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ABSTRACT: 

With increasing attention for the indoor environment and the development of low-cost RGB-D sensors, indoor RGB-D images are 

easily acquired. However, scene semantic segmentation is still an open area, which restricts indoor applications. The depth 

information can help to distinguish the regions which are difficult to be segmented out from the RGB images with similar color or 

texture in the indoor scenes. How to utilize the depth information is the key problem of semantic segmentation for RGB-D images. 

In this paper, we propose an Encode-Decoder Fully Convolutional Networks for RGB-D image classification. We use Multiple 

Kernel Maximum Mean Discrepancy (MK-MMD) as a distance measure to find common and special features of RGB and D images 

in the network to enhance performance of classification automatically. To explore better methods of applying MMD, we designed 

two strategies; the first calculates MMD for each feature map, and the other calculates MMD for whole batch features. Based on the 

result of classification, we use the full connect CRFs for the semantic segmentation. The experimental results show that our method 

can achieve a good performance on indoor RGB-D image semantic segmentation. 

1. INTRODUCTION

Due to the increasing attention for indoor environments and the 

development of the low-cost RGB-D sensors such as the Kinect, 

the RGB-D images can be used as data input for more and more 

indoor applications such as indoor mapping, modelling and 

mobility. The automatic semantic segmentation for indoor 

RGB-D images is the basis on the scenes understanding to 

further serve these applications. Especially for the indoor scenes, 

the depth information is very important. Many objects have 

similar color or texture, which are difficult to be distinguished 

by only RGB images (Tao, 2013). 

The semantic segmentation has been studied for a long time in 

the fields of remote sensing (Qin, 2010, Kampffmeyer, 2016, 

Lin, 2016, Marmanis, 2016) or compute vision (Arbeláez, 2012, 

Couprie, 2012, Long, 2015, Noh, 2015). As semantic 

segmentation divides images into some non-overlapped 

meaningful regions, one or more of the three main methods – 

conditional random fields (CRFs) methods (Hu, 2016), 

segmentation combining with merging methods (Forestier, 

2012), and the deep learning methods (Chen, 2016), are used. 

The CRFs methods can effectively use the pairwise information, 

which helps the edges of the objects to be clear segmented. The 

segmentation combining with the merging methods always uses 

knowledge to merge an over segmented image into the 

meaningful regions. With the great development of the deep 

learning, the deep learning methods can classify the images with 

high precision, which can serve as pre-processing for the two 

methods above. Moreover, parts of the two methods above can 

be presented by the deep learning network, for instance the 

work which shows the CRFs can be approximate as the 

recurrent neural networks (Zheng, 2015).  

However, because of the specific characteristics of the indoor 

RGB-D images, the semantic segmentation methods of RGB or 

remote sensing images cannot be directly used. The D images 

show the depth information (but not spectral), so the pixel 

values do not indicate the variances in the different classes. 

Directly using the RGB-D images as four channel images 

cannot make good use of feature information between RGB 

images and D images. Therefore, the key to semantic 

segmentation for RGB-D images is how to effectively utilize the 

D information to conduct the RGB information to process 

semantic segmentation.  

The semantic segmentation methods for RGB-D images can 

also be sorted into methods with or without deep learning. The 

methods without deep learning use the depth information 

explicitly. Koppula (2011) proposed a graphical model that 

captures various features and contextual relations, including 

local visual appearance and shape cues, object co-occurrence 

relationships and geometric relationships. Tang (2012) designed 

a histogram of oriented normal vectors (HONV) to capture local 

geometric characteristics for RGB-D images. Silberman (2012) 

segmented the indoor scenes by the support inference from 

RGB-D images. Gupta (2013) proposed an algorithm for object 

boundary detection and hierarchical segmentation. Gupta (2014) 

proposed a new geocentric embedding for D images and 

demonstrated that this geocentric embedding worked better than 

using the raw D images for learning feature representations with 

convolutional neural networks. Huang (2014) converted the 

RGB-D images to a 3D point clouds with color to segment the 

RGB-D images. 

Compared to the methods without deep learning, the methods 

with deep learning use the depth information more implicitly by 

a variety of network architectures. Ling Shao (2017) analyzed 

four prevalent basic deep learning models (i.e., deep belief 

networks (DBNs), stacked de-noising auto-encoders (SDAE), 

convolutional neural networks (CNNs) and long short- term 

memory (LSTM) neural networks) for the RGB-D dataset and 

showed that CNNs obtained the best results. Richard Socher 

(2012) introduced a model based on a combination of CNN and 

RNN for 3D object classification. Zaki (2017) proposed a 

deeply supervised multi-modal bilinear CNN for semantic  
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Figure 1. Architecture of the network 

segmentation. Couprie (2013) first used a multiscale network 

for the RGB images while cutting the D images into super-

pixels, and then aggregated the classifier predictions in the 

super-pixels to obtain the labels for the super-pixels. Wang 

(2016) proposed a feature transformation network to bridge the 

convolutional networks and de-convolutional networks and 

found the common and special features between RGB and D 

images automatically. Our motivation comes from this study 

hence the similar use of its architectures. But for the feature 

transformation network, we took a different approach to find the 

common and special features.  

This paper proposes a deep network and the use of full connect 

CRFs for semantic segmentation.  The main contribution of this 

paper is the proposition of a loss function which can find the 

common and special features of RGB and D images to enhance 

performance of classification 

This paper proposes a deep network and the use of full connect 

CRFs for semantic segmentation.  The main contribution of this 

paper is the proposition of a loss function which can find the 

common and special features of RGB and D images to enhance 

performance of classification 

2. MAIN BODY

2.1 Deep Learning Architectures 

The deep learning architectures are based on SegNet 

(Badrinarayanan, 2015) combining with the Multiple Kernel 

Maximum Mean Discrepancy (MK-MMD). The architectures 

are shown in Figure 1. Before feeding data into the network, 

each channel of RGB-D images is normalized by the means and 

variances of the channel. Then, the RGB images as a three 

channel input and D images as a single channel are fed into the 

network separately. This way, highlighting pseudo depth edges 

due to RGB edges or vice-versa can be reduced. In the network, 

a symmetric encoder-decoder process is used, which contains 

four convolutional and pooling layers for RGB, four 

convolutional and pooling layers for D, a transformation layer, 

four corresponding de- convolutional and un-pooling layers for 

RGB, four corresponding de-convolutional and un-pooling 

layers for D, and the softmax layer. The encoder-decoder 

process can effectively catch the global and the local features of 

the images as shown in SegNet. The transformation layer is 

used to find the similarities between the RGB and D images to 

help improve the performance of semantic segmentation. The 

details are in the next section. The softmax layer is used to 

output the prediction probability of the network. The size of the 

convolutional kernel in the convolutional and deconvolutional 

layers is 7×7×64. The non-overlapping max pooling with a 2×2 

window is used. The activation function is ReLu for the 

convolutional and deconvolutional layers. The Batch 

Normalization (Ioffe and Szegedy, 2015) is used before the 

activation. 

2.2 The Transformation Layer 

Although the SegNet can also classify the RGB-D images as the 

architectures in Figure 1 without the transformation layer, the 

network cannot effectively utilize the information derived from 

RGB and D images respectively because of the over-fitting, 

therefore the loss function is needed for regularization.  

As can be seen in RGB-D images, RGB and D images have the 

same labels, but the obvious differences are the color and 

texture. Therefore, we try to find the similarities which may be 

the same edges or other things to help the network for semantic 

segmentation. This procedure is followed by the last pooling 

layer, because after the convolution and pooling, the influence 

of the color and texture is reduced. Besides, the last pooling 

layer has the biggest receptive field in the network and it can 

maintain more global information. 

By using the same architectures (Wang, 2016); the fc1c_rgb and 

fc1s_rgb are generated by layer4, and the fc1c_d and fc1s_d are 

generated by dlayer4. The differences between the fc1c_rgb and 

fc1c_d are then minimized and the difference between fc1s_rgb 

and fc1s_d maximized. This way, both the common and special 

parts of the RGB and the corresponding D images are 

automatically extracted in the network. The loss function of the 

whole network is shown as Eq.1: 

( ) ( 1 _ , 1 _ )

- ( 1 _ , 1 _ )

s d

d

L l label l fc c rgb fc c d

l fc s rgb fc s d

 
          (1) 

where 
sl is the softmax cross entropy, 

dl is a measure of

distance, which will be introduced in the next section. 

To further enhance the common information, the fc2_rgb and 

fc2_d which are used for de-convolutional and un-pooling take 

double the common information. The fc2_rgb are obtained by 

the sum of the two commons and the fc1s_rgb and fc2_d are 

obtained by the sum of the two commons and the fc1s_d. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-397-2017 | © Authors 2017. CC BY 4.0 License.

 
398



 

2.3 MK-MMD 

The difference between the fc1c_rgb and fc1c_d or fc1s_rgb 

and fc1s_d should be measured. We do not strictly keep the 

fc1c_rgb and fc1c_d the same, as it may reduce the capacity of 

the network. Therefore, the l2 distance and the cross entropy 

distance are not used. The MK-MMD which describes the 

differences between two distributions is used here, which can 

find similarity but not exactly the same things. 

 

MMD is a kernel-based modern approach that addresses the 

problem of comparing the data samples from two probability 

distributions (Karsten, 2006). If x has distribution P and y has 

distribution Q, respectively, the MMD can be written as Eq.2: 

 
2 ( , , ) : sup( [ ( )] [ ( )])P Q

f F

MMD E f E f


 F P Q x y     (2) 

 

where E is the expectation function. F is a function set. 

 

If the F is a unit ball in reproducing kernel Hilbert space 

(RKHS), the MMD (F,P,Q)=0, if and only if P=Q (Gretton, 

2012). Based on the condition, an unbiased estimator of MMD 

by shown in Eq. 3: 
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where k(·, ·) is a Gaussian kernel 

 

However, only one kernel is not flexible enough and cannot 

adequately describe a variety of distributions. Therefore, the 

single kernel in Eq.3 is replaced by the multiple kernels as 

shown in Eq.4 forming the MK-MMD and now the kernel can 

be seen as the positive linear combination of kernels: 
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where, 
uk is a Gaussian kernel  

 

Specifically, in measuring the distances, we tried two different 

ways. One is to find the distances between all the feature maps 

of the RGB and D image in RGB-D images of a batch and the 

other is to find the distances between feature maps of the RGB 

and D image in one RGB-D image. They are shown as follows: 

 

(1) As the data is all obtained in the classroom, all the images 

may obey the same distribution. The ld(X,Y) is shown as Eq. 5: 

 
2( , ) ( , , )dl X Y MMD F X Y                       (5) 

 

For finding the common parts, the X represents all the feature 

maps of RGB images in the fc1c_rgb in a batch and Y 

represents all the feature maps of D images in the fc1c_d in the 

batch. For finding the special parts, the X is all feature maps of 

RGB images in the fc1s_rgb in a batch and Y is all feature maps 

of D images in the fc1s_d in the batch. For specially, as an 

example, Xi is a matrix. The size of row equals to the batch size 

and the size of column is the number of feature maps multiply 

the pixel number of feature maps.  

 

 (2) Calculate the MMD between the feature maps. The ld(X,Y) 

is shown as Eq. 6: 

 

2

0

( , ) ( , , )
m

d i i

i

l X Y MMD


 F X Y                (6) 

 

where m is the number of feature maps. 

 

For finding the common parts between the feature maps, when 

one RGB-D image input, the Xi is the ith feature map in the 

fc1c_rgb and Yi is also the ith feature map in the fc1c_d. For 

finding the special parts, the Xi is the ith feature map in the 

fc1s_rgb and Yi is the ith feature map in the fc1s_d. For 

specially, as an example, Xi is a matrix and the sizes of row and 

column are the same as those of a feature map.  

 

2.4 Fully Connected CRFs 

Because the results of the network always look chaotic and the 

boundaries of different classes are blended, the CRFs are used 

to deal with this problem. However, the traditional CRFs which 

only use the information in the short range are not suitable for 

the score maps produced by the deep convolutional neural 

networks (Chen, 2015). The Fully Connected CRFs 

(Krähenbühl, 2012) which can use the information in the long 

range are used here. The model employs the energy function as 

shown in Eq.7-10: 

 

,

,
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where 

ix  and 
jx are the labels of pixel i and pixel j. The ( )i ix  

is the unary potential calculated by Eq.4, which describes the 

probability of a label assignment to a pixel. The ( )ip x  is the 

probability for pixel i labeled 
ix , which can be outputted by the 

network. The ,( )p i jx x  is the pairwise potential calculated by 

Eq.5, which describes the relationship between the two pixels. 

The ,( )i jx x  is the potts model, i.e. ,( )=1i jx x , when 

i jx x , otherwise ,( )=0i jx x . ( ) ( , )m
i jk f f  is the mth 

Gaussian kernel. ( )mw  is the mth linear combination weights for 

mth Gaussian kernel. As shown in Eq.6, the ( ) ( , )m
i jk f f  

contains two parts. The former is the appearance kernel which 

controls the nearby pixels with similar color likely to be in the 

same class. The latter is the smoothness kernel which removes 

small isolated regions. The 
 , 

 , 
 are the parameters of 

the Gaussian kernel. 

 

The fully connected CRFs can be an efficient approximate 

probabilistic inference (Krähenbühl, 2012), which can deal with 

an image in a short time. 
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When all the probabilities for pixels are obtained by the 

network, these probabilities are fed into the fully connected 

CRFs. After the inference of the fully connected CRFs is 

finished, the probabilities for each pixel with all labels are 

obtained and the label with the max probability is set as the 

label of the pixel. 
 

3. EXPERIMENTS 

In this section, to evaluate the performance of our method, it is 

applied to the real data acquired by the Microsoft Kinect depth 

camera in the laboratory room scenes which contain a total of 

four classrooms. The size of a RGB-D image is 960x540. In the 

RGB images, the fan, the table and the walls are white, and the 

display and the stool are black. The only color information of 

the RGB image is difficult to distinguish. Therefore the depth 

information is used to help us for semantic segmentation. 

Examples of the obtained RGB and D images are shown in 

Figures 2 (i)-(j) and Figures 3 (i)-(j). However, because the 

range of Kinect depth camera is only 1 to 3 meters, there is a 

large number of missing data which is the objects out of the 

range in D images, as shown in the sides of the Figures 2-3 (j). 

Also these are no depth information on the black surface 

because the infrared is absorbed by black objects. As shown in 

the red boxes in Figure 3 (j), the things in the boxes are parts of 

seats, tables and displayers, which are black in the red boxes in 

Figure 3 (j). Moreover, much grid-like missing data is in D 

image everywhere. All of the missing data will have a certain 

impact on semantic segmentation results.  

 

Based on objects’ essential attributes, we classify the RGB-D 

images from the scenes into 11 classes by handcraft as the 

ground truth. There are walls, floors, ceilings, displayers, seats, 

tables, curtains (and windows), fans, hangings, lights and doors. 

Table 1 shows the proportion of each object in overall samples 

for training and testing.  

 

 Train Test 

number proportion number proportion 

Wall 5160840 26.13% 1481909 24.83% 

Floor 2593811 13.13% 658858 11.04% 

Ceiling 3893564 19.72% 1342520 22.50% 

Displayer 1483842 7.51% 459501 7.70% 

Seat 1423088 7.21% 278329 4.66% 

Table 3212701 16.27% 1091727 18.29% 

Curtain 1405532 7.12% 480981 8.06% 

Fan 139283 0.71% 64927 1.09% 

Hanging 88517 0.45% 27091 0.45% 

Light 189239 0.96% 66432 1.11% 

Door 156922 0.79% 15309 0.26% 

Total 19747339 100% 5967584 100% 

Table 1 numbers and proportion of each object in overall 

samples for training and testing 

 

For classify the RGB-D images, as we adopt two different 

methods to calculate MMD in the network, one is to measure 

similarity of the whole batch and another one is to measure 

similarity of each feature map. For the purpose of simplicity, the 

first one is named RGBD+MMD1 and the second one is named 

RGBD+MMD2. We also compare our methods to some 

baselines. One uses only RGB images as input and the SegNet 

directly named RGB. The other named RGBD uses the 

architectures shown in Figure 1, but do not contain the 

transformation layer. That is, in the architectures, the layer4 is 

connected to the layer5 and the dlayer4 is connected to the 

dlayer5. The CRFs are implemented for all four methods. Table 

2 outlines the performance of semantic segmentation by all 

eight methods based on precision/recall and mean IOU. Figure 

2 and Figure 3 show two semantic segmentation results for all 

eight methods. Table 3 is the semantic segmentation charts’ 

legend. The black areas are all the things which are not in all 11 

categories, so these parts are not included in the training process 

and semantic segmentation results calculation. By the way, the 

IOU is calculated by the Eq.11 and the mean IOU is the mean 

of the IOU of the 11 classes. 

 

IOU





A B

A B
                                (11) 

 

where A is the predict label, B is ground truth. 

 

3.1 The Performance of RGBD + MMD 

According to Table 2 for two proposed MMD methods(RGBD 

+ MMD1 and RGBD + MMD2), among the 11 categories, the 

classification performance of walls, ceilings, curtains (windows) 

and lights are the best, with precision and recall rates all over 

85%, followed by floor, displayers, tables and their appendages. 

It can be easily found in Figures 2 and 3 that the results for 

vision fit to the performance of Table 2, which shows our 

methods can achieve high classification performance. The 

classification performance of fans, hangers and doors are 

relatively poor. In detail, the fans and hangings’ recall rates are 

low, which means fans and hangings were partially 

misinterpreted into other categories. This is basically because of 

their limited training and testing samples and data missing in 

depth images, especially when objects are out of Kinect 

camera’s sensing range. As we can see in the Figure 2, in the 

blue boxes the fans are partly or almost missing in the D image, 

which causes the two fans are not recognized well. On the 

contrast, doors have a high recall rate with low semantic 

segmentation precision.  As is shown in Figure 2, the door was 

identified successfully, but its low semantic segmentation 

precision suggests that there are some other types of targets that 

are misinterpreted into doors. This is mainly because some 

shadow areas the color of which is dark and similar to the color 

of door are classified to doors.  

 

Comparing the results of two different MMD methods, we find 

RGBD+MMD2 method is better, as its mean IOU value is 

higher than MMD1 by 0.9%. It is maybe because the constraint 

in RGBD+MMD2 method is more specific compared to the 

RGBD+MMD1 method in which the feature maps is not a one-

to-one correspondence. As is shown at the left top side of the 

images in Figures 2 (a)-(h), because of the missing data of the D 

image, in the results of the RGBD+MMD1 and the RGBD, 

these regions are classified wrong. The same condition can be 

found at the right top side and the blue boxes in the Figure 3. 

However, these regions in the results of RGBD+MMD2 are 

classified well, which means the RGBD+MMD2 is robust for 

the missing data. 

 

Compared to the results obtained by RGBD, methods that adopt 

the MK-MMD are better. The results show that the mean IOU 

value of RGBD + MMD1 and RGBD + MMD2 increased 6.7% 

and 7.1% relative to RGBD. Also we can see the right top side 

of the images in Figure 2 (a)-(h), the results of RGBD are the 

most affected by the missing data of D image. All of these 

demonstrate that the MMD constraints can improve the neural 
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network’s capability to strengthen objects’ boundary and 

enhance the semantic segmentation performance.  

  

Based on the above table, we can also infer that using RGB-D 

images for classification is better than using only RGB images. 

This is because the D images contain rich distance information 

which could help networks to enhance objects’ edges, and to 

some extent, D images also provide some spatial dependency 

which may be helpful for our models to identify targets in 

question. Although the RGB images do not suffer from the 

missing data of D images, as show in Figures 2 and 3, at the no 

missing data areas, the classification performance of the 

methods based RGB-D images are all better than that of the 

method only used the RGB images.   

 

 

 

 
RGB RGB+CRF RGBD RGBD+CRF 

RGBD+ RGBD+ RGB+ RGBD+ 

MMD1 MMD1+CRF 
MMD

2 
MMD2+CRF 

Mean 

IOU 
0.601 0.618 0.656 0.664 0.689 0.731 0.698 0.735 

Wall 
0.857/ 0.874/ 0.870/ 0.883/ 0.892/ 0.904/ 0.916/ 0.928/ 

0.820 0.844 0.874 0.883 0.932 0.945 0.928 0.941 

Floor 
0.693/ 0.715/ 0.781/ 0.785/ 0.793/ 0.807/ 0.774/ 0.800/ 

0.794 0.835 0.839 0.850 0.822 0.846 0.829 0.874 

Ceiling 
0.857/ 0.849/ 0.886/ 0.872/ 0.938/ 0.936/ 0.935/ 0.934/ 

0.960 0.975 0.945 0.96 0.971 0.981 0.970 0.987 

Displayer 
0.718/ 0.746/ 0.743/ 0.763/ 0.734/ 0.752/ 0.725/ 0.753/ 

0.794 0.831 0.817 0.854 0.828 0.876 0.835 0.890 

Seat 
0.559/ 0.665/ 0.635/ 0.734/ 0.636/ 0.727/ 0.692/ 0.791/ 

0.603 0.636 0.660 0.659 0.632 0.662 0.646 0.694 

Table 
0.800/ 0.811/ 0.865/ 0.874/ 0.849/ 0.87/ 0.867/ 0.887/ 

0.639 0.663 0.732 0.770 0.731 0.756 0.772 0.768 

Curtain 
0.946/ 0.977/ 0.940/ 0.955/ 0.960/ 0.981/ 0.951/ 0.969/ 

0.888 0.912 0.906 0.912 0.898 0.920 0.928 0.928 

Fan 
0.799/ 0.908/ 0.776/ 0.906/ 0.799/ 0.939/ 0.798/ 0.935/ 

0.507 0.234 0.580 0.255 0.637 0.481 0.674 0.484 

Hanging 
0.617/ 0.827/ 0.710/ 0.932/ 0.802/ 0.913/ 0.836/ 0.956/ 

0.518 0.558 0.493 0.520 0.685 0.680 0.653 0.725 

Light 
0.906/ 0.937/ 0.766/ 0.826/ 0.887/ 0.957/ 0.878/ 0.943/ 

0.835 0.731 0.879 0.770 0.889 0.878 0.896 0.839 

Door 
0.544/ 0.661/ 0.866/ 0.945/ 0.637/ 0.827/ 0.695/ 0.753/ 

0.724 0.806 0.772 0.836 0.917 0.983 0.946 0.928 

Table 2. Performance of semantic segmentation by eight methods (precision/recall and mean IOU) 

 

    

 

 

 

 

 

  (a)    (b)   (c)    (d) 

    

 

 

 

 

 

  (e)    (f)   (g)    (h) 

    

 

 

 

 

 

     (i)   (j)   (k)    

Figure 2. One example of Semantic segmentation results of eight methods. (a) RGB, (b) RGBD, (c) RGBD+MMD1, (d) 

RGBD+MMD2, (e) RGB+CRF, (f) RGBD+CRF, (g) RGBD+MMD1+CRF, (h) RGBD+MMD2+CRF, (i) RGB image, (j) Depth 

image, (k) Ground truth 
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  (e)    (f)   (g)    (h) 

    

 

 

 

 

 

     (i)   (j)   (k)    

Figure 3. Another example of Semantic segmentation results of eight methods. (a) RGB, (b) RGBD, (c) RGBD+MMD1, (d) 

RGBD+MMD2, (e) RGB+CRF, (f) RGBD+CRF, (g) RGBD+MMD1+CRF, (h) RGBD+MMD2+CRF, (i) RGB image, (j) Depth 

image, (k) Ground truth 

 

# Color Class 

0  Ignored 

1  Wall 

2  Floor 

3  Ceiling 

4  Displayer 

5  Seat 

6  Table 

7  Curtain 

8  Fan 

9  Hanging 

10  Light 

11  Door 

Table 3. Semantic segmentation Charts’ legend 

 

3.2 The Performance of Full Connected CRFs 

In Table 2, it is clear that the Mean IOU value of the four 

methods are improved by 1.7%, 0.8%, 4.2%, 3.7% respectively 

after the full connected CRFs processing. It can be seen that the 

CRFs play a very effect role in the semantic segmentation of the 

images. The CRFs could re-correct the false semantic 

segmentation result in the network according to the spatial 

relationship, and improve semantic segmentation precision. As 

shown in Figure 2 and Figure 3, after CRFs processing, ‘pepper 

noises’ are basically removed and we get a sharp boundary 

which fit the real object boundary well. In general, all the 

classes are semanticly separated.  

  

However, the CRFs also lead to the semantic segmentation 

precision of some small objects (fans, suspended objects, etc.) 

reduction. This phenomenon implies that the CRFs which are 

based on spatial relationships and distribution probability may 

be relatively weak to discriminate some small objects in large 

scenes. And it’s not hard to find out that the recall rate of fan in 

the scene is generally reduced after the CRFs. The reason is the 

CRFs in our paper only use the RGB images as reference data. 

 

 

 

 

 

(a) 

 

 

 

 

 

  

(b) 

 

 

 

 

 

  

(c) 

Figure 4. Unsatisfactory semantic segmentation results for 

tables, seats by RGBD+MMD2+CRF. (a) Unsatisfactory 

semantic segmentation results for tables, (b) Unsatisfactory 

semantic segmentation results for seats, (c) Unsatisfactory 

semantic segmentation results for displayers. RBG images are 

shown at left colomn and are the semantic segmentation results 

by RGBD+MMD2+CRF are are shown at right colomn. 

 

In RGB images, the color of the fans is similar to that of the 

ceiling, which causes the edges of fans not to be clear enough, 

as is shown in Figure 2 and 3, after the CRFs, some parts of 

fans are recognized as ceiling by the models. CRFs which do 

not refer to the depth information become powerless when 

targets’ edges are obscure in RGB images. However, there are a 

large number of missing data in D image, which keep the D 

images out of the CRFs. 
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3.3 Future Works 

In the experiment, we find that semantic segmentation 

performance for tables, displayers and seats was not entirely 

satisfactory. Figure 4 shows these unsatisfactory semantic 

segmentation results by RGBD+MMD2+CRF. From the Figure 

4 (a) it can be discovered that parts of the table are recognized 

as floor because they are all white. In Figure 4 (b), parts of the 

seats are recognized as displayers. Also it can be discovered 

from Figure 4 (c) that parts of tables are recognized as 

displayers. For the Figures 4 (b) and (c), it is because the 

confused parts are all black and these are no depth information. 

For these objects, it’s hard to discriminate them if the 

surrounded objects are not considered. Obviously, our model’s 

ability for space-dependent learning has yet to be improved. 

Therefore, we must strengthen the network’s capability in 

learning spatial dependencies to improve semantic segmentation 

performance in identifying these three kinds of targets in the 

future. 

 

4. CONCLUSION 

In this paper, we proposed a network for RGB-D images 

classification and also semantic segmentation by full connect 

CRFs. Although the D images are noisy and have missing data, 

with the help of the designed network and the loss function, the 

performance of semantic segmentation maintains a high 

precision. In future work, the spatial dependencies will be 

considerate in our network. 
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