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ABSTRACT: 

Temporally regular and spatially continuous monitoring of surface urban heat island (SUHI) has been extremely difficult until the 

advent of spaceborne land surface temperature (LST) products. The higher errors of these LST products compared with in-situ 

measurements, nevertheless, have resulted in a comparatively inaccuracy and may distort the interpretation of SUHI. Although 

reports have shown that LST quality matters to the SUHI interpretation, a systematic investigation on how the SUHI indicators are 

responsive to the LST quality across cities within dissimilar bioclimates remains rare. With regard to this issue, our study chose 

eighty-six major cities across the mainland China and analyzed the SUHI intensity (SUHII) discrepancies (referred to as ∆SUHII) 

between using and not using quality control (QC) flags from Moderate Resolution Imaging Spectroradiometer data. Our major 

findings include: (1) the SUHII can be significantly impacted by the MODIS QC flags, and the associated seasonal ∆SUHIIs 

generally account for 25.5% (29.6%) of the total intensity in the day (night). (2) The ∆SUHIIs differ season-by-season and 

significant discrepancies also appear among northern and southern cities, with northern ones often possessing a higher annual mean 

∆SUHII. (3) The internal ∆SUHIIs within an individual city are also heterogeneous, with the variations exceeding 5.0 K (3.0 K) in 

northern (southern) cities. (4) The ∆SUHII is significantly negatively related to the SUHII and cloud cover percentage mostly in 

transitional seasons. Our findings highlight that one needs to be very careful when using the LST-product-based SUHII to interpret 

the SUHI. 

* Corresponding author

1. INTRODUCTION

More than a half of the world’s population lives in urban areas, 

wherein natural surfaces have been altered with urban ones 

(WHO, 2010). One consequence of this is urban heat island 

(UHI), referred to as the higher urban temperature compared 

with rural one (Oke, 1982). The UHI appears in almost every 

city (Stewart and Oke, 2012) and has a lot negative impact 

(Taha, 1997; Sarrat et al., 2006; Grimm et al., 2008; Lafortezza 

et al., 2009; Tong et al., 2011; Gong et al., 2012).  

The UHI has been studied using surface air temperatures 

obtained from weather stations for long (Morris et al., 2001; 

Arnfield, 2003; Shao et al., 2011). While the low density of 

such data hindered the UHI studies until the advent of thermal 

remote sensing providing periodical and spatially 

comprehensive coverage of land surface temperature (LST). The 

surface UHI (SUHI) using LST derived from thermal remote 

sensor has received particular attention in the recent decades 

(Tran et al., 2006; Yuan and Bauer, 2007; Imhoff et al., 2010; 

Peng et al., 2012; Zhou et al., 2014; Zhou et al., 2015; Ward et 

al., 2016).  

To depict the satellite-derived SUHI of a city, scalar indicators 

were often designed. Among them, the SUHII, which is often 

defined as the LST difference between urban and rural areas, 

was considered the most widely used one (Voogt and Oke, 

2003). In the SUHII estimation, many researches chose to 

implement a temporal composition of LST data (Gallo et al., 

1993; Gallo and Owen, 1999) avoiding the impact of cloud 

cover. However, there still exist retrieval errors in the satellite-

derived LST data so that they are not of the same quality. 

Dealing with this, different preprocessings of the LST data were 

adapted in the temporal composition. Some studies disregarded 

that and directly use the average of the valid LSTs (Zhou et al., 

2014); while others, additionally, performed a temporal 

aggregation of LSTs taking data quality into consideration, such 

as only using LSTs with good quality (Clinton,2013; Bechtel, 

2015; Zhao et al, 2017), or adapting a weighted average method 

that the LST is weighted by the quality flags provided by the 

satellite products (i.e., MODIS LST QC flags (Wan, 2008)) 

(Zhou et al., 2013). Such different data selected methods in 

temporal aggregation, however, have been clarified to be able to 

affect the SUHII calculation even for the same city (Gawuc and 

Struzewska, 2016). 

The SUHII variations caused by the QC flags have been 

preliminarily investigated, issues however persist: First, over a 

large scale, there remain uncertainties on the spatio-temporal 

variations of the SUHII due to the QC flags over cities under 

dissimilar bioclimates as well as the internal SUHII variations 

within various cities. Second, it remains unclear whether or not 

there exist possible controls that may affect the QC-induced 

SUHII variations. Without clarifications on the controls or 
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factors, the decision to determine a proper algorithm of taking 

QC flags into consideration is hard to make. 

 

Given these two issues, this study tries to investigate the spatio-

temporal QC-induced variations of the SUHII for all the major 

cities in Mainland China, through which both the diurnal and 

seasonal variations will be examined. We will also analyze the 

possible factors related to these SUHII variations. Via the 

clarifications of the QC-induced SUHII variations at a relatively 

large scale, we believe this study will continue to highlight the 

importance and therefore help the definition of a SUHI 

indicator with more preciseness yet less casualness for the 

quantitative representation of thermal remote sensing of urban 

climate.  

 

 

2. STUDY AREA 

 

As the most populated country in the world, China has 

experienced a dramatic growth of population and urbanization 

in the past four decades, and it is projected to further continue 

(Seto et al., 2011; United Nations, 2014). The mainland China 

covers a great variety of climate zones from the tropical, to the 

cold climates, with the associated air temperature and 

precipitation generally decreasing from the south to the north 

(Wu et al., 2005). Cities within diverse climates give rise to a 

significant regional dependence for the SUHI features (e.g., 

intensity) (Wang et al., 1990), making the mainland China an 

ideal place to investigate the statistical features of SUHI at the 

regional/continental scale.  

 
Figure 1. Geolocation of the chosen 86 cities over mainland 

China. Cities are given using red dots with different sizes to 

represent the associated city sizes. The seven selected 

megacities are labelled from (a) to (g). The spatial patterns of 

the annual mean nighttime SUHII for an entire city as well as 

for each pixel over these seven megacities are illustrated in the 

corresponding blocks. 

 

Significant UHIs have been observed for most cities across 

mainland China (Li et al., 2004; Zhou and Hansen, 2004). This 

study selected 86 ‘big’ cities by a combination of factors 

including the urban size, urban population, and the 

administrative significance (to make sure that a least one city is 

chosen for a province) (Huang et al., 2017) (see Fig. 1). Due to 

the terrain and climate, a great portion of these chosen cities are 

located in the northeastern, northern, eastern, central, and 

southern regions, whereas merely a small portion of cities are in 

the northwestern and southwestern regions. For each city, we 

extracted their urban areas using the MODIS land cover product, 

and the rural background were defined as the 15−km buffer that 

surrounds the urban core, over which areas that are labelled as 

water bodies or featured with an elevation±50 m or more off the 

mean elevation of the urban areas were left out to eliminate the 

effect of water and topography (Huang et al., 2017). To better 

investigate the internal variations of the QC-induced SUHII 

within a city, we selected seven capital megacities within the 

seven geographical regions across mainland China. These 

megacities are characterized by their large urban sizes and 

population (with the least and largest around 8.0 and 24.2 

million, respectively), economic volumes, and 

representativeness of the linked geographical regions. They are 

Harbin in northeastern China, Beijing in northern China, Xi’an 

in northwestern China, Shanghai in eastern China, Wuhan in 

central China, and Chengdu for southwestern China, the 

Guangzhou-Shenzhen-Dongguan-Foshan (GSDF) in southern 

China. Note that the GSDF denotes a metropolitan 

agglomeration with no clear urban boundaries shown in-

between. For these seven megacities, we also provided the 

spatial patterns of the annual mean nighttime SUHII in 2012 

(see Fig. 1a to g). 

 

 

3. DATA AND METHOD  

 

3.1 Data 

 

This study employed the land surface temperatures (LSTs) 

products retrieved from MODIS onboard Terra and Aqua 

satellites. The MODIS LSTs are gained at around 10:30 (Terra 

day), 13:30 (Aqua day), 22:30 (Terra night), and 1:30 (Aqua 

night) local time per day. The used LST products are the daily 

L3 products MOD11A1 and MYD11A1 (version 5) at the 

resolution of 1km in 2012. 

 

The MODIS LSTs were retrieved using the generalized split-

window LST algorithm (Wan and Dozier, 1996) and the 

associated retrieval errors have been illustrated mostly lower 

than 1.0 K (Wan, 2008). Nevertheless, the retrieval error may 

be higher due to a number of reasons, especially for urban areas, 

and such LSTs with greater uncertainties are labelled by a QC 

band (Wan, 1999). Each QC value is an 8-bit binary number 

made up of four flags representing the mandatory QA, data 

quality, emissivity error, and LST error. Pixels with a 

mandatory QA flag equal to ‘10’ or ‘11’ were excluded because 

LSTs for these pixels are invalid as a result of being covered by 

clouds. The LST error flag is also used, with ‘00’, ‘01’, ‘10’, 

and ‘11’ indicating the retrieved average LST error ≤1.0 K, ≤

2.0 K, ≤3.0 K, and >3.0 K, respectively.  

 

3.2 Method 

 

The temporally aggregated LSTs in a period can be estimated by 

the following:  
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Where   1 2
ˆ ( , )iT t t  = temporally aggregated LSTs at pixel i 

              t1, t2 = the starting and ending times (DOY in this study) 

for temporal aggregation 

              Ti(t), wi(t) = original LST and its associated weight, 

wherein both Terra and Aqua data were included. 

 

With the temporally aggregated LSTs, the SUHII of an entire 

city (i.e., Ic) was calculated as the difference between the mean 

urban and rural LSTs [Imhoff et al., 2010], while the SUHII of a 

certain pixel (Ii) was estimated as the difference between the 

LST of this specific pixel and the mean rural LSTs, given as 

follows:  
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
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Where   urbanT̂
, ruralT̂

 = the weighted mean urban and rural LSTs.  

 

To obtain temporally aggregated SUHIs, a portion of the 

previous studies weighted all the clear-sky LSTs at different 

times equally regardless of their quality (hereafter termed the 

equally weighted aggregation (EWA) strategy) [Hu and 

Brunsell, 2013; Quan et al., 2014]. By comparison, others 

achieved the temporal aggregation through weighting the clear-

sky LSTs by the QC flags (hereafter termed the unequally 

weighted aggregation (UWA) strategy) [Zhou et al., 2013; 

Gawuc and Struzewska, 2016]. This study estimated the 

weights of the UWA as the inverse-square of the retrieved LST 

error [Zhou et al., 2013]. Therefore, the EWA and UWA 

approaches can be written as follows:  
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Where  ωewa, ωuwa = weights given by the EWA and UWA 

strategies;  

               q = the retrieved LST error provided in QC flags. 

 

The values of q were designated as 1.0, 2.0, 3.0, and infinitely 

great, to represent the cases with the LST errors of ≤1.0 K, ≤2.0 

K, ≤3.0 K, and >3.0 K, respectively. This setting suggests that 

the weight is equal to zero once the LST error is greater than 3.0 

K.  

 

The QC-induced SUHII variation (∆SUHII) was therefore 

quantified as the difference between using ωewa and ωuwa as the 

weights for temporal aggregation, written as follows:  

 

 1 2 ewa 1 2 uwa 1 2SUHII( , ) ( , ) ( , )t t I t t I t t  
 (4) 

 

Where   Iewa, Iuwa = the SUHIIs without and with considering the 

QC flags. 

 

 

4. RESULTS 

 

The resulted ∆SUHIIs for each city are demonstrated season-by-

season for both the daytime and nighttime. The internal spatial 

variations of the annual mean ∆SUHII are also further provided 

for the chosen seven megacities. 

 

4.1 Daytime 

 

The spatial distributions of ∆SUHII over mainland China 

during the four seasons are provided in Fig. 2. The result shows 

that the ∆SUHII values are different city-by-city and season-by-

season. Generally, the mean absolute ∆SUHII for all these cities 

in each season is 0.44 K, with the maximum ∆SUHII appearing 

in Xi’an (northwest) during the winter (3.1 K) and the minimum 

occurring in Wuxi (east) during the autumn (−1.1 K). Though 

the mean value (0.44 K) seems not large for the SUHII of a city, 

our data illustrate that 75/86 (20/86) of these cities possessed a 

∆SUHII exceeding ±0.5 K (±1.0 K) in a certain season during a 

year. Such results indicate that the difference between using and 

not using the MODIS QC flags can be significant and that the 

weighted QC-based (wqc) method is able to make a difference 

to SUHII that is not ignorable.  

 
Figure 2. Spatial pattern of ∆SUHII (K) during the day for the 

four seasons. Regions where most cities have a significant 

∆SUHII are highlighted with grey dotted curve box. 

 

During the spring, the ∆SUHII ranges from −0.9 to 1.2 K, 

and 19/86 (2/86) of these cities possessed a ∆SUHII 

exceeding ±0.5 K (±1.0 K) The cities with SUHIIeqc 

significantly higher than SUHIIwqc (∆SUHII>+0.5 K) are mostly 

located in the northern and northeastern regions, with a few 

located in the other regions (see Fig. 2a). By comparison, only 

three cities are characterized by a ∆SUHII<−0.5 K. During the 

summer, the maximum and minimum ∆SUHII are 1.8 K (Lhasa, 

southwest) and −0.2 K (Yinchuan, northwest), respectively, and 

56/86 (7/86) of these cities had a ∆SUHII exceeding ±0.5 K 

(±1.0 K), indicating that significant differences occur in more 

than a half of the cities. It is also interesting that the majority of 

cities had a ∆SUHII higher than zero (only three cities had a 

∆SUHII lower than zero) (Fig. 2b). In other words, for most of 

the cities, the SUHIIeqc is higher than the SUHIIwqc. Analyses 

by checking the data show that, during the summer, higher 
LSTs were often labeled with lower retrieval errors, 
especially in the rural areas since the lowest flagged errors, 
i.e., QC=1, tend to appear more in the rural pixels, and as a 
result leading to a slightly increased mean urban LST and 
significantly increased mean rural LST when weighted by the 
QC flag, lowering the associated SUHII (i.e., the SUHIIuwa 
decreases), and consequently contributing to the significantly 
positive ∆SUHII. 

 

During the autumn, the maximum and minimum ∆SUHII are 

1.6 K (Hohhot, northeast) and −1.1 K (Wuxi, east), respectively, 
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and 30/86 (9/86) of these cities had a ∆SUHII exceeding ±0.5 K 

(±1.0 K). The cities with ∆SUHII>+0.5 K are mostly located in 

the northeastern, northern, and western regions, while those 

with ∆SUHII<−0.5 K are mainly situated in eastern and 

southern regions (see Fig. 2c). During the winter, the ∆SUHII 

ranges from −0.7 to 3.1 K, and 25/86 (5/86) of these cities had 

a ∆SUHII exceeding ±0.5 K (±1.0 K). The cities with 

∆SUHII>+0.5 K are mostly distributed in the eastern, northern, 

and northeastern regions, with only two exceptions that are 

located in the western region. By comparison, there is only a 

single city possessing a ∆SUHII<−0.5 K (i.e., Daqing in the 

northeastern region).  

 
Figure 3. Spatial distributions of the annual mean daytime 

∆SUHII within the chosen seven cities. Urban areas (within the 

black lines) and rural areas within a 15-km buffer zone are 

shown for each city. 

 

Considering that (1) one may argue that the ∆SUHII remains 

not large (around 0.5 to 1.0 K) for the quantification of the 

SUHI, and (2) the use of a single SUHII to represent the 

thermal status of an entire city is insufficient, we therefore 

further provide the internal spatial patterns of the annual mean 

daytime ∆SUHII within the chosen seven cities (see Fig. 3). 

Calculations show that the annual mean daytime ∆SUHIIs are 

0.5, 1.3, 0.5, −0.6, −0.1, −0.3, and −0.2 K for Harbin, Beijing, 

Xi’an, Shanghai, Wuhan, Chengdu, and GSDF, respectively. 

Nevertheless, for the internal patterns of the ∆SUHII within a 

city, the pixel-by-pixel ∆SUHIIs are not uniformly distributed – 

high spatial heterogeneity can be observed. They vary from −4.3 

to 7.0 K for Harbin, from −3.7 to 4.3 K for Beijing, from −3.0 

to 2.9 K for Xi’an, from −3.1 to 1.7 K for Shanghai, from −1.7 

to 1.6 K for Wuhan, from −2.0 to 1.4 K for Chengdu, and from 

−2.9 to 0.9 K for GSDF. Such results confirm that the pixel-by-

pixel variations of the differences between the SUHIIeqc and 

SUHIIwqc are much higher than the city-averaged difference.  

 

The results given by Figs. 3 also indicate that the internal 

∆SUHIIs for the northern cities generally differ from those for 

the southern in the following two regards: 

 

First, for the three northern cities, the urban ∆SUHIIs are 

generally higher than the rural ones, while for the four southern 

cities, the opposite phenomenon appears − with the urban 

∆SUHIIs largely lower than the rural (see Figs. 3). The 

significantly higher annual mean ∆SUHIIs over northern cities 

can be evidenced by the spatial patterns given in Fig. 3. Further 

analyses by checking the data confirm that a high ∆SUHII is 

likely caused by the aggregation of low-quality LST pixels yet 

with relatively high values (i.e., around summer) weakening the 

intensity calculated using the QC flags (SUHIIwqc). By 

comparison, a very low (negative) ∆SUHII can be caused by 

high-quality LSTs mainly aggregate in summer and/or low-

quality LSTs are collectively located around winter. 

 

Second, the spatial ranges of the relatively higher ∆SUHIIs over 

the northern cities commonly correspond to their urban 

boundaries (Fig. 3b), but this close correspondence does not 

exist for the southern cites (Fig. 3e). In addition, for the 

northern cities, the ∆SUHIIs over the western areas within 

Harbin, the northern, eastern, and southern areas within Beijing, 

and the northern areas within Xi’an, are still higher than those 

over the other areas. Comparatively, for the southern cities, 

there remain small areas characterized by local high ∆SUHIIs, 

e.g., the very center of Shanghai as well as the very center and 

southwestern areas of Chengdu.  

 

4.2 Nighttime 

 

The spatial distribution of the seasonal ∆SUHII during the night 

are shown in Figs. 4. In general, the ∆SUHII values can also be 

significant in the night. The mean absolute ∆SUHII during the 

night is 0.38 K, and the number of cities possessing a ∆SUHII 

exceeding ±0.5 K (±1.0 K) in a certain season is 55/86 (20/86), 

which are lower than those values during the day but they also 

imply evident impacts from MODIS QC flags on SUHII. 

During the night, significant differences between the southern 

and northern regions can be observed in the two transitional 

seasons (i.e., spring and autumn) (Fig. 4); such a spatial contrast, 

however, does not occur in the summer and winter, within 

which there are only minimum differences (the ∆SUHII is close 

to zero). The results in Fig. 4 further illustrate that, differing 

from the day, during the night the MODIS QC produces a larger 

impact in the two transitional seasons, within which the 

maximum (2.4 K for the spring) and minimum (−0.9 K for the 

autumn) ∆SUHII values appear, and within which there are 

higher absolute mean values that reach 0.6 K.  

 

In the spring, the highest and lowest ∆SUHII values are 2.4 K 

(Beijing, north) and −0.5 K (Chongqing, southwest, also the 

only value lower than −0.5 K) respectively, and 41/86 (18/86) 

cities have an absolute ∆SUHII value exceeding ±0.5 K (±1.0 

K). The cities with a ∆SUHII value higher than +0.5 K can be 

found in all the seven geographic regions, with most of them 

located in the northern and northeastern regions (Fig. 4a). In the 

summer, the maximum and minimum ∆SUHII values are 0.7 K 

(Xining, northwest) and −0.7 K (Taiyuan, north), indicating that 

there is no city that has a ∆SUHII value exceeding ±1.0 K. Only 

four cities possess a ∆SUHII value exceeding ±0.5 K (three of 

them have a positive ∆SUHII while only one has a negative one) 

(Fig. 4b). In the autumn, the corresponding maximum and 

minimum are 1.9 K (Beijing, north) and −0.9 K (Nanjing, east), 

respectively, and 41/86 (12/86) cities have a ∆SUHII value 

surpassing ±0.5 K (±1.0 K). Cities with the ∆SUHII value 

higher than +0.5 K are mostly situated in the northern, 

northeastern and northwestern regions, while only six cities 

show a value lower than −0.5 K, with five of situated in the 

eastern region and one situated in the southern region (Fig. 4c). 

In the winter, the maximum and minimum are 0.5 K (Heze, east) 

and −0.5K (Fuzhou, east), respectively, and these two cities are 

also the only two with the ∆SUHII exceeding ±0.5 K. In other 
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words, the MODIS QC flags present a less significant impact on 

the calculation of SUHII in the winter night (Fig. 4d). 

 
Figure 4. Spatial pattern of ∆SUHII (K) during the night for the 

four seasons. Regions where most cities have a significant 

∆SUHII are highlighted with grey dotted curve box. 

 

 
Figure 5. Spatial distributions of the annual mean ∆SUHII 

within the chosen seven cities during the night. Urban areas 

(within the black lines) and rural areas within a 15-km buffer 

zone are shown for each city. 

 

The internal spatial patterns of the annual mean nighttime 

∆SUHII within the chosen seven cities are provided in Fig. 5. 

The annual mean ∆SUHIIs for Harbin, Beijing, Xi’an, Shanghai, 

Wuhan, Chengdu, and GSDF are 1.7, 1.9, 2.1, −0.6, −0.7, 0.1, 

and −0.3 K, respectively. High spatial heterogeneity was also 

found in the night on par with that of daytime, with the range 

varying from −2.5 to 7.1 K in Harbin, from −1.9 to 4.0 K in 

Beijing, from −1.3 to 3.4 K in Xi’an, from −2.9 to 1.4 K in 

Shanghai, from −2.5 to 1.7 K in Wuhan, from −1.4 to 1.4 K in 

Chengdu, and from −2.5 to 1.7 K in GSDF. 

 

During the night, the ∆SUHII contrast between the three 

northern and four southern cities is similar to that of the 

daytime: First, the urban nighttime ∆SUHIIs are also higher 

over the three northern cities, while the opposite phenomenon 

appears in the southern cities (Fig. 5). Second, the consistency 

between the spatial ranges of high ∆SUHIIs and urban 

boundaries is also illustrated mainly in northern cities (Fig. 5), 

while such consistency is in absence for the southern cities.  

The characteristic similarities between the daytime and 

nighttime indicate that the spatial patterns of the annual mean 

∆SUHII within an individual city are largely insensitive to the 

hour of day. We however need to emphasize that dissimilarities 

do exist. For example, the ∆SUHIIs within urban Shanghai are 

much more homogeneous during the night than the day (see 

Figs. 3d and 5d). 

 

 

5. DISCUSSION 

 

5.1 Factors related to ∆SUHII 

 

By definition, the spatio-temporal ∆SUHII variations as shown 

in Section 4 are related to two groups of factors. They include 

those on the QC flag and on the SUHI features. The following 

displays the relationships between the ∆SUHII and one factor 

related to the QC flag (i.e., the cloud cover percentage, CCP) as 

well as one factor related to the SUHI features (i.e., the SUHII).  

Figure 6. Relationships between the ∆SUHII and cloud 

percentage during the four seasons for both daytime and 

nighttime across the chosen 86 cities in Mainland China. 

 

The relationships between the ∆SUHII and CCP over all the 

chosen cities are given in Fig. 6. These scatters indicate that the 

∆SUHII is negatively and linearly related to the CCP in the two 

transitional seasons, all with the p-value at the 0.01-level. Such 

a significant association however disappears for the two non-

transitional seasons (i.e., summer and winter). Noteworthy to 

discern is that, for the two transitional seasons, cites with a 

relatively lower CCP (with a value around 0.4 or lower) are 

likely to demonstrate a higher and positive ∆SUHII. By 

comparison, very few cites in spring and only a small part of 

cities in autumn, exhibit a relatively low ∆SUHII that exceeding 

−0.5 K when the CCP is high (with a value around 0.6 to 0.9). 

This may be attributed to that the ∆SUHII is more related to the 

temporal distribution of the QC flags rather than the absolute 

value of the CCP.  
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The relationships between the ∆SUHII and SUHII (calculated in 

wqc method) are provided in Fig. 7. These results, once more, 

show that the ∆SUHII is negatively correlated to the SUHII in 

the two transitional seasons (i.e., spring and autumn) for both 

daytime and nighttime, as well as in the winter daytime, with 

the associated p-values at the 0.01- or 0.05-level. By 

comparison, there is no statistical correlation in the summer and 

nighttime winter. Such a contrast of statistical significance, 

largely between the transitional and non-transitional seasons, is 

as well similar to that provided in Fig. 6; it is also well 

consistent with the spatio-temporal patterns of the ∆SUHII 

given in Figs. 2 and 4. In other words, the ∆SUHII is strongly 

related to the SUHII when substantial ∆SUHII differences 

between the southern and northern cities are observed. The 

contrast of significance among different seasons is partly 

because LSTs in the transitional seasons typically keep a 

continually decreasing (in autumn) or an increasing (in spring) 

trend, which makes the QC flags generate a greater effect on the 

∆SUHII and therefore leads to a higher ∆SUHII variance. 

Besides, there were evidences that demonstrated that the SUHII 

itself also demonstrated a latitudinal contrast for the major cities 

in mainland China (Zhou et al., 2014), which likely contributes 

to the significant relationships between the ∆SUHII and SUHII.  

Figure 7. Relationships between the ∆SUHII and SUHII during 

the four seasons for both daytime and nighttime across the 

chosen 86 cities in Mainland China. 

 

The correlations in Fig. 7 further indicate that, in the two 

transitional seasons, relative high ∆SUHIIs (higher than 0.5 K) 

mainly appear in the cities with a small or negative SUHII, with 

the latter indicating a surface urban cool island (SUCI) occurs 

(Clinton and Peng, 2013; Lazzarini et al., 2013; Haashemi et al., 

2016). During these transitional periods, significant but 

negative ∆SUHIIs (lower than −0.5 K) can also appear in cities 

with a high SUHII. In the daytime winter, cities characterized 

by a SUCI possess a ∆SUHII greater than 0.5 K, but such a 

phenomenon disappears in the nighttime winter. 

 

Though the ∆SUHII may be related to the CCP/SUHII, their 

accompanying R2 are not high, with the highest values only 

equal to 0.45 in the winter daytime. This is because the QC 

flags were processed more complicatedly than considering the 

CCP; they as well are determined by a combination of the 

radiometric and geometric accuracy of MODIS products, 

confidence in land cover classification and its associated 

emissivity uncertainty, topographic effect and mixture-pixel 

effect, along with others (Wan, 1999). In addition to these 

controls, the ∆SUHII is supposed to be further related to 

temporal distribution of the QC flags as well as the SUHII-

related controls, including the background climate, rural 

background, and surface characteristics of a city (such as the 

fractions between urban vegetation and impervious surfaces) 

(Wang et al., 2007; Yuan and Bauer, 2007). Despite a 

quantitative analysis between the ∆SUHII and these above-

mentioned controls is difficult to conduct, we nevertheless may 

infer that these factors interplay and they together possibly 

explain the spatio-temporal variations of the ∆SUHII. 

 

5.2 Issues related to the true SUHII 

 

This study primarily estimated several kinds of SUHII and 

provided their differences for the major cities over mainland 

China. According to the analyses in Sections 4 and 5.1, the 

general differences (∆SUHII) are able to reach 25.5% and 

29.6% of the total intensity in the daytime and nighttime, 

respectively, one thus needs to be very cautious when using the 

estimated SUHII, whether the SUHIIeqc or SUHIIwqc, of a 

certain city. The magnitude of these variations is on the par with 

the possible SUHII variation produced owing to surface thermal 

anisotropy (Hu et al., 2016). We further acknowledge that 

different SUHI indicators including the SUHII, may be 

inconsistent with each other on the representation of the UHI 

feature even for the same city (Schwarz et al., 2011). We as well 

understand that the SUHII may further suffer from its casual 

definition, such as the subjectivity of choosing the associated 

rural background and the disregard of the differences among 

different urban local climate zones (Stewart and Oke, 1982). 

Nevertheless, to facilitate the communications within research 

communities, the SUHII simply defined from the dichotomy, 

whether from the traditional view or latest perspective, remains 

straightforward yet indispensable to depict the global feature of 

the SUHI of a certain city. (Quan et al., 2014) 

 

In view of the still-existing necessity of using the SUHII, its 

variations due to three factors including (1) surface thermal 

anisotropy, (2) missing data caused by clouds, as well as (3) QC 

flags as reported in this study, require to be corrected. The 

SUHII alterations owing to thermal anisotropy require a semi-

empirical model that is capable of correcting the off-nadir 

thermal observations into the nadir direction, as that has done 

for directional reflectance in the optical spectra, which currently 

seems possible for geostationary thermal observations (Vinnikov 

et al., 2012) but remains in its infancy for thermal observations 

from polar-orbiting satellites (Li et al., 2013). Similarly, it will 

be challenging to adjust the SUHII variations and their 

temporally aggregated values in a period as a result of data 

missing and QC flags. In theory, the accurate correction of 

variations due to the latter two factors both require the 

reconstruction of LST dynamics over urban and rural areas by 

the nonlinear annual temperature cycle (ATC) and/or diurnal 

temperature cycle (DTC) models, as those that have been 

preliminarily conducted by Huang et al. (2016). Such a 

correction also demands the design of an algorithm that could 

better set the weights of the LST in temporal aggregations 

according to the nonlinear LST dynamics and the temporal 

distribution of the different QC flags, in addition to the 

predetermined absolute errors of retrieved LSTs.  
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6. CONCLUSIONS 

 

The understanding of surface urban heat island (SUHI) has 

greatly benefited from the satellite-derived land surface 

temperature (LST) products, but the drawbacks of such 

products also cause detriment to and even distort the 

interpretation of SUHI. Specifically, as the most basic indicator 

to describe the SUHI, the SUHI intensity (SUHI), once 

estimated using satellite-derived LST products, is not consistent 

between considering or not the quality control (QC) of these 

products. To investigate the variations of the SUHII along with 

the LST quality across cities within different climates, this study 

chose eighty-six megacities across the mainland China and 

analyzed the associated spatio-temporal patterns of the QC-

induced SUHII variations (termed ∆SUHII).  

 

Our results generally show that the QC flags have a large impact 

on the SUHII, which can account for 25.5% (29.6%) of the total 

intensity in the day (night). More elaborate conclusions are 

summarized as below: First, the ∆SUHII differs city-by-city and 

the pixel-based ∆SUHII also has a high variation within a city. 

The amplitude of the daytime (nighttime) ∆SUHII variations 

across cities during a certain season can reach 3.8 K (2.9 K); 

and there is a significant discrepancy among northern and 

southern cities, with the northern ones possessing generally 

higher ∆SUHIIs, mostly during the two transitional seasons. For 

the seven chosen cities, the amplitude of variation for the 

annual mean pixel-based ∆SUHIIs exceeds 5.0 K (3.0 K) in 

northern (southern) cities. Second, the ∆SUHII differs season-

by-season and shows a strong day/night contrast. In the daytime, 

the mean ∆SUHIIs for the two transitional seasons (spring and 

autumn) are relatively closer to zero compared with those for 

the two extreme seasons (summer and winter). However, the 

opposite phenomenon occurs in the nighttime, during which the 

mean ∆SUHIIs for the two extreme seasons are closer to zero. 

Besides, the ∆SUHII across cities shows a greater variation in 

the two transitional seasons than in the two extreme seasons, 

both in the daytime and nighttime. Finally, the ∆SUHII is 

negatively related to the cloud cover percentage (CCP) and 

SUHII, which however only appears in the transitional seasons.  

 

Inadequacies of this study also remain. First, this study was 

conducted at the temporal scale of a season (the annual mean 

values were provided but they were only for the inner-city 

pixels), while the ∆SUHII variations at other temporal 

aggregation scales such as the month are unconsidered. Second, 

our analyses were based on the most frequently used SUHI 

indicator (i.e., SUHI intensity), while how the other SUHI 

indicators (e.g., the hot island area) will respond to the QC flags, 

remain unexplored. Though with these inadequacies, our study 

vividly highlights that, to interpret the SUHI, one need to be 

very careful when using the SUHII calculated based on satellite-

derived LSTs. Our investigation further underlines the necessity 

of defining a SUHI indicator independent of the temporally 

missing data and quality control flags. 
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