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ABSTRACT:

Indoor reconstruction from point clouds is a hot topic in photogrammetry, computer vision and computer graphics. Reconstructing
indoor scene from point clouds is challenging due to complex room floorplan and line-of-sight occlusions. Most of existing methods
deal with stationary terrestrial laser scanning point clouds or RGB-D point clouds. In this paper, we propose an automatic method for
reconstructing indoor 3D building models from mobile laser scanning point clouds. The method includes 2D floorplan generation, 3D
building modeling, door detection and room segmentation. The main idea behind our approach is to separate wall structure into two
different types as the inner wall and the outer wall based on the observation of point distribution. Then we utilize a graph cut based
optimization method to solve the labeling problem and generate the 2D floorplan based on the optimization result. Subsequently, we
leverage anα-shape based method to detect the doors on the 2D projected point clouds and utilize the floorplan to segment the individual
room. The experiments show that this door detection method can achieve a recognition rate at 97% and the room segmentation method
can attain the correct segmentation results. We also evaluate the reconstruction accuracy on the synthetic data, which indicates the
accuracy of our method is comparable to the state-of-the art.

1. INTRODUCTION

Recent years have witnessed an increasing demand for highly ac-
curate and fidelity indoor 3D models in the areas of indoor map-
ping and navigation, building management, virtual reality, and
more (Schnabel et al., 2007). Meanwhile, with the decreasing
price of laser scanner, it is easier to gain point clouds data from
the consumer-level laser scanners (e.g., Hokuyo, RPLiDAR) (Hum-
mel et al., 2011). Current methods in 3D indoor building recon-
struction is either a manual or interactive tedious process which
is time-consuming and error-prone (Tang et al., 2010). Compared
to the outdoor reconstruction, the reconstruction of architectural
elements is still in early stage, but draws increased attention from
the communities like photogrammetry, computer vision and com-
puter graphics.

In order to increase the efficiency of indoor building models gen-
eration, we propose an automatic reconstruction method based
on the observation of the specific distributions of indoor point
clouds. The proposed method includes 2D floorplan extraction,
door detection, room segmentation and 3D building modeling.
We leverage the data from both mobile laser scanner and syn-
thetic point clouds to verify the effectiveness of our method.

2. RELATED WORKS

Several efforts have been made on 3D indoor reconstruction from
LiDAR data in recent years. We group the existing methods in
terms of data acquisition methods: indoor mobile laser scanning
and stationary terrestrial laser scanning.

2.1 Indoor Mobile Laser Scanning

(Sanchez and Zakhor, 2012) introduce an approach that divides
indoor points into ceilings, floors, walls and other small architec-
tural structures according to the normals computed from the PCA
∗Corresponding author

(principle component analysis). Then the RANSAC plane fitting
is employed to detect planar primitives for 3D model genera-
tion. (Xiao and Furukawa, 2014) generate 2D CSG (Constructive
Solid Geometry) models then stack over these models through a
greedy algorithm to create 3D CSG models. During the process-
ing of the 2D CSG models, they need to compute a free space
score of the objective function, requiring the line-of-sight infor-
mation from each point to the laser scanner. (Turner and Zakhor,
2014) (Turner et al., 2015) use a back-pack system consisting of
a laser scanner, IMU and computer to acquire indoor point clouds
while walking around a building. They employ Delaunay trian-
gulation to label different rooms. However, their approach needs
the number of rooms as a prior knowledge for the seed triangles.
Also, their approach requires the timestamp information to re-
cover the line-of-sight information from each point to the laser
scanner for computing the label scores. (Nakagawa et al., 2015)
employ a point-based rendering method to generate range images
from point clouds. The detected boundaries in these range images
are traced back to point clouds to generate 3D polygons.

2.2 Stationary Terrestrial Laser Scanning

(Budroni and Böhm, 2010) present a method leveraging a sweep
line technique along the normal vector of the wall to detect planar
structures. However, the extracted floorplan is based on Manhat-
tan world assumption which is only rectangular. (Ochmann et
al., 2014) propose an approach to assign each point to a specific
room based on the information of the scanner’s position for seg-
menting each individual room. Their method works well for sta-
tionary terrestrial scanning data, but not for the data from indoor
mobile LiDAR system. (Oesau et al., 2014) present a two-line
multi-scale fitting method to label the rooms through an energy
function optimization based on graph cut and the line-of-sight in-
formation from each point to the laser scanner. However, their
method can only extract the building outer walls and omit the
inner walls. (Previtali et al., 2014) decompose the indoor point
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Figure 1. The Pipeline of Methodology: 1) preprocessing; 2) floorplan extraction; 3) door detection; 4) room segmentation; 5) output
3D modeling.

clouds into several planar surfaces such as walls, roofs and ceil-
ings, but their method just focuses on the single room reconstruc-
tion. (Ikehata et al., 2015) introduce a new framework that de-
fines a structure graph and grammar for an indoor scene geom-
etry, which can be extended to add additional details. However,
their method is based on the Manhattan world assumption that
restricts the types of geometric expressions. Another approach
proposed by (Mura et al., 2014) explores the vertical structure
(i.e. planar patches from the walls) and a visibility check to elim-
inate occlusions through the position of static laser scanner. The
main limitation is that their method can’t deal with data contain-
ing rooms with different heights. (Thomson and Boehm, 2015)
introduce a concept of Industry Foundation Classes (IFC), a term
from BIM. They use IFC to describe the building structure and a
RANSAC-based method for planar model generation.

As we can see, most of existing methods need to know the line-
of-sight information from each point to the laser scanner. In this
paper, we propose a pipeline that works for data without the line-
of-sight information.

3. METHODOLOGY

Figure 1 illustrates the pipeline of our method containing five
parts. The first step is the preprocessing to remove noises. Sec-
ondly, we use a graph-cut based algorithm to extract the floorplan
on 2D projected points. The third and fourth steps are door de-
tection and room segmentation, respectively. Finally, we utilize
information from floorplan, door positions and room segmenta-
tion results to generate the 3D building models. The input data
consists of two parts: raw point clouds (x-y-z coordinates with in-
tensity values) and trajectory of mobile laser scanner (we convert
it into discrete points by 1 meter interval).

3.1 Preprocessing

Figure 2a shows the point clouds containing various noises, es-
pecially near the windows and doors. This is a consequence of
laser beams which traverse the transparent material or go across
the opening doors. These beams will strike the objects outside of
the building and generate isolated points outside of the building.
The points near the window and other highly transparent mate-
rials have a relatively low echo intensity value. For this reason,
we can set a threshold to remove the points whose intensity is
below the threshold. Similar to the (Ikehata et al., 2015), we set
a threshold Ith = µi − α · δi, where the µi and δi denotes the
mean value and standard deviation of intensity. Then we utilize
the morphological operations (i.e., opening operation, the largest
connected component) to eliminate isolated points that cannot be
removed by intensity threshold. The Figure 2b shows the results
of preprocessing.

3.2 Floorplan Extraction

The floorplan extraction contains two steps: 1) linear primitive
extraction, 2) cell selection.

(a) (b)

Figure 2. a) The original data and close-up views showing the
noisy points penetrating windows or passing through open

doors; b) The result after the preprocessing step.

3.2.1 Linear Primitive Extraction Rather than a Manhattan
structure, we only assume that the walls are perpendicular to the
floor. In other words, walls don’t need to be perpendicular to
each other. To obtain the vertical structure, we use the PCA (prin-
ciple component analysis) to estimate the normal for each point
and flip the normal direction if it isn’t towards the nearest scan-
ner position. If

∣∣∣N̂i ·Nz∣∣∣ is smaller than a threshold (i.e. 0.01),
we consider the point belonging to the wall, and Nz here is the
unit vector of the Z axis. We then project the walls to the x-y
plane and apply a RANSAC line fitting algorithm to fit the lin-
ear primitives. The RANSAC algorithm will discard the lines
which contain points less than a threshold (i.e. 15). Similar to the
approaches (Ikehata et al., 2015) and (Michailidis and Pajarola,
2016), we extract the representative lines of the candidate walls
using a 1D mean shift clustering. The first step is to perform the
clustering according to the orientations of the walls, then compute
the most likely offset for each line. The candidate walls (repre-
sentative lines) are generated at the peaks of the offsets as shown
in Figure 3.

(a) (b)

Figure 3. a) The linear primitives from RANSAC line fitting; b)
The result from the line clustering.

3.2.2 Cell Selection To generate floorplan, we need to use the
linear primitives from previous step to define the outline for each
room. The idea is to convert the line segments into cells. We
check the intersections of different lines and then partition the
ground plan into several cells. After the cell decomposition, we
can obtain a set of cells T = {Ti

∣∣ i = 1, ..., n} as shown in Fig-
ure 4a, which will be labelled to approximate the rooms. Given
the set of the cells, we employ the graph cut algorithm to label
each cell as interior or exterior cell. The interior cell is within
the room, and the exterior cell is outside the room. Graph cut is
a global optimization method for solving this type of binary la-
beling problem through a minimum cost cut on a graph (Boykov
and Jolly, 2001). Once the label for each cell is available, we can
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extract the outer walls by the adjacent edges with different labels
from the cells. As shown in Figure 4b, we use this global min-
imization method to label the different cells to the exterior cells
(yellow) and interior cells (green). The details of the processing
are in the following.

(a) (b)

(c) (d)

Figure 4. Floorplan extraction: a) cell decomposition; b) room
labeling; c) outer wall extraction; d) inner wall extraction.

Graph generation: An undirected graph G =< V, E > can
be defined to encode the set of cells T to the label set L =
{Lint,Lext}. The cells set T can be assigned to the vertices in
the graph. Each edge in the graph is assigned with a non-negative
weight we. The set of edge E is composed of two parts: n-links
(neighborhood links) and t-links (terminal links). Therefore, the
set of edge E can be expressed as E =

{
{v, S}, {v, T}

}⋃
N . The N represents the links of neighborhood. The sets

S and T denote the “source” and “sink” nodes representing fore-
ground and background in graph cut algorithm, respectively. More
specifically, the source node is labelled as interior spaceLint, and
the sink node is exterior space Lext. The energy function can be
represented as

E(L) =
∑
i∈V

Di(Li)+λ·
∑

(i,j)∈N

Si,j(Li, Lj)·δ(Li 6= Lj) (1)

where the first term Di(Li) is the data term, representing the
penalty of assigning every vertex to different labels; the second
term Si,j(Li, Lj) is smoothness term multiplying with an indica-
tor function δ(Li 6= Lj) which is the pairwise cost for adjacent
cells to ensure the smoothness of segmentation. The parameter λ
is used to define the importance of the data term versus smooth-
ness term.

Smoothness Term: A weight wi,j is defined to determine the
weight between adjacent cells, denoting the shared edges between
the connected cells. The weight wi,j can be computed through a
grid map derived from the horizontal bounding box of the lin-
ear primitives. As shown in Figure 5, we can divide the walls
into two categories as inner walls and outer walls. The outer wall
separating the indoor and outdoor scenes will be just scanned on
single side. However, the inner wall will be scanned on both
sides which results in an empty region between two sides of the
wall. The green dashed lines in Figure 5b denote the representa-
tive lines from RANSAC line fitting and clustering. For the outer
walls, the extracted lines are normally close to the wall. How-
ever, for the inner walls, the extracted lines are often located in
the middle of the wall. The Figure 5c shows an example from our
data. The walls in the green rectangles are inner walls scanned on
both sides and the walls in the yellow rectangles are outer walls
scanned only on single side. Therefore, there exists empty areas
within the inner walls.

(a) (b)

(c)

Figure 5. The illustration of points distributions. a), b) Scanning
process: the black arrows indicate the directions of the scanning,
showing different point distributions on outer and inner walls. c)

The points distributions on the real data, inner walls (green
rectangles) and outer walls (yellow rectangles)

We calculate two weights for each line taking outer and inner
walls into account. Figure 6 indicates two different patterns of
the weight definition and the grey dashed lines indicate the cells
from the cell decomposition. We generate both 1-column grid
map and 3-column grid map centered at the edge of the cell, and
compute the weight as the ratio of occupied grids. Therefore, the
weights can be calculated using the following equation, wi,j,k =
occ(ei,j)

sum(ei,j)
, where the weight wi,j,k is the weight on each edge,

occ(ei,j) and sum(ei,j) represent the number of occupied grids
and the total number of grids, respectively. The ei,j represents
the edge between different cells, i,j is the index of cells and k is
the column number of grid map. The final weight for each edge
is selected using the following equation:

wi,j =

{
wi,j,3, wi,j,3 − wi,j,1 ≥ H
wi,j,1, otherwise

(2)

where H is an experimentally chosen constant (i.e. 0.3). And the
smoothness term can be determined as

Si,j(Li, Lj) = 1− wi,j (3)

Note that we also use wi,j as a prior knowledge for wall identifi-
cation to determine data term in the following step.

Data Term: Inspired by the method (Ochmann et al., 2014), we
use a ray casting method to evaluate the weight between the cells
and the terminal nodes. Since we don’t have the line-of-sight in-
formation from the laser scanner to the point, we cannot use the
ray information directly. Instead, we propose a new method to
define the data term by creating virtual rays based on the scanner
positions from the trajectory for estimating the likelihood of dif-
ferent labels. The rationale is that the cells belonging to interior
space will be intersected by the rays more than the exterior ones.
In Figure 7, the black crosses are the positions of the scanner, and
the dashed lines launched from the crosses are the simulated rays.
If the rays intersect with the walls (the green lines), we count it
to the weight for the data term. Naturally, the outer cells (green
and white background cells) will have relatively low weights and
the interior cells will have relatively high weights (yellow back-
ground cells).

Specifically, we simulate rays in an interval of 10 degree centered
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(a) (b)

Figure 6. Different patterns of the weight definition. The dashed
grey lines depict the result of the cell decomposition. a) 1

column grid map; b) 3 columns grid map.

at the device location. If the weight of an edge wi,j is greater
than a threshold (i.e. 0.55), we consider the edge as a wall. For
the sake of eliminating the bias of different sizes of cells, the data
term is scaled by an area scalable parameter sα. The data term
can be represented by the following function:

Di(Li) =

{
(1− inum

maxnum
) · sα, Li ∈ ext

inum
maxnum

· sα, Li ∈ int
(4)

where inum is the intersection number of each cell, maxnum is
the maximum number of each cell, sα the reciprocal of each cell’s
area.

Once the cells are labelled as exterior or interior cells, we can ex-
tract the outer walls from the adjacent edge between two different
labels as shown in Figure 4c (the red lines). The weight definition
of the inner walls are different from the outer walls’. As discussed
before, if the weight of cell suffices wi,j = wi,j,3 − wi,j,1≥0.3,
we consider it as an inner wall as shown in Figure 4d (the cadet
blue lines). Both the outer and inner walls together constitute the
floorplan.

 

Figure 7. Simulated ray casting from the scanner positions. The
yellow cells present a high likelihood of being interior cells, and

the green and white cells are likely to be the exterior cells.

3.3 Door detection

We use a reasonable assumption that the doors are opened during
the data acquisition process as the mobile laser scanner needs to
enter and exit the rooms. Under this assumption, we can con-
vert the door detection problem to find the vacancy in the point
clouds. We propose a new method based on the properties of the
Delaunay triangulation, alpha-shape and the scanner trajectory in
the projected 2D space.

The alpha-shape algorithm (Edelsbrunner et al., 1983) has been
widely used in determining the boundaries of the points clouds
especially of outdoor buildings (Wei, 2008)(Albers et al., 2016).
In the actual implemtation, alpha algorithm is starting from a De-
launay triangulation and selecting boundaries in the Delaunay tri-
angles. An alpha value(0 < α <∞) is a parameter imposing the
precision of final boundary. A large value (α → ∞) results in
the alpha boundary of a convex hull while a small value (α→ 0)
means that every point can be the boundary point. As shown in
the Figure 8a, the green circles indicate the gaps from the doors
and the yellow circles show the gaps from the occlusions.

(a)

(b) (c) (d)

Figure 8. Top: the gaps in 2D point projection, the green circles
represent the gap deriving from the real door while the gaps in

the yellow circles resulting from occlusions. Bottom: three steps
of door detection.

We can see that the doors’ widths are relatively wider than those
of the occlusions. Also the gaps from the doors are shorter than
the hallway or other structures such as an extrusion along the hall
way. Therefore, the sizes of the door gaps are significantly differ-
ent from any other structures or occlusions in the indoor scene.
We can assume that different values of the alpha parameters will
lead to the differences of the alpha interior triangles. A portion of
the triangles can represent the doors, and the set of the different
triangles can be represented as

Tdiff = Thigh − Tlow (5)

In this equation, Thigh is a set of interior triangles from a high
alpha value, and Tlow is a set of interior triangles from a low alpha
value. We set alpha values as αhigh = 0.88 and αlow = 0.78.
The set of green triangles Tdiff as shown in Figure 8b contains
the doors. The green triangles near the outer walls intersected
by the trajectory of the laser scanner or the simulated rays will
be considered as the door candidates (the blue triangles in Figure
8c). In order to alleviate some bias, we set a threshold of the
intersection number as 10 and discard the candidate doors less
than a certain threshold (i.e., 0.6m). Finally, we can use blue
triangles to produce the floorplan with door representations as
shown in Figure 8d.

3.4 Room Segmentation

Once we extract the floorplan, a segmentation algorithm can be
employed to classify the floorplan to every individual room. If
two adjacent cells are separated by the extracted wall, the likeli-
hood of these two cells belonging to the same room is low. Other-
wise, we can mark the adjacent cells as the same label. Therefore,
the labeling metrics can be defined as
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Li,j =

{
Li = Lj , (ci, cj are adjacent)

⋂
(Eij is not wall)

Li 6= Lj , otherwise

(6)
where Eij denotes the shared edge between two adjacent cells,
the property of each edge can be gained from extracted floorplan.
We randomly select some cells as seed points and label cells iter-
atively according to the above metrics. Figure 9 shows the results
of room segmentation, the segmented regions including rooms
and corridors. The indoor scenes have been separated into 9 re-
gions and 18 regions on the 2D floorplan, respectively.

(a) (b)

Figure 9. Results of room segmentation (including rooms and
corridors): a) office 1 with 9 regions; b) office 2 with 18 regions.

Utilizing the result of room segmentation as a boundary of every
room, we employ the elevation histograms to estimate the heights
of rooms. Finally, we stretch up the walls for the 3D model gen-
eration.

4. EXPERIMENT

The proposed method is evaluated on two point cloud datasets
and one synthetic point clouds. The experiments are running
on a computer with an Inter i7-4770 CPU @ 3.4GHz and 10.0
GB ram. We implement this method based on the open source
libraries: Point Cloud Library (PCL), Computational Geometry
Algorithms Library (CGAL) and Mobile Robot Programming Toolkit
(MRPT) for our system.

Figure 10 shows the reconstruction results from two mobile laser
scanning point clouds. Figure 10a is the original point clouds and
Figure 10b is the wireframe models without ceilings in which we
can observe the structures of doors and walls clearly, Figure 10c
is the 3D reconstructing result. Table 1 shows that all the rooms
are successfully reconstructed and all the doors except one door
are detected. The missing door is because the door was closed
during the data acquisition, which conflict with our assumption
that all the doors are opened.

Input Office 1 Office 2 Synthesis

# of points [million] 23.3 52.2 0.8
# of rooms 9 18 3
# of doors 13 22 4

Output Office 1 Office 2 Synthesis

# of rooms 9 18 3
# of doors 12 22 4

Table 1. Description of the input data and statistics of the outputs

In order to evaluate the accuracy of the proposed method, a set of
synthetic point clouds is employed. We create a Sketchup model
and sample it to point clouds by Meshlab. The synthetic data is

(a) (b) (c)

Figure 10. Experiment results. From left to right: the original
point clouds, wireframe models without ceilings, reconstruction

models with ceilings.

(a) (b) (c)

Figure 11. Accuracy evaluation: a) point clouds with
σ = 10mm Gaussian noise; b) wireframe model; c) quantitative
evaluation of the reconstructed surfaces and supporting points.

added with 10% Gaussian noises as shown in the left of Figure
11. The reconstruction errors are measured by the distances from
points to the corresponding reconstructed surfaces. The right of
Figure 11 shows the color maps of the reconstruction errors. The
maximum fitting error, minimum fitting error and the average fit-
ting error turned out to be 2.52cm, 0.58cm, 1.77cm, respectively.

5. CONCLUSIONS

We propose a complete methodology for indoor building recon-
struction from mobile laser scanning data. Our system can gen-
erate floorplan, detect doors, segment each individual rooms, and
3D indoor modeling. Different from existing methods, our method
doesn’t need line-of-sight information and can deal with both
outer and inner wall detection. The experiments on the real point
clouds and synthetic point clouds demonstrate the effectiveness
and high accuracy of our method. The limitations of our method
that it will fail if the indoor scene contains cylindrical or spherical
walls, sloping walls and it will discard some details in the global
optimization.

For the future work, we plan to reconstruct more detailed indoor
scene by extending our method in a 3D view and employ im-
ages acquired simultaneously with the point clouds to enhance
the modeling performance.
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