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ABSTRACT: 

Landslide mapping benefits from the ever increasing availability of Earth Observation (EO) data resulting from programmes like the 

Copernicus Sentinel missions and improved infrastructure for data access. However, there arises the need for improved automated 

landslide information extraction processes from EO data while the dominant method is still manual delineation. Object-based image 

analysis (OBIA) provides the means for the fast and efficient extraction of landslide information. To prove its quality, automated 

results are often compared to manually delineated landslide maps. Although there is awareness of the uncertainties inherent in 

manual delineations, there is a lack of understanding how they affect the levels of agreement in a direct comparison of OBIA-derived 

landslide maps and manually derived landslide maps. In order to provide an improved reference, we present a fuzzy approach for the 

manual delineation of landslides on optical satellite images, thereby making the inherent uncertainties of the delineation explicit. The 

fuzzy manual delineation and the OBIA classification are compared by accuracy metrics accepted in the remote sensing community. 

We have tested this approach for high resolution (HR) satellite images of three large landslides in Austria and Italy. We were able to 

show that the deviation of the OBIA result from the manual delineation can mainly be attributed to the uncertainty inherent in the 

manual delineation process, a relevant issue for the design of validation processes for OBIA-derived landslide maps. 

* Corresponding author

1. INTRODUCTION

Landslide mapping benefits from the ever increasing availability 

of Earth Observation (EO) data resulting from programmes like 

the Landsat programme of NASA and the Sentinel missions of 

the European Copernicus programme. There is also a 

continuously improving infrastructure for data access. NASA 

provides its Landsat data for example via the Landsatlook portal 

(https://landsatlook.usgs.gov/) operated by the United States 

Geological Survey (USGS). For Sentinel, the access is provided 

by the official Sentinel Data Access Infrastructure for different 

user categories (e.g. https://scihub.copernicus.eu), by the ESA 

member states, by international partner organisations and 

further commercial providers.  

In addition to the high resolution (HR) optical satellite imagery 

mentioned above (Landsat, Sentinel-2), very high resolution 

(VHR) optical satellite imagery, e.g. WorldView, QuickBird, 

Pléiades, are used for landslide detection and inventory 

preparation (Scaioni et al., 2014; Singhroy, 2005, van Westen et 

al., 2008). Manual visual image interpretation is useful for 

mapping shallow landslides causing significant changes on the 

surface that are well perceivable in satellite images by their 

colour contrast, shape, size, pattern and texture (Morgan, 2010), 

or in case of stereographic imagery elements of the third 

dimension (Scaioni et al., 2014). Drawbacks of manual 

interpretations are that they are resource- and time-consuming 

and highly dependent on the experience and skills of the 

interpreter (Galli et al., 2008; Guzzetti et al., 2012; Hölbling et 

al., 2015). As shown by various studies in other fields (Albrecht, 

2010, Albrecht et al., 2010, Kohli et al., 2016; Van Coillie et al., 

2014), human visual interpretation tasks generally underlie 

variability over individuals and time, i.e. no interpreter will 

achieve the very same result twice and no interpreter will 

achieve the very same result as his peer. Still, manual landslide 

interpretation represents the current standard for landslide 

detection and inventory preparation. Despite its value, the lack 

of repeatability renders manual interpretations somewhat 

subjective. 

Regarding the increased availability of EO data for landslide 

mapping and the limited resources to fully exploit these data by 

means of visual interpretation, the disadvantages of manual 

interpretation and their lack of repeatability becomes even more 

evident. Advances in computer science and machine 

intelligence facilitate the development of automated methods 

for landslide mapping (Moosavi et al., 2014; van Westen et al., 

2008). However, Scaioni et al. (2014) emphasize that remote 

sensing techniques for landslide investigations still require 

further development, even if recent improvements are very 

promising. Both pixel-based and object-based image analysis 

(OBIA) approaches are available for the analysis of optical data, 

often used in combination with digital elevation models (DEMs) 

(Stumpf and Kerle, 2011). The recent trend however, is towards 

OBIA approaches as demonstrated by a range of landslide 

mapping examples (e.g. Blaschke et al., 2014; Barlow et al., 

2006; Behling et al., 2014; Heleno et al., 2016; Hölbling et al., 

2012, 2015, 2016, 2017; Kurtz et al., 2014; Lahousse et al., 

2011; Lu et al., 2011; Martha et al., 2010, 2011, 2012; Stumpf 

and Kerle, 2011; Rau et al., 2014). OBIA provides a set of 

image processing tools and algorithms that can be jointly 

applied for semi-automatically delineating and classifying 
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landslides on EO data. The tools apply algorithms that rely on 

the concepts of image segmentation and classification. For 

landslide recognition based on EO data, landslides or landslide 

elements are aggregated into homogeneous objects and are then 

classified according to specific characteristics. These 

characteristics represent the spectral, spatial, textural and 

contextual properties of the image objects (Barlow et al., 2006; 

Martha et al., 2010; Moosavi et al., 2014). 

 

OBIA approaches definitely show potential for the adoption in 

operational processes for landslide inventory preparation. But in 

order to prove their validity for this purpose, OBIA results have 

to be comparable to the results of the current state-of-the-art 

method of manual visual image interpretation. Consequently, 

manually delineated landslide maps often are used as a 

reference for judging the quality of OBIA results using common 

accuracy assessment techniques from remote sensing 

(Congalton and Green, 2009; Foody, 2002), applied for OBIA-

derived landslide maps by Hölbling et al. (2016). A recent study 

by Hölbling et al. (2017) compares manual mapping results to 

semi-automated object-based mapping results and shows that 

both methods can produce results of similar quality, whereby 

the achieved accuracy values can vary widely between study 

areas.  

 

The study of Hölbling et al. (2017) also argues that the term 

‘agreement’, instead of ‘accuracy’, is better suited for the 

comparison of semi-automated object-based mapping results to 

manual mapping results. A traditional accuracy assessment 

requires reference data with significantly higher accuracy (Lang 

et al., 2010). This is a quality level that manual mapping 

performed on the same image data cannot fulfil due to its 

inherent uncertainties originating from the variability in the 

interpretation process. This does not disqualify the accuracy 

metrics that measure the agreement between the datasets. But it 

acknowledges that a certain amount of disagreement between 

the datasets cannot be avoided. Although there is awareness of 

the uncertainties inherent in manual delineations, there is a lack 

of understanding how they affect the levels of agreement in a 

direct comparison of OBIA-derived landslide maps and 

manually derived landslide maps. If the impact of the 

uncertainty in the manual delineations is better understood, the 

validity of the agreement values as a quality measure for the 

OBIA-derived landslide maps can be better assessed.  

 

This study analyses the agreement between OBIA-derived 

landslide maps and a fuzzy manual delineation of landslides that 

have been prepared on the basis of the same optical satellite 

images. The fuzzy approach makes the inherent uncertainties in 

the interpreter’s choice of the manual delineation explicit. 

Albrecht (2010) shows that the drawn delineations in the 

interpretations specifically differ (1) in areas where a spectral 

gradient indicates a transition from one class to another, (2) in 

areas where an interpreter chooses to generalize instead of 

following every detail provided by the image, and (3) in areas 

where the image information remains uncertain about the 

applied class definition. With a fuzzy manual delineation 

approach for mapping landslides, the variations of type 1 and to 

some degree of type 2 can be addressed by identifying a spatial 

bandwidth of variation. The fuzzy delineation is compared to an 

OBIA-derived landslide map with accuracy metrics commonly 

used in remote sensing. The calculated metrics will enable to 

judge if the OBIA-derived landslide map falls within a similar 

range of uncertainty as has been made explicit with the fuzzy 

manual delineation, thereby estimating the agreement between 

the compared datasets. The result is discussed in the context of 

the utilization of manual delineation for assessing the quality of 

OBIA-derived landslide maps. 

2. MATERIAL AND METHODS 

2.1 Study areas and data 

Landslides in two study areas in the Alps were investigated: (1) 

the Fürwag landslides at the Haunsberg, Salzburg, Austria, and 

landslides near the villages of (2) Badia and (3) Corvara that are 

located in the Gader Valley, South Tyrol, Italy (Figure 1). As a 

basis for the landslide mapping, Landsat 7 and Sentinel-2 data 

were available.  

 

 
Figure 1: Overview of study areas. Sources: ESRI, USGS, 

NOAA. 

 

The ‘Fürwag Landslide’ at the Haunsberg, about 10 km north of 

the city of Salzburg, Austria, is situated in an area with 

remnants of mudslides that occurred in previous times. The 

most recent sliding processes took place between 1999 and 

2003 when major infrastructure facilities at the valley floor were 

endangered (Fiebiger, 2002). The geology in this pre-alpine 

zone is characterized by sandstones, shales and the Flysch, 

formed by the Zementmergelserie (marl cement series) which 

are very prone to mass movements (Embleton-Hamann, 2007).  

 

The Gader Valley in South Tyrol, Italy, exhibits particular 

geological and geomorphological conditions that make it prone 

to landslides (Larcher et al., 2010), e.g. containing the area of 

the Corvara landslide with a size of more than 2.5 km² and a 

volume of 300 million m³ (Corsini et al., 2005). We focus on 

two recent landslides in its wider neighbourhood: in December 

2012, long and intensive rainfall caused a large landslide in 

Sottrù in the municipality of Badia that destroyed several 

buildings and endangered infrastructure; in April 2014, a large 

landslide happened at the border of Corvara to Colfosco. 

 

For the study area Fürwag, a Landsat 7 satellite image from 

28/07/2002 with 15 m resolution in the panchromatic band and 

30 m resolution in the multispectral bands was used. Pre-

processing included a pansharpening and the orthorectification 
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of the image to match the coordinate system WGS1984 UTM 

33N with sub-pixel geolocation accuracy. A digital elevation 

model (DEM) with 10 m resolution, freely available from the 

geodata portal of Austria (www.geoland.at), was used as 

ancillary data. It originated from the Austrian airborne laser 

scanning (ALS) campaigns between 2006 and 2013.  

 

For the study areas of Badia and Corvara, a Sentinel-2 satellite 

image from 27/08/2016 was available. The four multispectral 

bands with 10 m resolution (blue, green, red, nir) were used, 

whereas the other bands in 20 m and 60 m resolution were 

disregarded. The image was transformed to WGS1984 UTM 

32N with sub-pixel geolocation accuracy. A 5m DEM was 

available from the geodata portal of the Autonomous Province 

of Bolzano (http://geoportal.buergernetz.bz.it/default.asp). 

 

2.2 Object-based landslide mapping 

For each of the study areas, a semi-automated object-based 

mapping approach was developed in eCognition (Trimble 

Geospatial) in order to identify the landslides in the satellite 

images (cf. Hölbling et al., 2017). The approaches followed 

similar workflows, but segmentation parameters and 

classification rules had to be slightly adapted to each test case 

since the spectral differences in the datasets limited the 

transferability. Image objects were created with multiresolution 

segmentation and selected object features were used in the 

classification ruleset for discriminating the landslide areas from 

other areas. They included the Normalized Difference 

Vegetation Index (NDVI), the slope information and further 

spectral and spatial parameters (e.g. spectral difference to 

neighbouring objects, length/width ratio, shape index). An 

exploratory analysis of the image segments’ properties 

determined the selection of thresholds. Table 1 summarizes the 

used segmentation and classification parameters for each study 

area.  

 

Study Area Segmentation 

parameters 

Main classification 

parameters 

Fürwag SP: 25  

S: 0.1  

C: 0.5 

 

Mean diff. to 

neighbours (NDVI) 

< 0 

Mean slope > 10 

Length/Width > 4 

 

Badia SP: 150  

S: 0.5  

C:0.5 

Mean NDVI < 0.4 

or < 0.5 (depending 

on fine adjustment 

in combination 

with other features) 

Mean slope > 10 

 

Corvara SP: 150 

S: 0.3  

C: 0.8 

Mean NDVI < 0.4 

Mean slope > 8 

Length/Width > 1.6 

Shape index < 3.6 

Table 1. Segmentation parameters (SP – Scale Parameter, S – 

Shape criterion, C – Compactness criterion) and classification 

parameters for the ruleset applied to each study area (cf. 

Hölbling et al. (2017). 

 

2.3 Fuzzy manual landslide mapping 

For the fuzzy manual delineation, landslides were mapped by 

drawing polygons with the editing tools available in ArcGIS 

(ESRI). The digitizing scale was set to 1:20.000. The satellite 

images as the main source of information were displayed by the 

combination of the bands red, green and blue, i.e. in true-colour. 

Other band combinations and derived features (slope, hillshade) 

of the DEM were used as auxiliary data. Due to the low spatial 

resolution of the satellite images relative to the scale, each pixel 

of the satellite image was visible in the display, because nearest 

neighbour resampling from satellite image pixel to screen pixel 

was used to display the image. Additionally, filtered versions of 

the satellite images were overlaid, using a resampling of the 

satellite image pixels to the screen pixels with cubic 

convolution and setting the transparency to 50%. Thereby, in 

addition to the pixel boundaries, the spectral gradient from one 

pixel centre to the next became visible. This allowed targeting 

the uncertainty in the delineation of the border between areas 

that are part of a landslide and areas that are not part of a 

landslide.  

 

We used a fuzzy membership (FM) approach to produce a 

manually derived map with three different delineations of the 

landslides. The delineations separate the area of interest into 

four membership classes according to the likelihood that the 

area actually belongs to a landslide. The four classes are:  

 LScert: FM=1.0; the likelihood that the area belongs to 

a landslide is 1.0 and not lower, i.e. the interpreter is 

certain that the delineation only includes landslide 

areas;  

 LSuncert: FM>0.5; the landslide likelihood is higher 

than (or equal to) 0.5 and lower than 1.0;  

 Non-LSuncert: FM<0.5; the landslide likelihood is 

higher than 0.0 to lower than 0.5; 

 Non-LScert: FM=0.0; the landslide likelihood is 0.0, 

i.e. no landslide is present. 

 

Therefore, the delineation between the classes LSuncert and Non-

LSuncert targets the threshold where the likelihood that the 

location belongs to a landslide is equal to the likelihood that the 

location is not a landslide. With this approach, mainly the 

spectral uncertainty in the boundary definitions of image objects 

was targeted that is inherent to the spatial resolution of the 

satellite image and related blurring effects. After digitizing the 

three delineations, their consistency among each other was 

checked at a scale of 1:10 000 to confirm that the lines did not 

intersect.  

 

2.4 Comparison method 

For comparing the semi-automated mapping results from OBIA 

to the FM manual landslide delineation, the traditional thematic 

accuracy assessment approach was used (Congalton and Green, 

2009; Foody, 2002; Pontius and Millones, 2011). The 

comparison method has successfully been applied to landslide 

classifications by Hölbling et al. (2016). Essentially, the 

traditional thematic accuracy assessment uses the proportion of 

correctly classified areas. The classification that shall be tested 

is compared to a reference dataset for identifying areas where 

the compared datasets agree and where they disagree (Figure 2). 

Two types of error can occur from the perspective of the 

landslide class: the error of omission occurs in areas where the 

reference suggests a landslide that is not represented in the 

classification; the error of commission occurs in areas where the 

classification suggests a landslide that is not represented in the 

reference. The user’s accuracy (UA) value expresses the 

correctly classified area as a share of the classification area that 

includes errors of commission. The producer’s accuracy (PA) 
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expresses the correctly classified area as a share of the reference 

area that includes errors of omission. 

 
Figure 2: Error types in a remote sensing image classification. 

 

When the classification and the reference have only two classes, 

i.e. ‘landslide’ and its complement ‘non-landslide’, the resulting 

2-by-2 contingency matrix is relatively simple. In the case of 

this study, the OBIA-derived landslide classification has two 

classes whereas the fuzzy manual landslide delineation has four 

classes. Consequently, we arrive at a 2-by-4 contingency matrix 

that enables the analysis of error at different thresholds of 

uncertainty. UA and PA were calculated for each acceptance 

level of uncertainty, i.e. FM=1.0, FM>0.5 and FM>0.0. E.g. for 

FM>0.5, UAFM>0.5 and PAFM>0.5 are calculated from the 

summarized matrix values of all the classes that fulfil this 

uncertainty level, i.e. LScert and LSuncert. In addition, some 

metrics compared the total area size of the LSOBIA class to each 

of the summarized areas for each acceptance level of 

uncertainty from the manually derived reference. These were 

put into relation to the FM>0.5 area as well. 

3. RESULTS 

3.1 Object-based and fuzzy manual mapping results 

The results of the semi-automated object-based mapping and 

the fuzzy manual mapping for the study areas of Fürwag (Figure 

3), Badia (Figure 4) and Corvara (Figure 5) are shown in the 

following.  

 

 

 
Figure 3: Semi-automated mapping of landslides achieved with object-based image analysis (in yellow colour; left) and fuzzy manual 

mapping of landslides (in red colour; right) in the study area of Fürwag based on the Landsat 7 image. 

 

 
Figure 4: Semi-automated mapping of landslides achieved with object-based image analysis (in yellow colour; left) and fuzzy manual 

mapping of landslides (in red colour; right) in the study area of Badia based on the Sentinel-2 image. 
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Figure 5: Semi-automated mapping of landslides achieved with object-based image analysis (in yellow colour; left) and fuzzy manual 

mapping of landslides (in red colour; right) in the study area of Corvara based on the Sentinel-2 image. 

 

 

The visual comparison between the results of the two methods 

shows a good coincidence in all the study areas. However, on 

the manually delineated lowest likelihood level, the landslide 

polygon near Badia (Figure 4) includes a vegetated area as part 

of the landslide that has not been indicated by the object-based 

result, since there is no spectral indication of a landslide. The 

human interpreter is able to logically infer that with some 

likelihood an area can be assigned to the landslide class that is 

not immediately perceivable as landslide (Hölbling et al., 2017). 

On the other hand, the study area of Corvara (Figure 5) showed 

a branching landslide in the object-based result that the fuzzy 

manual mapping has identified as two separate landslides. This 

may be an error in the fuzzy manual mapping or an error in the 

semi-automated result. Obviously, spectral image information at 

the 10 m resolution of Sentinel-2 can be ambiguous when 

extracting landslides. 

 

3.2 Comparison results 

The calculated metrics compare the OBIA mapping result to the 

fuzzy manual landslide mapping result. Contingency matrices 

were provided for each of the three study areas Fürwag (Table 

2), Badia (Table 4), and Corvara (Table 6). The metrics derived 

from the contingency matrices were compiled in the 

corresponding tables, i.e. Table 3 for Fürwag, Table 5 for Badia 

and Table 7 for Corvara. The latter set of tables presents the 

metrics by the different levels of accepted uncertainty. FM=1.0 

presents metrics for the contingency matrix column LScert, 

FM>0.5 presents the metrics for the two summarized 

contingency matrix columns of LScert and LSuncert, and FM>0.0 

presents the metrics for the three summarized contingency 

matrix columns of LScert, LSuncert and Non-LSuncert. Thereby, the 

difference between the OBIA result and the fuzzy manual 

landslide mapping reference dataset is made explicit. 

 

OBIA classes Fuzzy Manual Delineation Sum 

area  LScert LSuncert Non- 

LSuncert 

Non- 

LScert 

 

LSOBIA (km²) 

 

0.084 

 

0.038 

 

0.019 

 

0.007 

 

0.148 

Non-LSOBIA (km²) 0.003 0.017 0.043 --- --- 

Sum area (km²) 0.087 0.055 0.062 ---  

Table 2: Contingency matrix for study area Fürwag. 

 

 

Accuracy metric Accepted level of uncertainty 

 FM>0.0 FM>0.5 FM=1.0 

OBIA Mapping area (km²) 

 

0.148 

Manual Mapping area within 

threshold (MM; km²) 

0.204 0.142 0.087 

Difference OBIA to MM  

(% of MM) 

-27.8 4.2 69.2 

Difference MM to FM>0.5 

(% of FM>0.5) 

44.3 0.0 -38.4 

Overlap area (km²) 0.141 0.122 0.084 

Producer’s accuracy PA (%) 68.8 86.0 96.1 

User’s accuracy UA (%) 95.2 82.5 56.8 

Table 3: Comparison values for study area Fürwag. 

 

OBIA classes Fuzzy Manual Delineation Sum 

area  LScert LSuncert Non- 

LSuncert 

Non- 

LScert 

 

LSOBIA (km²) 

 

0.139 

 

0.028 

 

0.008 

 

0.005 

 

0.180 

Non-LSOBIA (km²) 0.007 0.034 0.114 --- --- 

Sum area (km²) 0.146 0.062 0.122 ---  

Table 4: Contingency matrix for study area Badia. 

 

Accuracy metric Accepted level of uncertainty 

 FM>0.0 FM>0.5 FM=1.0 

OBIA Mapping area (km²) 

 

0.180 

Manual Mapping area within 

threshold (MM; km²) 

0.330 0.208 0.146 

Difference OBIA to MM  

(% of MM) 

-45.5 -13.4 22.9 

Difference MM to FM 0.5 

(% of FM 0.5) 

58.8 0.0 -29.5 

Overlap area (km²) 0.175 0.167 0.139 

Producer’s accuracy PA (%) 52.9 80.4 94.7 

User’s accuracy UA (%) 97.1 92.8 77.1 

Table 5: Comparison values for study area Badia. 
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OBIA classes Fuzzy Manual Delineation Sum 

area  LScert LSuncert Non- 

LSuncert 

Non- 

LScert 

 

LSOBIA (km²) 

 

0.027 

 

0.026 

 

0.014 

 

0.003 

 

0.070 

Non-LSOBIA (km²) 0.001 0.004 0.029 --- --- 

Sum area (km²) 0.028 0.031 0.043 ---  

Table 6: Contingency matrix for study area Corvara. 

 

Accuracy metric Accepted level of uncertainty 

 FM>0.0 FM>0.5 FM=1.0 

OBIA Mapping area (km²) 

 

0.070 

Manual Mapping area within 

threshold (MM; km²) 

0.102 0.059 0.028 

Difference OBIA to MM  

(% of MM) 

-31.6 17.7 147.9 

Difference MM to FM 0.5 

(% of FM 0.5) 

72.0 0.0 -52.5 

Overlap area (km²) 0.067 0.053 0.027 

Producer’s accuracy PA (%) 65.6 89.8 96.9 

User’s accuracy UA (%) 95.9 76.3 39.1 

Table 7: Comparison values for study area Corvara. 

When comparing the results by the total mapped area, the OBIA 

results correspond best with the threshold of FM>0.5, with 

values between -13.4% and 17.7%. In relation to FM=1.0 the 

OBIA results overestimate the area, in relation to FM>0.0 they 

underestimate the area. The total areas of the fuzzy manual 

mapping results vary strongly, where FM>0.0 is at least twice as 

large as FM=1.0 and, in case of the study area of Corvara, 

almost 4 times as large. From FM>0.5 they deviate up to 72%. 

This defines the range of uncertainty captured by the fuzzy 

manual mapping approach within which errors of omission and 

errors of commission have to be expected.  

 

For the accuracy metrics of UA and PA, Figure 6 shows their 

behaviour over the different accepted uncertainty thresholds.  

 

 
Figure 6: User’s and producer’s accuracies for each study area 

in relation to the different accepted uncertainty thresholds.  

 

If the accuracy of the summarized landslide area is relevant to 

the subsequent analysis, then the errors of omission and errors 

of commission should cancel each other out. This is the case 

when the values of PA and UA are as close to each other as 

possible. Figure 6 shows that for the analysed case studies, the 

threshold FM>0.5 best fulfils this criterion. Other cases of 

subsequent analysis may favour one error type over the other. 

The delineation of the threshold FM>0.0 includes areas towards 

the outside of the landslide whereas the other two thresholds 

already count the extent of the OBIA result’s as errors of 

commission. FM>0.0 consequently achieves very high UA 

values above 95% and relatively low PA values below 69%. In 

reverse, FM=1.0 excludes areas towards the inside of the 

landslide that the other two delineations already count as errors 

of omission. Accordingly, PA reaches values above 95% and 

UA values below 77%, for Corvara even only 39%.  

4. DISCUSSION 

The objective of this study was to better understand the 

uncertainty inherent to landslide maps. Ideally, the results 

would lead to a better estimation of acceptable levels of 

disagreement between results from semi-automated landslide 

mapping approaches and results from manual delineation of 

landslides. Therefore, we performed tests in three study areas 

where an OBIA classification and a fuzzy manual delineation 

were produced, followed by a comparison with accuracy 

assessment metrics. The comparison results were interpreted for 

identifying the sources of error that underlie the uncertainties 

inherent to EO-based landslide mapping and for identifying the 

different handling of uncertainty in the manual approach and 

the OBIA approach.  

 

We were able to show that the deviation of the OBIA results 

from the fuzzy manual delineations can be attributed to the 

uncertainty inherent to manual landslide delineation to a large 

degree. The uncertainty is introduced by the limited spatial 

resolution of satellite images where digitized lines can only 

reach a spatial accuracy that is lower than the pixel size, 

decreased by blurring effects. The limited spatial resolution also 

limits the mapping scale used for manual mapping. We tried to 

increase this by utilizing a smoothed display of the pixels of the 

satellite image. However, this approach may only help for 

comparing mapping results that originate from the same image. 

If landslide maps from a different origin were used for 

comparison, the positional error from the image 

orthorectification process would need to be accounted for, as 

well. The OBIA delineations are bound to the stepped pixel 

border originating from the segmentation process. Therefore, 

deviations from the manual mapping that affect accuracy values 

are inevitable. The above described uncertainties affect both, 

the results from semi-automated OBIA mapping and from 

manual mapping. Consequently, a manual delineation cannot be 

significantly more accurate than an OBIA mapping result if the 

same image is used as data base. The uncertainties made explicit 

by the applied fuzzy manual mapping are reflected in the 

calculated accuracy metrics. They show how the measured 

errors fall within the range of uncertainty. Therefore, the term 

‘accuracy’ is somewhat misleading and following Hölbling et al. 

(2017), we suggest using the term ‘agreement’ instead.  

 

Nevertheless, some differences occurred between the OBIA and 

the fuzzy manual mapping that cause a type of disagreement 

that comparison metrics should report. We found areas, 

specifically in the study area of Badia and Corvara, where the 

manual mapping and the OBIA result are outside of the 

accepted range of uncertainty and the occurrence of a 

misclassification, either in the manual mapping or the OBIA 

result, is very likely. Concerning manual mapping, the 

underlying process of visual perception for the interpretation of 

images is complex and causes uncertainty. According to 

Albrecht (2010), the uncertainty in the interpretation process of 
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drawing delineations of image objects is related to the spectral 

gradient between neighbouring class objects, to the 

generalisation applied by the interpreter and to thematic 

uncertainty resulting from the limited resolution of the image. 

An interpreter's best opportunity to address the resulting 

uncertainty is to make it explicit. This may happen by fuzzy 

manual delineation, as presented in this study, or by 

documenting the quality of crisp landslide delineations. For 

their manual delineations of landslides, Hölbling et al. (2017) 

document the achievable geometric accuracy in relation to the 

image resolution and the interpreter's subjective evaluation of 

the achieved completeness of the manual mapping results. 

Concerning potential uncertainty in the OBIA result, there are 

fuzzy class assignment approaches available that assign 

segments to different classes with fuzzy membership values 

(Feizizadeh et al., 2017). Also the thematic uncertainty in 

assigning classes has been captured by an accuracy assessment 

that distinguishes different weights of error for gully erosion 

mapping (D‘Oleire-Oltmanns et al. 2014). However, the 

mentioned research addresses more the thematic uncertainty and 

less the uncertainty in the spatial delineation of the resulting 

objects, an issue that can be addressed in future research.  

 

Even with a fuzzy manual mapping approach, we cannot be 

certain that the approach is free of error. An accuracy 

assessment with a reference of much higher accuracy and from 

an independent source would be required. Essentially, accuracy 

values can only be calculated, if a reference exists that is more 

accurate by at least one magnitude of the measurement scale. 

This would be achievable if we had a reference on hand, that 

was delineated from an aerial photograph or ideally a reference 

that was created by a survey with in-situ measurements on the 

ground providing the highest accuracy that can be achieved, in 

due consideration that uncertainty is still present.  

 

Finally, the quality assessment of semi-automated landslide 

mapping shall be applicable in more practical settings and may 

be implemented in the context of an EO-based web service for 

landslide mapping (Hölbling et al. 2017). In this respect, a 

different type of reference than provided by the fuzzy manual 

mapping is required, as it is too time-consuming to prepare. The 

presented study contributes to a better judgement of the 

uncertainty in manual mapping. Visual interpretation results can 

be regarded as a valid reference, when taking into consideration 

the concept of ‘agreement’ rather than ‘accuracy’. As suggested 

by the Quality Assurance Framework for Earth Observation 

(QA4EO; http://QA4EO.org), the users of EO-based landslide 

maps within the landslide community will be the ones to 

suggest quality indicators that help them to decide the 

appropriateness of the landslide maps for their purpose. 
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