (2004). The dataset is utilized to test the 

performance of the ALS point cloud filtering and ground 

breakline extraction.  

 

 

Figure 6. The testing area for 3D straight line segment 

extraction. 
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4.2  Parameter setting 

There are two parameters should be determined when we use 

AGPN to detect 3D-edges, i.e., the distance threshold 𝑑𝑟
1  for 

RANSAC plane model estimation, and the number of nearest 

neighbors 𝐾1. In the original paper (Ni et al., 2016) of AGPN, 

the result is sensitive to 𝑑𝑟
1. Its experimental analysis shows that 

good results are able to be obtained when 𝑑𝑟
1 is equal to the mean 

point spacing of ground-based laser scanning point cloud data. 

However, when AGPN deal with coarser ALS point clouds with 

large point spacing, setting 𝑑𝑟
1  to mean point spacing is 

unsuitable. Herein, we set 𝑑𝑟
1 to 0.1 empirically. The reason is 

that we should ensure the precision of local RANSAC plane 

model estimation. Moreover, 𝐾1should be set to a small value in 

contrast to the setting of ground-based laser scanning point cloud 

data. Herein, we set 𝐾1 to 50 empirically. 

 

In the applications of straight line segment extraction, and ground 

breakline extraction, the feature line tracing step of AGPN is used. 

There are three parameters in this step, i.e., the number of nearest 

neighbors 𝐾2 , the distance threshold 𝑑𝑟
2  for the RANSAC line 

model estimation, and the smooth direction threshold 𝑠𝑚_𝑡ℎ𝑟. 

According to the aforementioned analysis and experiments, we 

set 𝐾2 = 15, 𝑑𝑟
2 = 0.1, and 𝑠𝑚𝑡ℎ𝑟 = 0.1 empirically.  

 

4.3  3D Straight Line Segment Extraction 

The testing area in the first dataset is performed by the 3D straight 

line segment extraction procedure presented in Section 3.1. The 

results are presented in figure 7. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. The results of straight line segment extraction for the 

testing area in the first dataset, (a) is the 3D-edges detected by 

AGPN, (b) is the traced feature lines, (c) is the extracted straight 

line segments. 

From the results presented in Figure 7, the performance of 3D-

edge detection and feature line tracing for ALS point clouds is 

worse than that for ground-based laser scanning point cloud data. 

Only 47.3% straight line segments are correctly extracted, 

however, when the method is performed on a ground-based laser 

scanning data with average point spacing 0.01m, the rate is able 

to reach 80%. The reason is that the point spacing of ALS point 

clouds is larger than that of ground-based laser scanning point 

cloud. However, nearly all the 3D-edges including boundary 

elements and fold edges are detected. The most serious problem 

of the straight line segment extraction is that long straight line 

segments are more likely to be divided into several short ones. If 

we use a dense point cloud with smaller point spacing such as 

0.01m, the problem will be solved. 

 

4.4  ALS Point Cloud Filtering 

In general, boundaries except for fold edges are utilized to 

represent the geometric properties of a ground surface, and then 

an initial TIN is constructed using these boundaries, and the 

highest and lowest points. These feature points in the initial 

ground surface are shown in figure 8b. We can find that the 

feature points depict a ground surface properly when the ground 

surface is flat. However, when the ground surface is rugged with 

steps, these feature points will fail to depict it. In contrast with 

boundaries, the 3D-edges detected by AGPN is able to overcome 

this problem and include all the edges of the rugged terrains (see 

figure 8c). Therefore, we utilize 3D-edges, the highest and lowest 

points of a surface segment to replace the aforementioned feature 

points. To quantitatively analyse the performance of this 

replacement, we test the procedure on the 15 reference samples 

of the second dataset. The mean, maximum and minimum TYPE 

I, TYPE II and TOTAL errors are computed and shown in table 

1. To simplify the expression, the points including boundaries, 

the highest and lowest points are called feature points. The filter 

using these feature points is the original method, and the filter 

using 3D-edges detected by AGPN is our improved method. 

According to table 1, although the areas of the 15 samples are too 

small to show a large extent of error reduction, all the errors of 

our improved method are lower than the original method.  This 

demonstrates the benefits of the utilization of AGPN. 

 

 
(a) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-277-2017 | © Authors 2017. CC BY 4.0 License.

 
281



(b) 

(c) 

(d)                                         (e)     

Figure 8. Results of the initial ground surface construction by 

TIN for the Cite1 in the second dataset, (a) is the selected initial 

ground surfaces (depicted by segments), (b) is the feature points 

including boundaries, the highest and lowest points, (c) is the 

3D-edges detected by AGPN method, (d) is the TIN surfaces 

constructed by 3D-edges detected by AGPN, the small area 

corresponds to the red rectangles in (a)-(c), (e) is the TIN 

surfaces constructed by feature points, it corresponds to the area 

in (d). 

Metho

ds 

Our improved method The original method 

Types 

of 

errors 

TYP

E I 

(%) 

TYP

E II 

(%) 

TOT

AL 

(%) 

TYP

E I 

(%) 

TYP

E II 

(%) 

TOT

AL 

(%) 

max 27.0 42.5 27.8 28.2 43.6 28.0 

min 0.3 2.4 3.2 0.3 2.4 3.4 

mean 6.8 20.0 9.4 6.8 20.8 9.5 

Table 1. Comparison between the two filters using feature 

points and 3D-edges. 

4.5  Ground breakline extraction 

After the ground surfaces are extracted by an ALS point cloud 

filtering method, the ground breaklines will be determined by 

performing AGPN method on the ground surfaces. The 

breaklines extracted by AGPN is shown in figure 9.  

From figure 9, there are some errors in the extraction result. The 

performance of the ground breakline extraction can hardly 

surpass the method in Yang et al., (2016). A close-up visual 

inspection shows that the testing data has a low point density. The 

low density results in the problem that a long breakline is divided 

into several short ones, which is the most serious problem of the 

ground breakline extraction in this paper.  

The method for extracting ground breaklines in this paper is more 

sensitive to point densities than the method in Yang et al., (2016). 

However, we present a novel and straightforward way for this 

application without converting 3D point clouds into range images. 

Figure 9. Breaklines extracted by AGPN of the Cite1 in the 

second dataset. 

Figure 10. The results of the four small areas corresponding to 

figure 9. 

5. CONCLUSION

In this paper, we present three applications of AGPN method for 

ALS point cloud data. The AGPN method is utilized to extract 

3D straight line segments, filter ALS point cloud, and extract 

ground breaklines. However, it needs high point density of ALS 

point cloud data if good results of all three applications are 

obtained.  

In the near future, with the improvement of the airborne laser 

scanning system, the point density of ALS point clouds will be 

further improved, and acquiring an ALS point cloud as dense as 

ground-based laser scanning data may be realizable. In this case, 

the AGPN method will have more and more significant 

applications. 
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