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ABSTRACT: 

Recent years have witnessed a growing investigation of terrestrial laser scanning (TLS) for monitoring the deformation of tunnels. 

TLS provides the ability to obtain a more accurate and complete description of the tunnel surfaces, allowing the determination of the 

mechanism and magnitude of tunnel deformation, because the entire surface of the tunnel is more concretely modelled rather than 

being represented by a number of points. This paper models and analyses the point clouds from TLS to detect the possible deformation 

of a newly built tunnel. In the application of monitoring the Badaling Tunnel for the Winter Olympics 2020 in Beijing, China, the 

proposed method includes the following components: the tunnel axis is automatically estimated based on a 3D quadratic form 

estimation; all of the point clouds are segmented into axis-based blocks; and representative points, solved by a singular value 

decomposition (SVD) method, are estimated to describe the tunnel surface and establish the correspondence of data between days. The 

deformations are detected in the form of the distance discrepancies of representative points and verified by the measurements using 

total station. 

1. INTRODUCTION

1.1 Background 

Terrestrial laser scanning (TLS) can collect millions of 3D point 

cloud data per second, as well as intensity information. Multiple 

scans taken at different times and positions from an advancing 

tunnel face can be processed to describe the profiles of a tunnel 

and how they change over time. This quantified information can 

be used to determine the deforming orientations and magnitudes 

of the tunnel. 

The magnitude of deformation is related to the rock 

characteristics, the excavation method, and the type and location 

of installed support. Deformations serve as early warnings of 

more severe failures. Monitoring tunnel deformation is an 

indispensable part of tunnel construction and operation. 

The advantages of using TLS in tunnels rather than other 

surveying methods include the following: 1) 3D coordinates can 

be collected on the geometry of the tunnel along its entire length 

rather than on specific sections, usually at intervals of several 

metres; 2) TLS collects data without the influence of illumination; 

and 3) any sections/areas of a tunnel can be extracted for study 

purposes. 

1.2 Previous work 

Early work in Lam (2006) described the basic methods of TLS 

used for tunnel applications both in the field and for 

computational algorithms. In geometric tolerance analysis, the 

author proposed three datum axes for assessment of horizontal 

alignment, vertical alignment and profiles in slicing. This work 

opened the door to actual TLS implementation. 

* Corresponding author 

An overview of TLS in tunnel excavation is first discussed and 

summarized. Gikas (2012) validated the smoothness/thickness of 

shotcrete layers at an excavation stage and compared them 

against the dimensional tolerances in the concrete lining 

formwork. The quantitative findings resulting from the case 

studies could not be directly generalized. Wang et al. (2014) also 

overviewed several applications of TLS in tunnels and 

emphasized how TLS can be used to study aspects of tunnels. 

Similar applications refer to Moisan et al. (2015) and Lague et al. 

(2013). 

The optimization of scanning parameters, scan registration, geo-

reference and survey network has been investigated for tunnel 

geometry inspection (Pejic 2013). The author noted that the noise 

should be considered because of the physical limits, such as the 

incidence angle of TLS in tunnel surveying. Subsequently, Roca-

Pardinas et al. (2014) analysed and modelled an error model with 

the consideration of the influence of ranges and incidence angles 

by means of Monte-Carlo simulation. Taking account of point 

density, incidence angle and footprint size, Argueelles-Fraga et 

al. (2013) scanned circular cross-section tunnels and determined 

the maximum scan distance and angular sampling interval to 

control data quality and working time. In general, the main 

factors influencing the point quality were as follows: incidence 

angle variations when scanning in a long and narrow corridor; 

occlusion by lines or machines; reflection from water and mud; 

and atmospheric related factors, such as heavy dust. These 

researches provided field guidance for distance measurements 

during data collection. 

Eling (2009) used the iterative closest point (ICP) method to 

transform point clouds from one scan station to a reference scan 

station in the Oker dam application. Later, the ICP method was 

applied for fine registration (Wang et al. 2012). Chmelina et al. 
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(2012) investigated translations by the ICP method between 

scans under the assumption that the transformation parameters 

refer to the centre of gravity of the respective patch. They 

suggested that the density of the distribution can be adjusted 

according to the requirements so that the tunnel surface comes 

close to a developable surface by varying the width of the mesh. 

In general, the ICP method requires iteration and does not 

necessary converge. Because each patch is processed 

individually, the displacement vectors are not checked for 

consistency with the overall deformation behaviour or for 

whether the entire vector field can be explained physically by the 

tunnels under construction. However, the explicit point 

correspondence is challenging to confirm, which may cause 

lower precision of the registration. 

 

Subsequently, Ji et al. (2015) registered adjacent scans by using 

closing conditions and external geometric constraints to 

eliminate accumulate errors and ensure the shape correctness of 

a high-speed railway viaduct. For high-precision scanning, the 

total error budget for change detection is dominated by the point 

cloud registration error and the surface roughness (Lague 2013). 

The authors proposed a cloud-to-mesh method whereby a point 

cloud is meshed and the distance to another is computed along 

the local normal of the point cloud to compare distance changes 

between point clouds. 

 

Lacking an explicit geometric interpretation, Han et al. (2013) 

proposed a minimum-distance projection algorithm to establish 

point correspondences. The advantage of this approach is that 

deformation signals along any profiles can be immediately 

identified. Using an elliptical fit method, the levels of real 

convergence have been measured and statistically tested in 

tunnels and shafts (Diederichs et al. 2014). Even with relatively 

high degrees of occlusion, up to 40%, an elliptic fit analysis was 

used to analyse general trends of deformation, and profile 

analysis was used for anomalous movements additionally 

supported to maintain stability (Walton et al. 2014). However, 

discrete profiles cannot describe the entire deformation of tunnel 

surfaces. 

 

There are two basic approaches to describe the shape of an object 

surface: point segmentation based on criteria such as the 

proximity of points, and direct estimation of surface parameters 

(Vosselman et al. 2004). The second approach produces a unique 

and relatively simple mathematical surface when the object 

surface has a regular shape, as in the case of tunnels. It provides 

a convenient way to automatically estimate the tunnel centre axis, 

which is necessary for segmenting raw point clouds in tunnel 

applications. 

 

In general, geodetic engineering operations cover the entire 

lifecycle of tunnel construction and operation. The data 

processing in tunnel applications can be grouped as follows: 1) 

geodetic control network configuration and registration work, 

including calibration; 2) mapping of the tunnel corridor; and 3) 

monitoring tunnel deformation. Although many tunnel 

applications have used TLS data, a reliable algorithm that full use 

of huge amounts of point clouds is still to be developed. The 

overwhelming amount of data that can be extracted should not 

simply be used in raw form but should also be used in describing 

deformation. Inspired by these significance contributions and 

suggestions, this paper investigates a method to describe the 

possible deformation with TLS point clouds.  

 

1.3 Purpose 

The aim of this study is to develop a method that quantifies tunnel 

deformation in an underground railway station using high-

density and time series data acquired from TLS. 

 

Specifically, this research focuses on: 1) automatically 

estimating the tunnel axis with quadratic forms of the tunnel 

surface; 2) segmenting all the point clouds into small rectangular 

blocks; and 3) finding the corresponding representative points for 

day comparisons by plane surface estimation in blocks. 

 

2. PROPOSED METHOD 

2.1 Overview of the proposed method 

Raw point clouds can be used for visualization, but to perform 

deformation analysis, data processing is required to analyse and 

establish the corresponding relations of random points. How one 

establishes a suitable geometric model to fit the real tunnel 

surface is greatly important for further deformation comparisons. 

It is also the focus of this research. A basic workflow of the 

proposed method includes the following components (Figure 1): 

pre-process data to eliminate outliers and register all scans to a 

uniform coordinate system; estimate the tunnel axis with an 

automatic method; segment all the point cloud into blocks; solve 

representative points with plane surface estimation; and compute 

and compare possible deformation between data from different 

days.  

 

Figure 1. Workflow of the proposed method 

 

2.2 Estimate tunnel axis with quadratic forms 

A quadratic form can be used to evaluate the determinants and 

then test the form parameters to describe the object surface 

(Kutterer and Schoen, 1999; Hesse and Kutterer, 2006). The 

equation for a quadratic form estimation can be written as 

 

𝐱𝑘
𝑇M𝐱𝑘 +𝐦

𝑇𝐱𝑘 + 𝛼 = 0 ,                             (1) 

 

where 𝐱𝑘 is the coordinate vector of a single point, M is the 

symmetric coefficient matrix, 𝐦 is the coefficient vector, 𝛼 is 

the scalar factor, and k = 1,2, , … , n, where n denotes the total 

number of points scanned by TLS. The parameters 𝑎𝑖(𝑖 =
1,2,… ,10) can also be expressed as 

 

𝑎1𝑥𝑘
2 + 𝑎2𝑦𝑘

2 + 𝑎3𝑧𝑘
2 + 𝑎4𝑥𝑘𝑦𝑘 + 𝑎5𝑥𝑘𝑧𝑘 + 𝑎6𝑦𝑘𝑧𝑘 + 𝑎7𝑥𝑘 +

𝑎8𝑦𝑘 + 𝑎9𝑧𝑘 + 𝑎10 = 0 .                                                         (2) 

Estimate Tunnel Axis      

Data Pre-processing       

 

Segment Point Clouds 

Solve Representative Points 

Detect Tunnel Deformation 
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The parameters 𝑎1 − 𝑎10 can be estimated bya means of  singular 

value decomposition (SVD) (Felus and Burtch, 2009) without the 

steps of iteration. A determinant method is constructed to 

estimate four motion invariant parameters. Then, the shape of the 

object surface can be determined by looking for the test tree of 

automatic form recognition. The determinant method and the test 

tree are described elsewhere (Kutterer and Schoen, 1999). The 

advantage of this method is that only several parameters need to 

be estimated to describe the shape of the object surface. Thus, the 

coordinates 𝐱𝑐 = [𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐] of the tunnel axis (perpendicular to 

the profile direction) are derived by the estimated geometric 

parameters, where 𝑥𝑐  and 𝑦𝑐  are determined by the automatic 

form recognition and 𝑧𝑐  is obtained from the maximum and 

minimum z-values of point clouds. The estimated tunnel axis is 

employed as the reference for further segmenting of point clouds. 

 

2.3 Segment point clouds 

Based on the determined tunnel axis, a segmentation method is 

used to identify the object surface and to establish a uniform 

framework for different days. Based on this framework, all of the 

point clouds are divided into small segmented blocks, and the 

definition of the blocks is explained as follows. 

 

According to the directions of the plane surfaces, for example, 

we set the 𝑦  direction as the tunnel axis direction and the 𝑥 

direction as the profile direction. The point clouds and 

corresponding coordinates of the tunnel axis are grouped into 

profiles with a certain thickness 𝑑𝑝  of the tunnel axis. To 

conveniently perform segmentation, the tunnel axis is shifted to 

the left of the tunnel according to the point clouds. The moved 

tunnel axis is termed the moved-tunnel-axis, and the point 

coordinates of this axis are sorted by an ascending order. In the 

profile with a certain thickness, the horizontal values (𝒙𝑢
𝑐𝑝
, 𝒚𝑢
𝑐𝑝
) 

of the four corner points of the profile are computed as follows: 

 

(𝒙𝑢
𝑐𝑝
, 𝒚𝑢
𝑐𝑝
) =

{
 

 
(𝑥𝑐
1 + (𝑗 − 1)∆𝑥,   𝑦𝑐

1)

(𝑥𝑐
1 + j∆𝑥,   𝑦𝑐

1)

(𝑥𝑐
𝑣 + 𝑗∆𝑥,   𝑦𝑐

𝑣)

(𝑥𝑐
𝑣 + (𝑗 − 1)∆𝑥,   𝑦𝑐

𝑣)

 ,                  (3) 

 

where 𝑗 denotes the 𝑗-th column number of the block, ∆𝑥 is the 

pre-defined block width along the profile direction, and (𝑥𝑐
1, 𝑦𝑐

1) 

and (𝑥𝑐
𝑣, 𝑦𝑐)

𝑣 ) are the first and last coordinates of the moved-

tunnel-axis in the profile, respectively. The total number of 

profiles equals the number of rows of segmenting, and the 

columns of the segmentation are determined by the pre-defined 

block width. Thus, the four corners of the blocks are obtained to 

describe the framework of the tunnel surface. 

 

The centre horizontal values of a block are averaged by their 

corresponding four corner points, and the vertical value of the 

block is computed by averaging all the vertical values of the point 

clouds in the block. Thus, the geometric centre point (𝐱𝑏𝑐) of the 

block is set as a reference point for estimating a representative 

point in the next step. 

 

2.4 Solve representative points with plane estimation 

The point clouds within a block are modelled as a representative 

point. According to the point clouds in a block, a total least-

squares method based on an SVD procedure (Horn and Johnson 

1990, p.153; Felus and Burtch 2009) is introduced to estimate the 

representative point of the block, under the assumption that both 

the observations and coefficient matrix contain by random errors. 

Because the selected point clouds in the block normally can be 

deemed as a planar surface, the normal vector 𝒏̂ and the distance 

𝑑̂ of the block are estimated to evaluate the planar surface when 

there are more than 𝑁𝑚𝑖𝑛
𝑝

 points (40 points for this dataset): 

 

𝐧̂𝑇 ∙ 𝐱̂𝑡 + 𝑑̂ = 0 with 𝐧̂𝑇 = [𝑛̂𝑥, 𝑛̂𝑦 , 𝑛̂𝑧], 𝐱̂𝑡
𝑇 = [𝑥̂𝑡, 𝑦̂𝑡, 𝑧̂𝑡], 𝑡 =

1,2,… , 𝑤,                                                                                 (4) 

 

where 𝐱̂𝑡
𝑇  is the coordinate vector of the point and 𝑤  is the 

number of the points in a block. The covariance matrix 𝚺𝑏̂ 

includes the stochastic values 𝐐n̂n̂  and 𝐪𝑑̂𝑑̂  of the estimated 

parameters: 

 

𝚺̂𝑏̂ = 𝜎̂𝑜 
2 ∙ (

𝐐n̂n̂ 𝟎
𝟎 𝐪𝑑̂𝑑̂

) ,                                 (5) 

 

where 𝜎̂𝑜 
2 is the variance factor. According to the computational 

method of Drixler (1993), the correlations between the normal 

vector and the distance are not considered. The representative 

point 𝐱̂𝑟 is estimated using the geometric centre point 𝐱𝑏𝑐  of the 

block: 

 

𝐱̂𝑟 = 𝐱𝑏𝑐 + (𝑑̂ − 𝐧̂
𝑇 ∙ 𝐱𝑏𝑐)𝒏̂  with |𝐧̂| = 1 .                 (6) 

 

The estimated covariance matrix 𝚺̂𝐱̂𝑟𝐱̂𝑟  of the representative 

points is obtained by means of variance propagation: 

 

𝚺̂𝐱̂𝑟𝐱̂𝑟 =  𝐅 ∙ 𝚺̂𝑏̂ ∙ 𝐅
𝐓 ,                                 (7) 

 

where 𝐅 is the differential function with respect to 𝐧̂ and 𝑑̂. Thus, 

the coordinates and the covariance of the representative point are 

derived to estimate and evaluate the precision of the point clouds. 

 

3. EXPERIMENT 

3.1 Study area 

The Badaling Tunnel station lies approximately 80 km northwest 

of Beijing. This underground tunnel is part of the intercity 

railway built for the Winter Olympics 2020 from Beijing to 

Zhangjiakou. The designed speed varies from 250 to 350 km/h. 

A Leica P40 scanner, with a nominal 3D position accuracy of 3 

mm at 50 m and angular accuracy of 8′′, was applied to scan part 

of the tunnel between Dec. 2nd-11th, 2016. A Leica TS02plus2 

total station with a nominal range accuracy of 1.5 mm + 2 ppm 

and angular accuracy of 2′′was used to establish the monitoring 

network. Setting the origin of scan 3 as a starting point and scans 

3 and 4 as a reference, five scans of point clouds each day were 

transformed into a uniform coordinate system in the Cyclone© 

software (Figure 2). Three days (Dec. 2nd, 4th and 9th) of point 

cloud data on the top surface of the tunnel were processed and 

compared to detect possible deformation. The proposed method 

was implemented in the Matlab© program. 

 

Figure 2. Experiment (top) and top surface point clouds of 

tunnel (bottom) 
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3.2 Experimental results and analysis 

In the reference coordinate system, the point clouds from the top 

tunnel surface are modelled as an elliptical cylinder according to 

estimates of the quadratic surface and looking for the test tree. 

The four estimated parameters of the elliptical cylinder include 

the centre coordinates (𝑥̂𝑒𝑐  and 𝑧̂𝑒𝑐) and the axes (â and b̂) of the

elliptical cylinder to express the shape of the top tunnel surface 

(Table 1), where 𝑦̂𝑒𝑐 is the mean value of the point clouds in the

direction of the y−axis. It is noted that the estimated parameters 

only approximately describe the coordinates of the tunnel axis. 

𝑥̂𝑒𝑐 𝑦̂𝑒𝑐 𝑧̂𝑒𝑐 â b̂
−1.06 −62.35 9.55 2.97 6.23 

Table 1. Estimated parameters of the elliptical cylinder [m] 

To segment the point clouds conveniently, according to the 

manually selected two points from the left bottom and right 

bottom of the point clouds, all point clouds were transformed 

along the z-axis with a rotation angle of 2. 23. Using this rotation 

angle, all the day data were transformed into a regular reference 

coordinate system in which the x -axis is along the profile 

direction and the y-axis is perpendicular to the profile direction. 

Using the estimated centre axis and the pre-defined block size 

(approximately 23.80 cm × 40 cm ), the point clouds of the 

tunnel surface were segmented into 3195 blocks with 213 rows 

along the profile direction and 15 columns perpendicular to the 

profile direction. 

Solved by the SVD algorithm in a block, a representative point 

and its standard deviation were obtained to represent the 

coordinates and precision of the block. All representative points 

are shown in Figure 3. 

Figure 3. Estimated representative points on the top tunnel 

surface on Dec. 2nd 

The standard deviations 𝝈̂𝐱̂𝑟  of the representative points 𝐱̂𝑟  are

estimated as follows: 

𝝈̂𝐱̂𝑟 = √𝝈̂𝐱̂𝑟
2 + 𝝈̂𝐲̂𝑟

2 + 𝝈̂𝐳̂𝑟
2  (9) 

where 𝝈̂𝐱̂𝑟
2 , 𝝈̂𝐲̂𝑟

2 and 𝝈̂𝐳̂𝑟
2  are the variances of the representative 

points in the directions of the x -axis, y -axis and z -axis, 

respectively. The mean standard deviations of the representative 

points are 0.10 mm, 0.13 mm and 0.20 mm on Dec. 2nd, 4th and 

9th, respectively. The standard deviations of the representative 

points on Dec. 2nd are shown in Figure 4 with the colour bar 

changing from 0 to 0.3 mm. The top right region features larger 

standard deviations because the point clouds in this area were 

interrupted by the point clouds from the side wall. Because the 

left and right parts have a lower raw point density, the standard 

deviations of these parts are larger than those of most of the 

centre area. 

Figure 4. Standard deviations of representative points on Dec. 

2nd with colour bar changing from 0 to 0.3 mm 

With the unique block column and row numbers, the distance 

discrepancies 𝛅𝐝̂  between corresponding representative points 

on two days can be confirmed as follows: 

𝛅𝐝̂ = √(𝒙̂𝐱̂𝑟
𝑙 − 𝒙̂𝐱̂𝑟

𝑓
)
𝟐
+ (𝒚̂𝐱̂𝑟

𝑙 − 𝒚̂𝐱̂𝑟
𝑓
)
𝟐
+ (𝒛̂𝐱̂𝑟

𝑙 − 𝒛̂𝐱̂𝑟
𝑓
)
𝟐

 (10) 

where (𝒙̂𝐱̂𝑟
𝑙 , 𝒚̂𝐱̂𝑟

𝑙 , 𝒛̂𝐱̂𝑟
𝑙 ) denote the estimated coordinates of the 

representative points from either Dec 4th or 9th. (𝒙̂𝐱̂𝑟
𝑓
, 𝒚̂𝐱̂𝑟

𝑓
, 𝒛̂𝐱̂𝑟
𝑓

) 

denote the estimated coordinates of the representative points 

from the reference day (Dec. 2nd). 

Setting the total station measurements on Dec. 2nd as the 

reference point [0, 0, 0], the movements (𝜹𝒍𝑡𝑠 = [𝛿𝑙𝑥
𝑡𝑠, 𝛿𝑙𝑦

𝑡𝑠 , 𝛿𝑙𝑧
𝑡𝑠])

relative to the reference station at other days are computed: 

𝜹𝒍𝑡𝑠 = 𝒍𝑑𝑖
𝑡𝑠 − 𝒍𝑑0

𝑡𝑠  ,  (8) 

where 𝒍𝑑0
𝑡𝑠  is the total station measurements from Dec. 2nd and

𝒍𝑑𝑖
𝑡𝑠  (𝑑𝑖 = 1 and 2) denotes the total station measurements from

Dec. 4th and 9th, respectively. The results are shown in Table 2, 

where the subscript 𝑑𝑖 is ignored to simplify the expression. The 

referenced scan 3 shifted approximately 8.91 mm and 7.73 mm 

relative to the position on Dec. 4th and 9th, respectively. 

Considering the nominal accuracy of 1.5 mm+ 2 ppm provided 

by the manufacturer of the total station, we determined that the 

network moved approximately 7. 41 mm and 6.23 mm relative 

to the position on Dec. 4th and 9th, respectively. 

𝛿𝑙𝑥
𝑡𝑠 [mm] 𝛿𝑙𝑦

𝑡𝑠 [mm] 𝛿𝑙𝑧
𝑡𝑠 [mm] 𝜹𝒍𝑡𝑠[mm]

Dec. 2nd  0 0 0 0 

Dec. 4th  7.30 -5.10 0 8.91 

Dec. 9th  4.90 -5.90 1.00 7.73 

Table 2. Total station measured movements of scan 3 

The distance discrepancies computed from the point clouds with 

the colour bar changing from 0 to 4 cm are shown in Figure 5 

and Figure 6, which describe the distance discrepancies from Dec. 

2nd - 4th and Dec. 2nd - 9th, respectively. The mean distance 

discrepancies estimated from TLS are approximately 15.89 mm 

and 13.46 mm from Dec. 2nd - 4th and Dec. 2nd - 9th, respectively. 

In many tunnel monitoring tasks, the deformation on the top 

surface is larger than that of the sides and the bottom of the tunnel. 

The TLS results are estimated based on the point clouds on the 

top surface of the tunnel; while the total station observations are 

collected on the ground surface. This inequality caused the 

distance discrepancies of the TLS to be larger than that of the 
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movements from the total station. The distance discrepancies on 

the right part are larger than those of the left part in both of the 

comparisons. Because the network was established on the left 

part, the point clouds on the right part contain larger errors 

according to error propagation. Data collection was influenced 

by construction work on Dec. 9th, and therefore there is no data 

on the right part of the tunnel in Figure 6. 

Figure 5. Distance discrepancies between Dec. 2nd and 4th with 

colour bar changing from 0 to 4 cm 

Figure 6. Distance discrepancies between Dec. 2nd and 9th with 

colour bar changing from 0 to 4 cm 

3.3 Discussion 

Due to the influence of tunnel surface roughness, the 3D 

quadratic form only approximately describes the shape of the 

tunnel surface. However, the coordinates of the estimated tunnel 

axis used in this research need not be in the real tunnel centre axis; 

they are only references used to segment all of the point clouds 

over days. 

Because the two sides of the tunnel are straight, only top surface 

data were extracted and processed in this application. To better 

describe the tunnel deformation, full-section modelling of the 

tunnel is necessary in the future. If the tunnel surface is sheltered 

by obstacles or heavy dust, outlier detection methods need to be 

considered. 

Considering the point density and deformation magnitude, the 

definition of a block size should be considered for different 

applications. A block with a large size can include sufficient 

point clouds but corresponds to a loss of the deformation 

description, whereas a block with a small size may lose 

computing efficiency. In applications, the block size should 

consider both the objects and the need for monitoring accuracy. 

In this application, artificial targets were mounted on the ground 

surface and the side wall. It would be better if more targets were 

mounted on the top and side walls of the tunnel, so that the 

estimated representative points from the TLS and corresponding 

targets measured by the total station can be compared to obtain 

more reasonable monitoring results. 

Excluding the possible movements between days from the results 

of TLS, the distance discrepancies still contain some errors from 

the TLS field work plane estimation of blocks and surveyors 

(such as the incidence angle). To fully optimize for detection of 

minimal deformation, proper geodetic error propagation should 

be investigated further to fully determine the data quality of TLS 

in structural monitoring applications. Both GPS and TLS results 

should be combined to describe and compare the deformation in 

global coordinate systems. For larger projects, optimal point 

density should be considered to save field work time and data 

processing. 

The observations from the total station demonstrate the ground 

surface moved approximately  7.41 mm and 6.23 mm, while the 

mean distance discrepancies estimated from the TLS were 

approximately 15.89 mm and 13.46 mm at  Dec. 2nd - 4th and 

Dec. 2nd - 9th, respectively. The ground surface movements could 

be deemed as a reference to compare the top surface movements, 

however, real deformations on the top surface need to be further 

separated from the derived distance discrepancies, because these 

distance discrepancies include both the real deformations and the 

errors from the TLS. 

Except for the manually selected corner points from the point 

clouds and the pre-defined block size, the entire procedure is 

automatic and takes approximately 18.82  minutes using an 

Intel(R) Core(TM) i7-4790 CPU with a 64-bit operating system 

and 16 GB RAM, which consists primarily of computing time 

rather than data input time. 

4. CONCLUSIONS AND FUTURE WORK

In this paper we present a deformation detection method in the 

construction stage of a tunnel based on point clouds from TLS. 

To compare the data on different days, a uniform reference tunnel 

model is established using estimated parameters of the 3D 

quadratic form. A segmentation is then conducted to divide the 

object surface into axis-based blocks. The point clouds are 

estimated as a representative point in a block, which is solved by 

the SVD method in a quasi-planar surface. These estimated 

points establish explicit correspondences of the data from 

different days. The proposed method was applied to monitor the 

Badaling Tunnel, which was built for the Winter Olympics 2020 

in Beijing, China. The network measured from the total station 

observations moved approximately  8.91  mm and 7.73  mm, 

while the mean distance discrepancies estimated from the TLS 

data were approximately 15.89 mm and 13.46 mm relative to 

the data for Dec. 2nd - 4th and Dec. 2nd - 9th, respectively. 

This work is the first step towards the application of TLS in the 

Badaling Tunnel. In future work, we will explore and develop an 

outlier detection method for better reconstruction. Furthermore, 

more comprehensive profiles will be considered to give a more 

concrete 3D model. 
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