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ABSTRACT:

The majority of the research on the uncertainties of spatial data and spatial analysis focuses on some specific data feature or analysis
tool. Few have accomplished the uncertainties of the whole process of an application like planning, making the research of
uncertainties detached from practical applications. The paper discusses the uncertainties of the geographical information systems
(GIS) based land suitability assessment in planning on the basis of literature review. The uncertainties considered range from index
system establishment to the classification of the final result. Methods to reduce the uncertainties arise from the discretization of
continuous raster data and the index weight determination are summarized. The paper analyzes the merits and demerits of the
“Nature Breaks” method which is broadly used by planners. It also explores the other factors which impact the accuracy of the final
classification like the selection of class numbers, intervals and the autocorrelation of the spatial data. In the conclusion part, the paper
indicates that the adoption of machine learning methods should be modified to integrate the complexity of land suitability assessment.
The work contributes to the application of spatial data and spatial analysis uncertainty research on land suitability assessment, and
promotes the scientific level of the later planning and decision-making.

1. INTRODUCTION

1.1 The research on spatial data and spatial analysis
uncertainty

Due to knowledge limitation, measurement inaccuracy and error
propagation during information processing, geographical
information always possesses various amounts of uncertainty.
(Goodchild and Gopal, 1989; Beard et al., 1991; Buttenfield,
1991; Zhang and Goodchild, 2002; Xiao et al., 2007).
Therefore, data users should be aware that “all spatial data are
wrong, but some are useful (outside of some exceptions where
the data becomes legally the reality)” (Devillers et al., 2010).
The early computer mapping exercise done at the Harvard
Laboratory for Computer Graphics and Spatial Analysis in the
late 1970s revealed that imperfection is inherent to spatial data
and can directly influence the reliability of spatial analysis
output (Chrisman, 2006). Works on the uncertainty of spatial
data increased significantly with the arrival of GIS in the early
1980s with their capability to integrate spatial and non-spatial
data, including the evaluation of specific data quality elements
of vector, raster, and Digital Elevation Model (DEM) data, also
remote sensing images (Devillers et al., 2010). Wu (2002)
established a frame of GIS uncertainty and summarized the
methods towards GIS data uncertainty. Besides, emphasis
should also be placed on spatial analysis uncertainty since “all
models are wrong, but some are useful” (Box, 1976). The
national economic and social research council of America
(ESRS) presented “The error propagation in geographic
information systems” as one of the priority subject. The centre
for spatial data analysis (nex-pri) in the Netherlands also
promoted the question of “The theory of spatial analysis- error
propagation in spatial analysis” while formulating their research
plan (Wu et al, 2002). Shi (2015) has modelled the
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uncertainties of overlay analysis and buffer analysis to control
the uncertainty propagation of spatial data during spatial
analysis.

The disjunction of the uncertainty research with user
requirement and practical application has now become one of
the major problems which demands great emphasis (Devillers et
al., 2010). The phenomena is partly generated by the deficiency
of uncertainty research on the whole process from data
acquisition and preparation, spatial analysis operation and
results display from the perspective of certain application. The
comprehension of the nature of the problem should get done
before any best possible solutions are promoted. (Devillers et al.,
2010).

1.2 The deficiency of reliability assessment on the
application of GIS in planning

As the most important and fundamental information processing
platform for digital planning, the application of GIS in planning
lacks the consideration of uncertainty. The application of the
ArcGIS has brought about innovation into the quantitative
analysis of planning, causing huge impact to the traditional
manner. The underlying assumption for the extensive
application of GIS is that there is a positive correlation between
the data processing capability and information availability on
one hand and the quality of planning on the other (Malczewski,
2004). Due to the spatiotemporal complexity of the city system
and the knowledge deficiency of planners towards the scientific
principles of the methods and tools, the application of the
spatial analysis is generally over-simplified without a
reasonable consideration of uncertainty. Some sociologists even
doubt the function of the technologies in planning and decision-
making, arguing that planning involves a wide range of
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“untangle” activities such as advice giving, storytelling, myths,
and other metaphors and rhetorical devices (Klosterman, 2001).
The untangled activities are critical for the best balance and the
optimal benefits of planning. The pure dependence of the
information technology might bring about negative impact on
the equity, accuracy and quality of real life (Malczewski, 2004).

1.3 The overview of the GIS based land suitability
assessment uncertainty

Uncertainty has been considered in land suitability assessment,
yet still insufficient especially in the field of planning. Land
suitability assessment is an approach planners employ to
identify the most appropriate spatial pattern for future land
allocation according to specify requirements and preferences
(Hopkins, 1977; Collins et al., 2001; Malczewski, 2004). The
GIS-based land suitability assessment can be traced back to the
applications of hand-drawn overlay techniques used by
American landscape architects in the late 19th and early 20th
(Collins et al., 2001). The spatial weighted overlay analysis is
regarded as the most significant application of GIS in planning
and management (Hopkins, 1977; Brail and Klosterman, 2001;
Collins et al., 2001; Malczewski, 2004). With the continuous
promotion of the multiple-planning integration, land suitability
assessment will exert a much more scientific and fundamental
role on the multiple planning projects. The land suitability
assessment procedure in planning generally employs the
multiple criteria decision-making (MCDM) method. The flow
chart along with the possible uncertainties is presented in Fig.1.
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Figure 1. The flow chart of the land suitability assessment
procedure in planning

The error in data and the discrepancy of methods can inevitably
lead to uncertainty of the final suitability result and further
decision-making (Hu et al., 2007a). In this regard, uncertainty
exists in data preparation, index standardization, weights
determination and result visualization. Research has been done
on the uncertainties of land suitability assessment and
ecological sensitivity assessment. For instance, the uncertainties
of the DEM resolution, interpolation method and scale effect of
terrain description (GAO, 1997; Tang et al., 2003; Chen et al.,
2005; Shi, 2015), index standardization (Bolliger and
Mladenoft, 2005; Zhou et al., 2007; Zhang et al., 2010), weight
determination (Hu et al., 2007b; Liu et al., 2012; Zhuo, 2012)
and result classification and visualization (Hu et al., 2007a).

Some experts focus on the uncertainty analysis of the whole
process of land assessment (Hu et al., 2007a; Yu, 2010).
However, this macro perspective neglects the specificity of
planning and the custom of planners, making it difficult to make
an anticipative difference in the actual application. The
ignorance of uncertainty will undoubtedly exert negative impact
on the scientific nature and accuracy of the later planning. The
uncertainty might gradually enlarge as the planning procedure
advances, resulting in the frequent modification of planning
schemes, illegal land wuse phenomena and ecological
environment deterioration.

The paper establishes a framework of the GIS based land
suitability assessment uncertainty research, ranging from index
system establishment (the uncertainties of the data itself, the
discretization of continuous raster data, index weight
determination), to the classification of the final result.

2. THE UNCERTAINTY OF THE INDEX SYSTEM
2.1 The uncertainty of index data

2.1.1 The uncertainty of raw data: Due to the inherent
uncertainty of the external world which is a complex,
multidimensional and nonlinear system, the knowledge
limitation, the measurement inaccuracy and the error
propagation during data processing and analysis (Hu et al.,
2007a; Longley et al., 2011; Shi, 2015), the data collected for
the land suitability assessment possess certain uncertainty.

The reliability of the assessment result depends on the data
quality and the depth of the land and land-use related
knowledge (Rossiter, 1996). Land suitability assessment is a
comprehensive multiple criteria analysis involving the
consideration of soil condition, hydrology, meteorology,
geology, humanities, etc. The reliability of these data demands
emphasis. For instance, the elevation, slope and aspect data
derived from DEM are generally used in land suitability
assessment to characterize topographical features, while the
reliability of DEM to represent spatial information is affected
by the original sampling and the interpolation method applied to
generate it (Shi, 2015).

2.1.2 The uncertainty of applying raster data as the
assessment object: The raster data model has traditionally been
regarded as the more appropriate approach for land-use
suitability applications as the raster data structure is area-
oriented (Malczewski, 2004). However, uncertainty exists on
applying raster data to represent spatial information, such as the
uncertainty to explain attribute value and identifying the
location of a set-point (Wang and Du, 2007).

Accuracy loss is also unavoidable during the conversion from
vector to raster. Some of the vector data collected for the land
suitability assessment like social and economic data and land
use data need to be converted to raster for the spatial overlay
analysis. The spatial resolution of the raster data model is
determined by the size of the grid cell. In consequence, the
adoption of large gird cells may risk losing the accurate location
of the spatial element, while small ones can avoid the problem
but may increase the overall grid cells and extend the data
processing time (Liu, 2005). Users generally choose different
analysis scales according to their specific application
requirements, thus the loss of accuracy differs from one another.
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2.2 The uncertainty on the discretization of continuous
raster data

The discretization of continuous features can result in the loss of
the spatial distribution of a feature (Bolliger et al., 2005). In
terms of land suitability assessment, continuous features like
elevation, slope and aspect are required to be discretized into
single-feature classification for the raster weighted overlay in
land suitability assessment. However, the information loss of
the process is generally ignored by planners. Take slope as an
example, planners generally divide slope into five categories:
0°-5° as the most suitable, 5°-8° as suitable, 8°-15°as
marginally suitable, 15°-25° as not suitable, those greater than
25° as the least suitable. Among them, 8.01° and 14.99° belong
to the same level although they differ a lot form each other.
While 7.99° and 8.01° belong to two different levels even the
gap is pretty small (Zhou et al., 2007; Liu et al., 2012).

There are many approaches to explore the uncertainties of
continuous raster data discretization, such as grey system
method, rough sets and fuzzy mathematics. Zhou et al. (2007)
adopted grey system to reduce the uncertainty. He pointed out
that sampling should be as balanced as possible and the original
data should be standardized before calculating the correlation
coefficient. The research of the information loss from the
continuous numeric features discretization also roots in the
simple application of machine learning methods such as rough
sets. Hu et al. (2008) constructed a numeric feature selection
algorithm based on neighborhood rough set model to directly
deal with the numeric attribute, saving the process of
discretization. To solve the uncertainty, some experts apply the
membership function in fuzzy mathematics to describe the
degree of continuous data association (Zhang et al., 2010;
Bolliger et al., 2005). Fuzzy sets are usually combined with
MCDM in the field of suitable analysis. Corona et al. (2008)
combined fuzzy sets and the weight linear combination in
multiple criteria methods to conduct the land suitability
assessment in south Italy, the result applied rational number 0
and 1 to represent the suitability grades, 0 as not suitable, 1 as
very suitable. However, problem exists as how to accurately
determine the membership function in fuzzy logic method. The
determination has certain subjectivity because the cognition and
understanding of the same fuzzy concept differs from one
another. Some research amended the model to solve the
problem and achieved higher reliability. Experts applied the
cloud model to represent the fuzziness of quantitative data
based on the randomness of the membership function (Hu et al.,
2007b; Fan et al., 2008). Cloud model is a quality-quantity
interchangeable model combining traditional fuzzy mathematics
and probability statistics. It integrates fuzziness and randomness
to realize the conversion between qualitative concept and
quantitative value (Hu et al., 2007b). Zhou et al. (2014) applied
normal cloud model to achieve the uncertainty mapping of the
evaluation indexes on ecological risk grades. Randomness and
fuzziness of index quantization and level division were
considered to acquire a more objective result. As to the multiple
features of the indexes which conclude continuous-value,
discrete-value and nominal-value, Hu et al. (2005) proposed a
neural network based method to extract fuzzy rules for multiple
features. Classification rules can be trained and acquired
through land samples. Liu et al. (2004) established a fuzzy
neural network which could enable the membership function
and rule sets to adjust adaptively.

2.3 The uncertainty of index weight determination

The land suitability assessment is comprehensively affected by
objective laws also the development priorities of the region,
making the determination of the index weights intractable and
complicated. Research on the uncertainty of the index weight
determination is abundant. Hu et al. (2006) presented a method
integrating subjective and objective information to determine
the final index weights. The method applies an improved Delphi
method to acquire the subjective weights, and an improved
correlation analysis method for objective weights. Huang et al.
(2007) indicated the defects of the comprehensive assessment
methods generally applied like Analytic Hierarchy Process
(AHP), fuzzy comprehensive method and Neural Network
based method. He argued that these methods can only offer a
comprehensive  assessment result without a certainty
measurement. They are unable to deal with the unknown factors
as well. He thus promoted a comprehensive assessment method
based on the D-S evidence theory, which is able to manage two
different kinds of uncertainty (inconsistency and non-
specificity) compared to Probability Theory which can only
manage randomness. Zhuo (2012) adopted the entropy method
to calculate weights. Some research applies variable coefficient
to expand the internal differences in weights so as to increase
the differentiation among the classes (Liu et al., 2012). On the
whole, the methods can be divided into subjective weighting
method (Delphi method, grey conjunction analysis, AHP, etc.)
and objective weighting method (mean square deviation
algorithm, range method, entropy method, etc.) (Guo, 2002)
.Subjective weighting method means hiring experts who possess
land knowledge to grade the indexes and then calculate the
weights, while objective weighting method implies the adoption
of mathematical theory and method to calculate the weights
from observation data. One of the prior works for land
suitability assessment is to integrate the merits of the two
methods and overcome their demerits, such as the fuzziness and
randomness of experts’ understanding towards the indexes and
weights, also the over-emphasis on quantitative method while
ignoring the subjective attitude of decision-makers (Hu et al.,
2007a).

3. THE UNCERTAINTY OF THE ASSESSMENT
RESULT CLASSIFICATION

As the final step of the land suitability assessment, the raster
weighted overlay analysis is critical as the result acts as a bridge
between mappers to decision-makers. Uncertainty in inherent in
map classification and can generate an unreliable spatial pattern.
However, uncertainty is largely ignored in choropleth mapping
(Koo et al., 2017). The classed map is a medium that displays
the specific land suitability conditions of a region to urban
planners, public officials and also the public. Neglecting the
uncertainty of the classification will definitely impact the
accuracy of the assessment, leading to decision risk.

3.1 The uncertainty of choropleth map classification

Maps construct a communication channel between mappers and
users (Mark, 1974; Jenks and Caspall, 1971), making the
reliability of the map significant especially when the map is
produced to help explore spatial data or construct spatial
knowledge (Xiao et al, 2007). Harvey (1970) considers
classification as “perhaps the basic procedure by which we
impose some sort of order and coherence upon the vast inflow
of information from the real world”. However, important
information might risk being lost during the communication if
the map is badly prepared (Jenks and Caspall, 1971;Traun and
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Loidl, 2012). The acceptance of the misclassification level of a
map is determined by the purpose of the map (Xiao et al.,
2007). As a result, the production of a choropleth map must put
great emphasis on the application purpose and the
corresponding users (Mark, 1974). Some papers focus on the
uncertainty of the choropleth map classification and related
solutions are proposed (Jenks and Caspall, 1971; Xiao et al.,
2007). It is certain that data inaccuracy and the error
propagation during information processing can bring doubt into
the reliability of the classification.

The reliability of GIS tools demands emphasis as well. The
process of spatial analysis follows a series of well-defined
stages: problem formulation, planning, data gathering,
exploratory analysis hypothesis formulation, modeling and
testing, consultation and review, etc. However, GIS related
software tools only address the middle sections of the process.
Besides, GIS software places almost no constraints upon a
user’s selection of classification method although classification
should be interpreted in terms of purpose as well as method
(Smith et al., 2015). As a result, some resulting maps might fail
to properly reflect data-inherent patterns and a part of which
might even indicate spatial configurations that have no reliable
statistical or contextual logic (Maceachren and Ganter, 1990).

Uncertainty also exists during the final classification of the land
suitability assessment result. Multiple factors influence the
certainty of the classification, such as data type, class numbers,
intervals and the autocorrelation of the spatial data (Slocum et
al., 2005; Traun and Loidl, 2012; Smith et al., 2015). Planners
ought to avoid the pure application of the software and select
the most suitable classification method according to the data
feature and the actual demand of planning.

3.2 The uncertainty of data classification based on
ArcGIS

3.2.1 The various methods for data classification based
on ArcGIS: ArcGIS provides a variety of classification
methods for raster data, including manual, equal interval,
defined interval, quantile, natural breaks, geometrical interval
and standard deviation. A brief introduction of the methods can
be checked in table 1 (ESRI, 2014).

Methods Description/application

The analyst allows users to define their own
classes, they can manually add class breaks
and set class ranges that are appropriate for
their data.

Manual

Equal interval divides the range of attribute
values into equal-sized subranges. It is best
applied to familiar data ranges, such as
percentages and temperature.

Equal
interval

Defined interval allows users to specify an
interval size used to define a series of classes
with the same value range. ArcMap will
determine the number of classes based on the
interval size and the range of all field values.

Defined
interval

classes. It is data-specific classification and
not useful for comparing multiple maps built
from different underlying information.

The method scheme creates class breaks

. based on class intervals that have a

Geometrical . . . .
) geometrical series. This algorithm was
interval . .

specifically designed to accommodate

continuous data.

The Standard deviation classification method
Standard shows users how much a feature's attribute
deviation value varies from the mean. ArcMap

calculates the mean and standard deviation.

Table 1. A brief introduction of classification methods provided
by ArcGIS. (The content is derived from ArcGIS 10.2 Help:
Classifying Numerical Fields for Graduated Symbology.)

The difference among the classification methods for univariate
analysis is remarkable (Chang,1978; Brewer and Pickle, 2002).
The paper takes the land suitability assessment result of
Shennongjia Forest District in China to demonstrate the various
methods provided by ArcGIS. Equal interval, quantile, natural
breaks and geometrical interval allow users to define the class
numbers. The paper divides the raster data into 5 classes
according to the research conclusion suggested in 3.3.1. Fig 2
shows that the results vary a lot from each other although they
apply the same raster data into the same numbers of classes.
Defined interval and standard deviation automatically determine
the number of classes as 6 (Fig 3). The classification results
differ from each other as well.

Quantile

N
Equal Interval o . A

o — — (Gometers
051 20 30 4

Natural Breaks

Figure 2. The 5-class land suitability maps of Shennongjia
Forest District using (a) Equal interval, (b) Quantile, (c) Natural
breaks, (d) Geometrical interval

Defined Interval

Each class contains an equal number of
features. The method is well suited to linearly
distributed data. Quantile assigns the same
number of data values to each class.

Quantile

Classes are based on natural groupings
inherent in the data. Class breaks are
identified that best group similar values and
that maximize the differences between

Natural
breaks

Figure 3. The 6-class land suitability maps of Shennongjia
Forest District using (a) Defined interval, (b) Standard deviation

As demonstrated above, the application of different methods
may lead to distinct results, making the selection of methods
critical. To comprehend the theory and applicability behind the
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methods is essential. The natural breaks (Jenks) is broadly used
by planners as a default priority for the classification of raster
data (Claggett et al., 2004; Ren, 2012; Chen et al., 2013; Luo,
2016). The next part will explore the applicability of the method
in land suitability assessment.

3.2.2  The applicability of the natural breaks (Jenks): The
natural breaks method in ArcGIS refers to a classification
method for choropleth map put forward by Jenks (Jenks and
Caspall, 1971; Jenks, 1977). The method is equivalent to
unconstrained clustering (Fisher, 1958). Breaks which are
selected to separate values where large changes in value occur
are typically uneven. The result can be significantly affected by
the number of classes (Smith et al., 2015). The method is
extensively applied in GIS packages such as ArcGIS (Dent,
1999; Koo et al., 2017).

Jenks Natural Breaks algorithm (Smith et al., 2015):

“Step 1: The user selects the attribute, x, to be classified and
specifies the number of classes required, k;

Step 2: A set of k-1 random or uniform values are generated in
the range [min{x}, max{x}]. These are used as initial class
boundaries;

Step 3: The mean values for each initial class are computed and
the sum of squared deviations of class members from the mean
values is computed. The total sum of squared deviations (TSSD)
is recorded;

Step 4: Individual values in each class are then systematically
assigned to adjacent classes by adjusting the class boundaries to
see if the TSSD can be reduced. This is an iterative process,
which ends when improvement in TSSD falls below a threshold
level, i.e. when the within class variance is as small as possible
and between class variance is as large as possible. True
optimization is not assured. The entire process can be optionally
repeated from Step 1 or 2 and TSSD values compared.”

Although the natural breaks (Jenks) method has been broadly
applied in univariate classification, its applicability in the land
suitability assessment in planning still requires verification.
Research has shown that the method considers only variances
among attribute estimates while ignoring their uncertainties
(Jenks, 1977; Koo et al., 2017). According to the development
and application of the natural breaks (Jenks) method besides the
field of suitability assessment, it is generally applied to the
classification of some initial data based on their patterns, such
as mortality map (Brewer and Pickle, 2002), population density
map (Xiao et al., 2007), rainfall map (Golian et al., 2010),
median household income map (Koo et al., 2017). The land
suitability assessment is a comprehensive analysis which covers
index standardization, weight determination and raster weighted
overlay before the final classification procedure, making the
final classification much more complicated than the applications
mentioned above. The accomplishment of the former
procedures actually delivers some kind of expectation to the
final result. However, the adoption of the natural breaks (Jenks)
method will risk ignoring the expectation while purely focus on
the pattern of the data itself.

Besides, ESRI (2014) indicates that “natural breaks are data-
specific classifications and not useful for comparing multiple
maps built from different underlying information”. In terms of
land suitability assessment, the assessment rule of different
regions should not differ two much from each other as planning
site selection follows certain universal law despite of the
peculiarity of a region. As a result, the adoption of the natural
breaks (Jenks) method might end up distinct difference between
the land suitability levels of the same region from two different

scales of analysis. The paper applies the natural breaks (Jenks)
in a town named Songbai inside Shennongjia Forest District
from the forest district scale and the town scale. The results
differ a lot from each other, especially in the low level where
the difference in area percentage reach up to 12.2% (Fig 4,
Table 2).

B \ery High

Figure 4. Two land suitability maps of Songbai Town. (a)
Shennongjia Forest District scale, (b) Songbai Town scale

Classes Forest District Town scale D-value
scale (%) (%)

Very low 5.2 5.2 0

Low 10.8 23.0 -12.2

Medium 35.1 314 3.7

High 30.2 27.0 32

Very high 18.7 13.4 5.3

Table 2. The area percentage of the 5 land suitability classes
from Shennongjia Forest District scale and Songbai Town scale

3.3 The uncertainty of the assessment result classification

3.3.1 The number of classes: The selection of different
numbers of class will definitely leads to different result (Jenks
and Caspall, 1971; Slocum et al., 2005; Traun and Loidl, 2012;
Smith et al., 2015). As to the land suitability assessment in
planning, there is no uniform standard for the numbers of class.
The current existing class numbers including 3 classes (Corona,
2008; Liu et al., 2012; Ren, 2012), 4 classes (Chen et al., 1999;
Chen et al., 2010) and 5 classes (Zhou et al., 2007; Zhuo, 2012).
Research indicates that the number of breaks should be an odd
value as even number of classes misses a central class. With a
number of classes less than 4 or 5 the level of detail obtained
may be too limited while more than 9 classes makes it difficult
to distinguish key differences between zones (Smith et al.,
2015). Integrating actual applications with expert advice, the
paper applies 5 classes for the demonstration.

3.3.2  The location of intervals: The location of the intervals
co-determined by the class number and classification method is
also critical. Robinson (1960) claimed the selection of intervals
as the most important problem. Research suggests that class
breaks should be located at “critical” values derived from field
observations or a particular known or unknown bias held by the
map-maker (Jones, 1930). Various methods are applied for the
classification of the land suitability assessment besides those
provided by ArcGIS, such as the combination of limiting
conditions with weighted index method (Chen et al., 1999), and
machine learning methods like neural network (Jiao, 2004; Hu
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et al., 2005), K-Means clustering (Zhou et al., 2007) and ant
colony optimization (Yu, 2010). The main challenge is to
integrate the expectation delivered from the former procedures
and the specific pattern of the data to achieve a better result.

3.3.3 The spatial autocorrelation of geographical data:
Almost all geographical data possesses the nature of
autocorrelation while it is commonly ignored as the
classification for choropleth maps is generally based on non-
spatial attribute values (Traun and Loidl, 2012). According to
Tobler’s first law of geography (Tobler, 1970), attribute values
that are close in space tend to have similar values and are more
likely to fall into the same class interval (Mak and Coulson,
1991). Research has revealed that land-use spatial data follow
the first law of geography and possess certain autocorrelation
(Xie et al., 2006; Qiu et al., 2007; Gao et al., 2010). To ensure
the accuracy of the land suitability assessment analysis, the data
acquired should be as precise as possible. Elevation and slope
data derived from DEM ought to get a resolution as high as
possible. Consequently, the final result of the assessment might
end up being too trivial in some areas (Fig 5), leaving erratic
“islands” within a certain class just because the grid value falls
slightly above or below the class interval. Traun and Loidl
(2012) concluded the current spatially aware classification
methods and their possibility of improvement. They also
presented a new approach named “Regioclassification”, which
adapts to the degree of spatial autocorrelation in data through
the combination of the Moran’s I scatter plot with the Fisher—
Jenks algorithm. According to the research, the classifications
for spatially autocorrelated data utilizing “Regioclassification”
are visually less complex than those employing non-spatial
classification approaches. The method can be further explored
for classification of land suitability.

o e, A

Land Suitability
B Very Low
Low
Medium
I High
B very High

-_——
0o 5 10 20 30 40

@
Figure 5. The erratic “islands” in the land suitability map of
Shennongjia Forest District

4. CONCLUSION AND DISCUSSION

Specific to the MCDM planners generally adopt for land
suitability assessment, the paper discusses the uncertainties of
the index system establishment (the uncertainties of the data
itself, the discretization of continuous raster data, index weight
determination) and the classification of the final result. Further
research can be carried out on the uncertainty of index selection,
the quantization of the uncertainty in each link and the
uncertainty propagation during the whole process. The

comparison between MCDM and the arising artificial
intelligence (AI) approach should as well be considered.

The applicability of machine learning methods like neural
network and K-means in classification also demands further
investigation. As discussed above, land suitability assessment is
much more comprehensive and complicated than pure data
classification and clustering. Thus, machine learning methods
ought to be modified to integrate the expectation delivered from
the former procedures and the specific pattern of the data to
achieve a better classification result. Planning possesses high
spatiotemporal complexity as a particular application field of
spatial data and spatial analysis. The information technology
application in this field should integrate this complexity with
the actual demand so as to guarantee the equity and accuracy of
the analysis, so should the research of the land suitability
assessment uncertainty.

ACKNOWLEDGEMENTS

This research is supported by the National Science and
Technology Support Project of China (No.2014BAL05B07) and
the National Natural Science Foundation of China
(No.41331175). Suggestions from anonymous reviewers are
also acknowledged.

REFERENCES

Beard, M. K., Buttenfield, B. P., & Leader, 1., 1999. Ncgia
research initiative 7 visualization of spatial data quality.
European Integration Online Papers, 11(6), pp. 677-686.

Box, G. E. P., 1976. Science and statistics. Journal of the
American Statistical Association, 71, pp. 791-99.

Bolliger, J., & Mladenoff, D. J.,, 2005. Quantifying spatial
classification uncertainties of the historical wisconsin landscape
(usa). Ecography, 28(2), pp. 141-156.

Brail, R.K., & Klosterman, R.E., 2001. Planning Support
Systems, ESRI Press, Redlands, CA.

Brewer, C. A., & Pickle, L., 2002. Evaluation of methods for
classifying epidemiological data on choropleth maps in series.

Annals of the Association of American Geographers, 92(4), pp.
662-681.

Buttenfield, B. P., 1991. Representing data quality.
Cartographica the International Journal for Geographic
Information & Geovisualization, 30(2-3), pp. 1-7.

Chang, K. T., 1978. Visual aspects of class intervals in
choroplethic mapping. The Cartographic Journal, 15(1), pp. 42-
48.

Chen, N, Lin, Z. J., Tang, G. A., & Cheng-Ming, L. 1., 2005.
Analysis of spatial information uncertainty from dem. Bulletin
of Surveying & Mapping, 30(12), pp. 172-176.

Chen, J., Yang, S. T., Li, H. W., Zhang, B., & Lv, J. R., 2013.
Research on geographical environment unit division based on
the method of natural breaks (jenks). ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-4/W3(4), pp. 47-50.

Chen, Z. B., Lin, Q. D., & Chen, F. Z., 1999. Study on Method
of Land Suitability Evaluation for the County-level Overall Plan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W7-523-2017 | © Authors 2017. CC BY 4.0 License. 528



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017
ISPRS Geospatial Week 2017, 18—22 September 2017, Wuhan, China

of Land Ultilization. Journal of Fujian teachers university
(natural science), 15 (3), pp. 99-104.

Chen, Z. A., Luo, Y. Y., & Zhang, L. T., 2010. Application of
fuzzy evaluation model on land suitability in guangchang
county. Hubei Agricultural Sciences, 49(5), pp. 1278-1280.

Chrisman, N., 2006. Charting the Unknown: How Computer
Mapping at Harvard Became GIS. Esri Press.

Claggett, P. R., Jantz, C. A., Goetz, S. J., & Bisland, C., 2004.
Assessing development pressure in the chesapeake bay
watershed: an evaluation of two land-use change models.
Environmental Monitoring & Assessment, 94(1-3), pp. 129-146.

Collins, M. G., Steiner, F. R., & Rushman, M. J., 2001. Land-
use suitability analysis in the wunited states: historical
development and promising technological achievements.
Environmental Management, 28(5), pp. 611-621.

Corona, P., Salvati, R., Barbati, A., & Chirici, G., 2008. Land
Suitability for Short Rotation Coppices Assessed through Fuzzy
Membership Functions. Patterns and Processes in Forest
Landscapes, pp. 191-211.

Dent, B. D., 1999. Cartography - thematic map design.
Wm.c.brown Publishers.

Devillers, R., Stein, A., Bédard, Y., Chrisman, N., Fisher, P., &
Shi, W., 2010. Thirty years of research on spatial data quality:

achievements, failures, and opportunities. Transactions in Gis,
14(4), pp. 387-400.

Esri., 2014. Classifying Numerical Fields for Graduated
Symbology.

Fan, M., Liu, Y. L., Wu, Y. J., & Yang, X. H., 2008. Ecological
Impact Evaluation for Land Consolidation Based on Cloud
Model. Geomatics and Information Science of Wuhan
University, 33(9), pp. 986-989.

Fisher, W. D., 1958. On grouping for maximum homogeneity.
Journal of the American Statistical Association, 53(284), pp.
789-798.

GAO, J., 1997. Resolution and accuracy of terrain
representation by grid dems at a micro-scale. International
Journal of Geographical Information Science, 11(2), pp. 199-
212.

Gao, K., Zhou, Z. X., & Yang, Y. P., 2010. Land use structure
and its spatial autocorrelation analysis in the yangtze river
basin. Resources & Environment in the Yangtze Basin, pp. 13-
20.

Golian, S., Saghafian, B., Sheshangosht, S., & Ghalkhani, H.,
2010. Comparison of classification and clustering methods in
spatial rainfall pattern recognition at northern iran. Theoretical
and Applied Climatology, 102(3), pp. 319-329.

Goodchild, M. F., & Gopal, S., 1989. The Accuracy of Spatial
Databases.

Guo, Y., 2002. Comprehensive evaluation theory and method.
Science Press.

Harvey, D., 1970. Explanation in geography. Geographical
Journal, 136(2), pp. 303.

Hopkins, L., 1977. Methods for generating land suitability
maps: a comparative evaluation. Journal for American Institute
of Planners, 34 (1), pp. 19 - 29.

Hu, S. Y, Li, D. R, Liu, Y. L, & Li, D. Y., 2006.
Determination and integration of subjective weights and
objective weights of land grading factors. Geomatics &
Information Science of Wuhan University, 31(8), pp. 695-699.

Hu, S. Y., Liu, Y. L., & Li, D. R., 2007a. A research into land
evaluation uncertainty. Scientific & Technological Management
of Land & Resources, 24(4), pp. 11-15.

Hu, S. Y, Li, D. R, Liu, Y. L., & Li, D. Y., 2007b. Mining
Weights of Land Evaluation Factors Based on Cloud Model and
Correlation Analysis. Geo-spatial Information Science, 10(3),
pp. 423-427.

Hu, Y. M., Xue, Y. J., Li, B, Xie, J. W., Chen, F. X., & Bao, S.
T., 2005. Extracting fuzzy rules from neural networks for land
evaluation. Transactions of the Chinese Society of Agricultural
Engineering, 21(12), pp. 93-97.

Hu, Q. H., Yu, D. R., & Xie, Z. X., 2008. Numerical attribute
reduction based on neighborhood granulation and rough
approximation. Journal of Software, 19(3), pp. 640—649.

Huang, G. Y., Zhao, Q. M., Li, L. L., & Gao, C. H., 2007. An
approach for comprehensive evaluation based on d-s evidential
theory. Control & Automation, 23(5), pp. 264-266.

Jenks, G. F., & Caspall, F. C., 1971. Error on choroplethic
maps: definition, measurement, reduction. Annals, Association
of American Geographers, 61 (2), pp. 217-244.

Jenks, G. F., 1977. Optimal data classification for choropleth
maps. Department of Geography Occasional Paper no. 2.
Lawrence: University of Kansas.

Jiao, L., 2004. Application of fuzzy neural networks to land
suitability evaluation. Editorial Board of Geomatics &
Information Science of Wuhan University, 29(6), pp. 513-516.

Jones, W. D., 1930. Ratios and isopleth maps in regional
investigation of agricultural land occupance. Annals of the
American Association of Geographers, 20(4), pp. 177-195.

Klosterman, R.E., 2001. Planning support systems: a new
perspective on computer-aided planning. Planning Support
Systems, ESRI Press, Redlands, CA, pp. 1 - 35.

Koo, H., Chun, Y., & Griffith, D. A., 2017. Optimal map
classification incorporating uncertainty information. Annals of
the  American  Association  of  Geographers, DOI:
10.1080/24694452.2016.1261688.

Liu, Y. X,,Li,C. Y.,Ren, Z. Y., & Wen, W., 2012. Land Eco-
sensitivity Assessment Based on LUCC in Ecological City.
Research of Soil and Water Conservation, 19(4), pp. 125-130.

Liu, X,. 2005. A research on raster based spatial analysis
arithmetic and its programme practice. (Master dissertation,
Northwestern University).

Longely, P. A., Goodchild, M., Maguire, D. J., & Rhind, D. W.,
2011. Geographic information systems and science. New York
New York John Wiley & Sons, 20(20), pp. 396-397.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W7-523-2017 | © Authors 2017. CC BY 4.0 License. 529



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017
ISPRS Geospatial Week 2017, 18—22 September 2017, Wuhan, China

Luo, T., 2016. Research of land space comprehensive zoning
and optimal exploitation at the Shanglin county level base on
multiple-planning integration. (Master dissertation, Guangxi
Teachers Education University).

Maceachren, A. M., & Ganter, J. H., 1990. A pattern
identification  approach to  cartographic  visualization.
Cartographica the International Journal for Geographic
Information & Geovisualization, 27, pp. 64-81.

Mak, K. and Coulson, M.R.C., 1991. Map-user response to
computer-generated choropleth maps:comparative experiments
in classification and symbolization. Cartography and
Geographiclnformation Science, 18 (2), pp. 109-124.

Malczewski, J., 2004. Gis-based land-use suitability analysis: a
critical overview. Progress in Planning, 62(1), pp. 3-65.

Mark S. M., 1974. Measures of pattern complexity for
choroplethic maps. Cartography and Geographic Information
Science, 1(2), pp. 159-169.

Qiu, B. W., Wang, Q. M., Chen, C. C,, & Chi, T. H., 2007.
Spatial autocorrelation analysis of multi-scale land use in fujian
province. Journal of Natural Resources, 22(2), pp. 311-320.

Ren, J. Q., Wang, J. K., & Kong, F. W., 2012. Coordination
evaluation between urban land intensive use and economic
&social sustainable development in liaoning province. Journal
of Shenyang Agricultural University, 43(1), pp. 39-43.

Robinson, A. H., 1960. Elements of cartography. second
edition. Soil Science, 90(2), pp. 147.

Rossiter, D. G., 1996. A theoretical framework for land
evaluation. Geoderma, 72(96), pp. 165-190.

Shi, W., 2015. Principles of modeling uncertainties in spatial
data and spatial analyses. Science Press.

Slocum, T. A., 2005. Thematic cartography and geographic
visualization (Upper Saddle River, NJ: Prentice-Hall).

Smith, M. J. D., Goodchild, M. F., & Longley, P., 2015.
Geospatial analysis :a comprehensive guide to principles,
techniques and software tools. DBLP.

Tang, G., Zhao, M., Li, T. W, Liu, Y., & Xie, Y., 2003.
Modeling slope uncertainty derived from dems in loess plateau.
Acta Geographica Sinica, 58(6), pp. 824-830.

Tobler, W.R., 1970. A computer movie simulating urban
growth in the Detroit region. EconomicGeography, 46, pp. 234—
240.

Traun, C., & Loidl, M., 2012. Autocorrelation-Based
Regioclassification — a self-calibrating classification approach
for choropleth maps explicitly considering spatial
autocorrelation.  International  Journal of Geographical
Information Science, 26(5), pp. 923-939.

Wang, J., & Du, D. S., 2007. A preliminary discussion on
uncertainty of the spatial information presentation by using
raster data. Geomatics World, 5(2), pp. 50-54.

Wu, L., Yu, H. L., Gao, Z. B., & Cheng, J. C., 2002. The frame
of gis uncertainty and methods of gis data uncertainty.
Geography & Territorial Research, 18(4), pp. 1-5.

Xiao, N., Calder, C., Armstrong, M., 2007. Assessing the effect
of attribute uncertainty on the robustness of choropleth map

classification, International  Journal of  Geographical
Information Science, 21(2), pp. 121-144.

Xie, H., Liu, L., Bo, L. I, & Zhang, X., 2006. Spatial
autocorrelation analysis of multi-scale land-use changes:a case

study in ongniud banner, inner mongolia. Acta Geographica
Sinica, 61(4), pp. 389-400.

Yu Jia., 2010. The research and realization of the land-use
suitability assessment model based on artificial intelligence.
(Doctoral dissertation, East China Normal University).

Zhang, X., Huang, H. Z., & Xu, H., 2010. Multidisciplinary
design optimization with discrete and continuous variables of
various  uncertainties.  Structural &  Multidisciplinary
Optimization, 42(4), pp. 605-618.

Zhang, X., Huang, H. Z., & Xu, H., 2010. Multidisciplinary
design optimization with discrete and continuous variables of
various  uncertainties.  Structural &  Multidisciplinary
Optimization, 42(4), pp. 605-618.

Zhang, J. & Goodchild, M. F., 2002. Uncertainty in
Geographical Information (London:Taylor & Francis).

Zhou, J. F., Zeng, G. M., Huang, G. H., Li, Z. W., & Tang, L.,
2007. The ecological suitability evaluation on urban expansion
land based on uncertainties. Acta Ecologica Sinica, 27(2), pp.
0774-0783.

Zhou, Q. G., Zhang, X. Y., & Wang, Z. L., 2014. Land use
ecological risk evaluation in Three Gorges Reservoir Area
based on normal cloud model. Transactions of the Chinese
Society of Agricultural Engineering, 30(23), pp. 289—297.

Zhuo, F. L., 2012. Land Ecological Security Evaluation Based
on Entropy Weight and Set Pair Analysis: A Case of Hebei
Province. Areal Research and Development, 31(6), pp. 111-114.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W7-523-2017 | © Authors 2017. CC BY 4.0 License. 530





