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ABSTRACT: 

Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. 

The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality 

management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The 

LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In 

order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge 

inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data 

processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced 

considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate 

inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge 

inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate 

possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual 

inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of 

inspection techniques. 

1. INTRODUCTION

1.1 Background 

Visual inspection is currently the prevailing method performed 

for highway bridge inspection even since a series of bridge 

failures which challenged the current bridge safety monitoring 

program (Brinckerhoff, 1993 and Subramanian, 2008). During 

visual inspection, the inspection team needs to walk to the site 

and observe the bridge conditions and find out bridge defects 

following the federal or state bridge inspection procedures, and 

input the inspection data into the bridge management software 

(BMS). Obviously, human errors are the dominant factor that 

contributes to the uncertainties of the inspection result because of 

the nature of this method. 

Improving bridge inspection data quality is important, because it 

is the foundation of all effective bridge management operations 

(Dietrich et al., 2005 and Moore, et al., 2001). Bridge inspection 

data is essential in determining how to perform bridge 

maintenance, repairs, rehabilitations and replacement of a bridge. 

In fact, effective bridge management necessarily means optimal 

allocation of limited infrastructure maintenance resources. 

FHWA has adopted systematic quality management framework 

to ensure visual bridge inspection data quality though minimizing 

errors during data generation (FHWA, 2005). The framework 

recommends documenting the entire quality control (QC) and 

quality assurance (QA) program, and then developing the 

recommended bridge inspection manual accordingly. The 

specific directions for QC/QA operations of bridge inspection are 

designed to guarantee data quality within the framework. Figure 
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1 shows the recommendation for data quality management within 

the FHWA framework. 
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Figure 1. Data quality management in bridge inspection 

(Dietrich et al., 2005) 

1.2 The New Stage of Bridge Inspection 

Regarding the improvement of current bridge inspection data 

quality, the researchers put forward two suggestions: optimize 

current bridge inspection quality management framework, or 

develop advanced inspection techniques to supplement current 

visual inspection. 
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The lack of cost-effective and qualitative inspection technologies 

for highway bridges has also become an apparent limiting factor 

for achieving a highly effective nationwide bridge management 

system (Orcesi & Frangopol, 2010). An effective bridge 

management system requires precise and accurate bridge 

condition data and can be used to minimize unnecessary 

expenditures, result in cost saving to the DOTs. Therefore, 

research that result in quality bridge data can enhance bridge 

management. 

2. LIDAR BRIDGE INSPECTION PROCESS

2.1 Brief of LiDAR Based Bridge Inspection 

Terrestrial LiDAR scanning data point contains fundamental 

information about the scanned target including: row and column 

number, position data, Cartesian coordinates, and reflectance 

value. Assuming a scanned data set has n points, the set can be 

described as: 

𝑃 = [

𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛

 ] , 𝑅 = [

𝑟1

𝑟2

⋮
𝑟𝑛

] (1) 

where P is the Cartesian coordinates of the scan points, which 

measures the relative position of the scanned points to the scanner. 

R is the reflectivity value where ‘darker’ scan points are usually 

associated with lower reflectance values, while ‘brighter’ scan 

points are associated with higher values. The integration of all 

these scan points generates the 3D image of the recorded bridge 

structure as shown in Figure 2. The evaluation of these 

fundamental data forms the basis for bridge inspection technique 

using LiDAR technology (Liu, 2010). 

Origin

P(x, y, z), R(r)

Figure 2. The LiDAR scanning and data point representation 

Visual inspection and LiDAR bridge inspection both fall into the 

‘field bridge inspection’ and the ‘data processing’ processes as 

defined in the DOT’s bridge inspection workflow. Visual 

inspection emphasis on field survey and measurements (aided by 

mainstream Non-destructive testing techniques) with most data 

processing performed on site. Likewise, LiDAR based inspection 

performs onsite data recording, while its data processing 

primarily incurs in the lab. Therefore, if data quality control 

framework is planned in the future, it should consider both the 

field and off site operation procedures. 

2.2 Bridge Field Data Collection using LiDAR 

The bridge inspection team will travel to the site with the laser 

scanner, and follow the recommended visual inspection 

procedures to evaluate the bridge conditions. After inspecting the 

bridge visually, the team will determine the necessary parts and 

determine the appropriate positions to perform the scan. 

Figure 3. 3D reconstruction of LiDAR scanning data of a 

highway bridge 

The benefit of using a laser scan is documentation of the damage, 

which can be quantified using the laser data. Figure 3 is the 

screenshot of 3D reconstruction of a highway bridge in Iowa. For 

clearance measurement, it is suggested to place the LiDAR 

scanner between the bridge deck and road surface as showed in 

this figure. However, for damage detection, it is better to place 

the LiDAR scanner in front to the damage spot to mitigate the 

impact by the above listed error sources. 

2.3 Post Scan Data Analysis (Damage Detection) 

In post scan data analysis, the bridge condition evaluation team 

will use computer programs to detect and quantify defective parts, 

measure bridge clearance and structure deformation, which is 

completed through determining the changes on the 3D point 

cloud data of the bridge.  

The most idea method to perform change detection from LiDAR 

bridge scanning data (point cloud data) is to compare it to a 

existing reference, which could either be an original achieved 

scanning data collected when the bridge was newly built, or a 

virtual 3D spatial data stored in the architecture design firm or 

the government agency. Then the point cloud data of defective 

bridge  parts can be compared to the reference data. However, 

most of bridges don’t have the scanned or design data, the 

reconstruction of virtual 3D bridge model is the only way to 

perform change detection in this study. 

3. ERROR SOURCES

3.1 Errors in Field Data Collection 

The scanning angular, range, edge effects, and surface 

reflectivity issues are all factors that could affect the scanning 

data quality. In most of the site deployment, laser scanner may 

encounter limited access points, thus these factors should be 

considered when performing the scan. Scanning angle variance 

can significantly influence the outcomes of defect quantification 

among all of them.  

Therefore, the following experiment is established to study the 

scanning angle variance in LiDAR damage quantification. Here, 

a flat panel embedded with 6 cylindrical indentations is used to 

simulate a bridge surface with damages. Each of the cylindrical 

is manufactured with different material to stand for various 
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surface types (have different reflectance rates of laser light). The 

flat panel has been scanned at five different positions using 

LiDAR scanner, and the experiment setup is shown in Figure 4, 

where the centre of the panel board is regarded as the origin of 

the space, and the unit used is meter. 
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Figure 4. Experiment setup of the scanning angle effect study 

In this experiment, the LiDAR data is analysed using Liu’s (2010) 

quantification algorithm. Figure 5 is the quantification result of 

the area and volume cylindrical samples scanned from the 5 

different positions. 
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Figure 5. Comparisons of defect quantification error rate due to 

scanning angle variance 

Liu (2010) has made a brief analysis of the reason of scanning 

angle influence. The primary factor is the scans cannot be 

conducted exactly facing the ‘damage’, as a result, it is difficult 

to get a clear edge recording, for most laser lights touch the 

damage edge from that direction is scattering rather than 

returning back to the scanner. Therefore, the scanning data 

cannot get sufficient scan points to reconstruct the edge correctly. 

The secondary factor is the laser light from side scans could be 

blocked by the damage edge surface and cannot reach the inner 

surface of the defect, thus the oblique scan is not able to capture 

the entire features of the damage. 

Figure 6 demonstrate the 3D reconstruction of the quantification 

results for position 5 (the ‘lower’ scan). From the experiment, we 

can see that the scanning angle effect could bring a considerable 

error to the quantification results. 

C1 C2 C3

C4
C5 C6

Figure 6. 3D reconstruction of analysis result for the lower center 

scanning 

3.2 Errors in Post Scan Data Analysis 

The quantification algorithms can also lead to errors in the 

inspection process. In the post scan data analysis, the bridge 

condition evaluation team will use computer programs to detect 

and quantity defective areas, measure bridge clearance and 

structure deformation, which is completed through determining 

the changes on the 3D point cloud data of the bridge. 

As discussed section 2.3, the reconstruction of the surface shape 

for the defective parts of a bridge is a challenging problem for the 

lack of documented or design data. The most feasible method in 

the reconstruction is to define a reference plane as the original 

undamaged surface for the selected point cloud, which is used to 

determine whether there are defective areas in the point cloud. It 

is worthwhile to note that this method is under the premise of 

prejudgement of the defect parts conditions by the inspectors. 

Liu (2010) introduced a way to reconstruct the shape of the 

defective parts by generating a flat plane according to the 

boundary information of selected study point cloud data, which 

is an estimation of the original bridge shape. Three points from 

the surface of the undamaged areas are selected to determine this 

reference plane for later defect quantification. In order to avoid 

introducing noise data the noise point when selecting those 

determinate points, it is necessary to compare the coordinate 

values with the neighbouring points. 

Liu’s algorithm is simple and effective, especially when the 

defective bridge component was laying on a flat surface. But 

when the damage is located on a curved surface, Liu’s method is 

unable to reshape the point cloud data and make it close to the 

original condition. This algorithm is also semi-automatic and 

requires human interactions to select the study areas. 

In order to make laser inspection automatic and more adaptive, 

the mean-square-error (MSE) is used to determine the reference 

plane in the secondary algorithm. In three dimensional space, it 

is supposed that only one plane exists with the minimum MSE 
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for a given point cloud data. This algorithm requires the selection 

of as much undamaged area as possible to make the reference 

plane more close to the original surface. Moreover, the two 

algorithms also have different ways in determining the area and 

volume. 

Bridge **0147 has been selected to evaluate the effectiveness of 

this inspection technology. The substructure of the bridge is 

showing distress in the pile caps in three areas under bridge girder. 

The LiDAR scan was conducted underneath the bridge, the 

complex damage incurred in both the bridge deck and the 

substructure. (See Figure 7). 

Figure 7. LiDAR scan for damage detection in bridge **0147 

(Charlotte, NC) 

In this case study, only the defects lay on substructure will be 

investigated to test the revised quantification algorithm. The 

damage detection and quantification algorithms can outline the 

defective points in the spatial domain. The defective areas are 

shown in Figure 8, which are laid over the original scan and 

marked with different colours. 

Liu’s Algorithm Secondary Algorithm

D
e

fe
c

t 1
D

e
fe

c
t 2

D
e

fe
c

t 3

Figure 8. 3D reconstruction of damage detection result in bridge 

**0147 

Figure 9 shows the result of the damage quantification using both 

Liu’s and secondary algorithms. The case study indicated that the 

two algorithms are very close in the quantitative results for area 

in bridge surface damage detection, which are highly relying on 

the selection of reference plane as well as the damage criteria. 

The obvious variances of the results in volume quantification are 

believed to come from the difference of reference plane 

generation and the change of volume quantification algorithm 

using Delaunay’s Triangulation (Shewchuk, 1999).  
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Figure 9. Comparison of two different data processing 

algorithms 

3.3 Errors from the Environment 

The most common external errors sources when processing 

LiDAR scan in bridge inspection are introduced from the 

environment. For instance, the change of temperature, the dust in 

the atmosphere, and the lighting conditions could result in errors 

into the scanning data. 

Passing traffic effect is one of the issues when scanning a bridge 

under heavy traffic, and the vehicles allow scatters of lines in the 

scan, which creates trouble in the data analysis by distorting the 

scanned image or generate noise points in the scanning data, and 

this issue could lead to unacceptable errors in both damage 

detection and clearance measurement. Figure 10 shows vertical 

lines within as scan resulted from heavy traffic crossings. 

Figure 10. Passing traffic leaves noise in the LiDAR scan 

4. SUMMARY

In this study, the terrestrial LiDAR based bridge inspection has 

been studied. The primary error sources are assessed through 

designed experiments, and the purpose of the analysis is to 

understand the issues that affect bridge inspection data quality in 

both field bridge inspection and computer assisted data 

processing (automation) for LiDAR bridge inspection. With the 

case study presented, LiDAR technology is validated as a 

potential solution for bridge inspection, and the scanning angle 

variance and damage evaluation algorithms are found to be the 

primary error sources. Methods or even systematic quality 

control framework will be addressed and suggestions to mitigate 

the errors in further study. 
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