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ABSTRACT: 

Based on the frame of ORB-SLAM in this paper the transformation parameters between adjacent Kinect image frames are computed 

using ORB keypoints, from which priori information matrix and information vector are calculated. The motion update of multi-feature 

extended information filter is then realized. According to the point cloud data formed by depth image, ICP algorithm was used to 

extract the point features of the point cloud data in the scene and built an observation model while calculating a-posteriori information 

matrix and information vector, and weakening the influences caused by the error accumulation in the positioning process. Furthermore, 

this paper applied ORB-SLAM frame to realize autonomous positioning in real time in interior unknown environment. In the end, 

Lidar was used to get data in the scene in order to estimate positioning accuracy put forward in this paper. 

1. INTRODUCTION

Currently, with the continuous development of visual sensors, 

the technology of visual navigation and positioning has been 

widely used in motion platform. While algorithm and processor 

performance are updated continuously, how to realize robot self-

localization and mapping through visual sensor in unknown 

environment has been a current research hotspot.  

It is noteworthy that a number of RGB-D launched in recent 

years is widely used in the field of indoor positioning and 

mapping. Izadi et al.(2011) described how to get the depth image 

and color image of Kinect sensors in detail, and realized scene 

reproduction in real time with the provision of precise 3-D model. 

Whelan et al.(2012) extended the Kinect Fusion algorithm, after 

its application, the region of space mapped by Kinect Fushion 

algorithm could change dynamically. Furthermore, high-density 

point cloud data in the scene was extracted and was put into the 

environment. This was displayed by triangular mesh, realizing 

real-time processing of high-density model building for the 

objects in the scene. The slam method of RGB-D was firstly 

proposed by Newcombe et al. (2011), and ICP algorithm model 

was applied to work out the real time registration and mapping 

display of Kinect sensor. Endres et al. (2014) et al. proposed 

RGBD-slam system model, achieving frame registration through 

feature matching among frames and ICP algorithm. Raul et al. 

(2016) put forward ORB-SLAM system to solve the problems of 

monocular, stereo and the slam of RGB-D. Santos et al. (2016) 

proposed an adaptive registration model from coarse-to-fine 

with making use of RGB-D data. Xiang Gao et al. (2015) 

proposed feature planar features in the scene to reduce deviation 

accumulation. 

At the present stage, slam system is often used for dealing with 

the problems of indoor positioning. Loop closure method 

included in Slam system can weaken the error calculation’s 
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influence on point cloud data. In a large-scale scene or a patency 

scene however, the function of loop closure is next to nothing. 

Because the ORB-SLAM system can quickly obtain the color 

image of the ORB feature points, this paper proposes multi-

feature extend information filter model with using ORB-SLAM 

frame to weaken the influences on positioning accuracy caused 

by error calculation and realize real time scene location.  

2. POSITIONING SYSTEM BASED ON MULTI-

FEATURE EXTEND INFORMATION FILTER

2.1 Data Acquisition 

The RGB-D sensor applied in this paper is Kinect v2.0 

developed by Microsoft. This camera can acquire depth image 

in the range of 1-5m in the scene, combining with mutual 

calibration color camera, it can generate point cloud data in the 

scene. The experimental data in this paper has a resolution of 

960*540. A frame of color and depth image respectively are as 

shown below: 

a.Color image
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b.Depth image 

Figure1 Color image and depth image 

 

2.2Data tracking 

This paper completes the transaction of pair-wise points from 2-

D image to 3-D point cloud data, and makes the confirmation of 

consecutive frame pose. Though traditional algorithm of SIFT or 

SURF can make good use of visual feature to realize object 

identification, image registration, visual image etc., it also serves 

as a great burden for computers. 

 

ORB algorithm provides a new means of combining inspection 

method of FAST feature point with BRIEF feature descriptor 

while getting improvement and optimization on the primary 

basis as well as increasing efficiency. Tracking model applies 

ORB algorithm to extract the feature points of present frame of 

color image, registers the extracted feature point with the former 

frame feature points, and acquire the relative transformational 

correlation of present frame of data 𝑛 and the previous frame 

of data 𝑛 − 1 i.e. Δ𝜇𝑛 = [Δ𝑥, Δ𝑦, Δ𝑧, Δ𝛼, Δ𝛽, Δ𝛾] . Then, at 

present time 𝑘, the state vector of each frame of data is expressed 

as: 

 

𝜇(𝑘) = [
𝜇1(𝑘)

⋮
𝜇𝑛(𝑘)

]     𝜇𝑖(𝑘) =

[
 
 
 
 
 
𝑥𝑖(𝑘)

𝑦𝑖(𝑘)
𝑧𝑖(𝑘)
𝛼𝑖(𝑘)

𝛽𝑖(𝑘)
𝛾𝑖(𝑘)]

 
 
 
 
 

         (1) 

 

Where 𝑛 represents the pose of sequence images received up to 

now. 𝜇𝑖(𝑘) represents the pose of the data of 𝑖𝑡ℎ  frame at the 

time 𝑘.Information matrix: 

 

𝛺𝑛 = 𝛴𝑛
−1 = [

𝛴11(𝑘) ⋯ 𝛴1𝑛(𝑘)
⋮ ⋱ ⋮

𝛴𝑛1(𝑘) ⋯ 𝛴𝑛𝑛(𝑘)
]        (2) 

 

Information vector: 𝜉𝑛 = 𝛴𝑛
−1 ∗ 𝜇𝑛 = 𝛺𝑛 ∗ 𝜇𝑛 

To calculate the coordinate of the present data in the global 

coordinate system based on 𝑋𝑛 and Δ𝑋𝑛, the resultant data is  

 

𝜇𝑛+1
− (𝑘) = 𝑔(𝜇𝑛(𝑘), 𝛥𝜇𝑛) + 𝜛(𝑘)        (3) 

 

Here, 𝜇𝑡+1
− (𝑘) represents the a-priori information vector in the 

global coordinate system at the time 𝑡, determined based on the 

present frame. 𝑔(. )  is a system-augmented function. 𝜛(𝑘) 

describes a variety of uncertainties in the registration and 

modeling process, and it is assumed to be a Gaussian distribution 

expressed as white noise vector 𝑁(0,𝑄). 

 
The present frame pose is added into the information vector and 

the update of each frame of data status vector is realized. 
 

2.3 Measurement Updates  

After realizing data tracking by completing the extraction of 2-

D color image features, this paper utilizes the point cloud data 

generated by depth data to establish multi-feature measurement 

model while extracting features of point and plane as well as 

realizing the update of information vector and information 

matrix. 

 

2.3.1. Point-feature model 
 

This paper extracts closet point of the data of the adjacent two 

frames by ICP algorithm, and takes these closet points as point 

features to establish a measurement model. It is supposed that 

the data of the adjacent two frames is expressed as 

(𝑥𝐿1, 𝑦𝐿1, 𝑧𝐿1)  in the coordinate system of 𝑖𝑡ℎ  frame, and 

(𝑥𝐿2, 𝑦𝐿2, 𝑧𝐿2) in the coordinate system of 𝑗𝑡ℎ frame shown as 

follows: 

 

𝑍𝑝1 = ℎ (𝑋𝑖(𝑘), 𝑋𝑗(𝑘)) + 𝑣(𝑘)

= {[

𝑥𝑖

𝑦𝑖

𝑧𝑖

] + 𝑅𝑖 [

𝑥𝐿1

𝑦𝐿1

𝑧𝐿1

]} − {[

𝑥𝑗

𝑦𝑗

𝑧𝑗
] + 𝑅𝑗 [

𝑥𝐿2

𝑦𝐿2

𝑧𝐿2

]} + 𝑣(𝑘)

（3） 

 

Here, ℎ(. ) is the systematic measurement function, and 𝑣(𝑘)  
denotes a variety of uncertainties in the scanning measurement 

and the transformation of coordinates which is supposed to 

comply with the Gaussian distribution expressed as white noise 

vector 𝑁(0, 𝑆). 

 

2.3.2. Planar feature model 
 

This paper extracts the same planar feature of the adjacent two 

frames of the data to establish the measurement model of planar 

feature. The planar information between two frames of data only 

controls the rotation parameters among the transformation 

parameters. So, it is assumed to be the same planar unit normal 

vector as  (𝑎1, 𝑏1, 𝑐1)  and  (𝑎2, 𝑏2, 𝑐2) . It is expressed as 

 (𝑥𝑙1, 𝑦𝑙1, 𝑧𝑙1)  in the  𝑖𝑡ℎ  frame coordinate system, as 

(𝑥𝑙2, 𝑦𝑙2, 𝑧𝑙2) in the  𝑗𝑡ℎ  frame coordinate system. Based on 

the present pose of the survey station point of  𝑖𝑡ℎ  and  𝑗𝑡ℎ 

respectively to estimate 𝑋𝑖(𝑘) and 𝑋𝑗(𝑘), the coordination is 

changed into global coordinate, which is expressed as 

(𝑥𝑀1, 𝑦𝑀1, 𝑧𝑀1) and (𝑥𝑀2, 𝑦𝑀2, 𝑧𝑀2). R is the rotation. The 

planar feature model is derived as 

 

𝑍𝑝2 = ℎ2 (𝑋𝑖(𝑘), 𝑋𝑗(𝑘)) + 𝑣(𝑘)

= {𝑅𝑖 [

𝑥𝑀1

𝑦𝑀1

𝑧𝑀1

] − 𝑅𝑗 [

𝑥𝑀2

𝑦𝑀2

𝑧𝑀2

]} + 𝑣(𝑘)
         (4) 

 

2.3.3. Multi-feature Measurement model 

 

This paper acquires the features of points and planes after the 

establishment of the measurement model of points and planes. 

Therefore, the measurement model derived from multiple 

features is as follows: 

 

𝑍 = [
𝑍𝑝1

𝑍𝑝2
]                    (5) 

 

𝑍𝑃1  represents feature information of points; 𝑍𝑃2  represents 

feature information of planes. Their accuracies are different, and 

the two information types are assigned different weights to 

enhance the final result. 
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𝑄 = [
𝜆1 ∗ 𝑄1 0

0 𝜆2 ∗ 𝑄2
]              (6) 

 

Here, 𝜆1 is the weight of pair-wise points; 𝜆2 is the weight of 

planar feature; 𝑄1 is the covariance matrix of pair-wised points; 

𝑄2 is the covariance matrix of multi-feature. 

 

This paper uses measurement model, a-priori information matrix, 

and information vector to update the present system state as 

follows: 

 

𝜉𝑛
+ = 𝜉𝑛

− + 𝛻ℎ𝑇 ∗ 𝑄−1 ∗ 𝛻ℎ

𝛺𝑛
+ = 𝛺𝑛

− + 𝛻ℎ𝑇 ∗ 𝑄−1 ∗ ∆𝑧

∆𝑧 = 𝑧𝑛 − ℎ(𝑍𝑛) + 𝛻ℎ|𝑧𝑍𝑛

}……     . (7) 

 

Where，𝜉𝑛
+ is a-posteriori information matrix; 𝛻ℎ denotes the 

Jacobian matrix; 𝛺𝑛
+ is a-posteriori information vector; ∆𝑧 is 

measurement information; 𝛺𝑛
+ reflects the pose in the overall 

coordinate system each frame of the data.  

 

2.4. Loop Closure 

In the process of indoor positioning, error accumulation is 

unavoidable with the continuous increase of data acquired. In 

order to weaken the influences of error accumulation in indoor 

positioning systems, the method of loop closure is provided to 

improve the accuracy positioning and mapping. 

 

Through feature point registration, loop closure can determine 

whether or not to collect the data of the present scene. When the 

number of detected features meets a certain threshold, the data 

will be recognized as already acquired. Comparing the pose of 

present scene with the pose of repetitive scene, the value 

difference between the poses is the result of error accumulation 

of all the key frames between the two frames of the repetitive 

scene. Meanwhile, the information vector is modified to make 

the poses of two repetitive frames of data reach unanimity and 

complete the loop closure. 

 

2.5. Positioning result display 

With the help of Pangolin base to realize visualization user 

interface, the result of real-time positioning according to the 

pose of the present frame in global coordinate system is 

displayed as follows: 

 

 
a Global positioning map 

 
b Partial enlarged detail 

Figure 2.Real-time positioning result display 

 

As shown in figure 3, the process of tracing displayed points is 
expressed by a rectangular pyramid instead of only a point to 

stand for the location of the present frame. The result of 

positioning is expressed by the rectangular pyramid. The normal 

vector of the bottom plane of the rectangular pyramid is used to 

express the rotation magnitude of the present frame and the 

global coordinate system tri-axial rotation magnitude. If the 

green solid line of the data between every two frames is jointed, 

it means there are some certain identical feature points of data in 

the adjacent frames, hence, the loop closure detection is finished. 

 

While displaying 3-D scene, the paper only displays feature 

points instead of all the generated point cloud data in order to 

reduce the complexity of point cloud data in the map and also to 

reduce the requirements of computer hardware. 

 

3. THE ANALYSIS OF EXPERIMENT RESULT 

The experimental scene chosen by this paper is the building 

experimental scene. Lidar is used to obtain high precision laser 

point cloud data in the experimental scene, and merged with 

Kinect sequence images by manual-registration to obtain 

accurate position points. At the same time, the method of ORB-

SLAM is used to process the obtained sequence images, and its 

result is compared with the positioning result of the method 

proposed in this paper. 

 

3.1. Fused data 

This paper applied Lidar data to obtain color point cloud data in 

the experimental scene, and the result is illustrated in the 

following figures: 

 

 
a Panoramic image of the experimental scene 
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b The vertical view of point cloud in the experimental scene 

 
c The lateral view of point cloud in the experimental scene 

Figure 3.The laser-point cloud data in the experimental scene 

 

This paper uses Kinect to obtain the data of the experimental 

scene and 334 key frames of sequence images is obtained. The 

color image and the depth image of those key frames of data are 

shown as follows: 

 

 
a.Color Image 

 
b Depth Image 

Figure 4. Frame of image data obtained by Kinect 

In the process of data merging in allusion to the sequence images 

of key frames, this paper selects corresponding color point cloud 

data generated by image data in every ten frames, and merges 

with the data obtained by Lidar. In all, 30 frames of data were 

totally merged. The selection of the 30 frames reduces the stress 

of manual-registration on the basis of not influencing the 

overlapping degree of point cloud data in the scene. In order to 

distinguish the point cloud data of Kinect and the data of Lidar. 

Kinect data, in the fused data is shown by single RGB values. 

The merging result is shown as the follow figures: 

 

 
a Vertical view                             

 
b Lateral view 

Figure5. Display result of fused data 

 

In reference to the fused data, this paper calculates the track of 

each key frame of data and get the tracing point data of Kinect 

key frames of sequence image in the coordinate system of Lidar . 

The result is shown as follows: 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-327-2017 | © Authors 2017. CC BY 4.0 License.

 
330



Figure6. Tracing points of fused data thinning 

3.2. Positioning result  

Making use of the sequence images obtained by Kinect, this 

paper locates sequence images with the help of ORB-SLAM 

system and the multi-feature extend information filter proposed 

in this paper. The result is shown in the following figures: 

a. ORB-SLAM positioning result

b. Multi-feature extend information filter positioning result

Figure7. Positioning result 

As for the positioning problem of indoor scene, mapping 

precision and the positioning accuracy of each frame of data are 

correlative and coupled. While processing indoor data, high-

precision mapping means high registration accuracy of sequence 

images – which reflects the pose accuracy of each frame of data 

– namely accurate positioning precision. By the comparison of

the mapping accuracy of the two algorithms, there is a bigger 

angle deviation in wall corners with ORB-SLAM algorithm 

indoor data processing, which influences the mapping precision 

and the final positioning precision. Compared with ORB-SLAM, 

the method proposed in this paper is improved in the aspect of 

mapping accuracy. 

In order to make a better comparison of the positioning point 

accuracy of sequence images obtained by means of fused data, 

ORB-SLAM and the method proposed in this paper; the tracing 

points obtained from these three methods are placed in the same 

coordinate system for comparison purposes.  

a. Trajectory chart

b. Range difference of tracing point

Figure8. Comparative result of trajectory charts 

Comparing the result of ORB-SLAM and the positioning result 

of multi-feature extend information filter with the accurate 

positioning of fused data as shown in figure a; the blue track is 

the positioning result of fused data, the green track is the 

positioning result of MEIF (multi-feature extend information 

filter), and the red track is the positioning result of ORB-SLAM. 

From the comparisons above, it can be seen that the positioning 

method proposed in this paper yielded better results compared to 

the results of ORB-SLAM. In order to find the positional 

accuracy of the two patterns precisely, a comparison of the two 

positioning information and the location result of fused data was 

made, the acquired corresponding pose of the homonymous 

frame was used to make a comparison, and calculate the spatial 

distance of the tracking points. The positioning deviation of 

ORB-SLAM is between 0 m to 0.8 m, and the location deviation 

of multi-feature extend information filter is in the range of 0 m 

to 0.5 m. The RMSE of ORB-SLAM and MEIF are 0.48m and 

0.23m.  

4. CONCLUSION

In allusion to the problem that deviation accumulation cannot be 

weakened effectively in large-scale scene and patency scene of 
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present slam, this paper extracts ORB feature points in the scene 

and builds an extended information filtering model which can 

weaken the influences of deviation accumulation effectively to 

realize the location of indoor scene.  
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