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ABSTRACT: 

The majority of the research on the uncertainties of spatial data and spatial analysis focuses on some specific data feature or analysis 
tool. Few have accomplished the uncertainties of the whole process of an application like planning, making the research of 
uncertainties detached from practical applications. The paper discusses the uncertainties of the geographical information systems 
(GIS) based land suitability assessment in planning on the basis of literature review. The uncertainties considered range from index 
system establishment to the classification of the final result. Methods to reduce the uncertainties arise from the discretization of 
continuous raster data and the index weight determination are summarized. The paper analyzes the merits and demerits of the 
“Nature Breaks” method which is broadly used by planners. It also explores the other factors which impact the accuracy of the final 
classification like the selection of class numbers, intervals and the autocorrelation of the spatial data. In the conclusion part, the paper 
indicates that the adoption of machine learning methods should be modified to integrate the complexity of land suitability assessment. 
The work contributes to the application of spatial data and spatial analysis uncertainty research on land suitability assessment, and 
promotes the scientific level of the later planning and decision-making. 

* Corresponding author

1. INTRODUCTION

1.1   The research on spatial data and spatial analysis 
uncertainty 

Due to knowledge limitation, measurement inaccuracy and error 
propagation during information processing, geographical 
information always possesses various amounts of uncertainty. 
(Goodchild and Gopal, 1989; Beard et al., 1991; Buttenfield, 
1991; Zhang and Goodchild, 2002; Xiao et al., 2007). 
Therefore, data users should be aware that “all spatial data are 
wrong, but some are useful (outside of some exceptions where 
the data becomes legally the reality)” (Devillers et al., 2010). 
The early computer mapping exercise done at the Harvard 
Laboratory for Computer Graphics and Spatial Analysis in the 
late 1970s revealed that imperfection is inherent to spatial data 
and can directly influence the reliability of spatial analysis 
output (Chrisman, 2006). Works on the uncertainty of spatial 
data increased significantly with the arrival of GIS in the early 
1980s with their capability to integrate spatial and non-spatial 
data, including the evaluation of specific data quality elements 
of vector, raster, and Digital Elevation Model (DEM) data, also 
remote sensing images (Devillers et al., 2010). Wu (2002) 
established a frame of GIS uncertainty and summarized the 
methods towards GIS data uncertainty. Besides, emphasis 
should also be placed on spatial analysis uncertainty since “all 
models are wrong, but some are useful” (Box, 1976). The 
national economic and social research council of America 
(ESRS) presented “The error propagation in geographic 
information systems” as one of the priority subject. The centre 
for spatial data analysis (nex-pri) in the Netherlands also 
promoted the question of “The theory of spatial analysis- error 
propagation in spatial analysis” while formulating their research 
plan (Wu et al., 2002). Shi (2015) has modelled the 

uncertainties of overlay analysis and buffer analysis to control 
the uncertainty propagation of spatial data during spatial 
analysis.  

The disjunction of the uncertainty research with user 
requirement and practical application has now become one of 
the major problems which demands great emphasis (Devillers et 
al., 2010). The phenomena is partly generated by the deficiency 
of uncertainty research on the whole process from data 
acquisition and preparation, spatial analysis operation and 
results display from the perspective of certain application. The 
comprehension of the nature of the problem should get done 
before any best possible solutions are promoted. (Devillers et al., 
2010). 

1.2   The deficiency of reliability assessment on the 
application of GIS in planning 

As the most important and fundamental information processing 
platform for digital planning, the application of GIS in planning 
lacks the consideration of uncertainty. The application of the 
ArcGIS has brought about innovation into the quantitative 
analysis of planning, causing huge impact to the traditional 
manner. The underlying assumption for the extensive 
application of GIS is that there is a positive correlation between 
the data processing capability and information availability on 
one hand and the quality of planning on the other (Malczewski, 
2004). Due to the spatiotemporal complexity of the city system 
and the knowledge deficiency of planners towards the scientific 
principles of the methods and tools, the application of the 
spatial analysis is generally over-simplified without a 
reasonable consideration of uncertainty. Some sociologists even 
doubt the function of the technologies in planning and decision-
making, arguing that planning involves a wide range of 
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“untangle” activities such as advice giving, storytelling, myths, 
and other metaphors and rhetorical devices (Klosterman, 2001). 
The untangled activities are critical for the best balance and the 
optimal benefits of planning. The pure dependence of the 
information technology might bring about negative impact on 
the equity, accuracy and quality of real life (Malczewski, 2004).  
 
1.3   The overview of the GIS based land suitability 
assessment uncertainty 

Uncertainty has been considered in land suitability assessment, 
yet still insufficient especially in the field of planning. Land 
suitability assessment is an approach planners employ to 
identify the most appropriate spatial pattern for future land 
allocation according to specify requirements and preferences 
(Hopkins, 1977; Collins et al., 2001; Malczewski, 2004). The 
GIS-based land suitability assessment can be traced back to the 
applications of hand-drawn overlay techniques used by 
American landscape architects in the late 19th and early 20th 
(Collins et al., 2001). The spatial weighted overlay analysis is 
regarded as the most significant application of GIS in planning 
and management (Hopkins, 1977; Brail and Klosterman, 2001; 
Collins et al., 2001; Malczewski, 2004). With the continuous 
promotion of the multiple-planning integration, land suitability 
assessment will exert a much more scientific and fundamental 
role on the multiple planning projects. The land suitability 
assessment procedure in planning generally employs the 
multiple criteria decision-making (MCDM) method. The flow 
chart along with the possible uncertainties is presented in Fig.1.  
 

 
Figure 1. The flow chart of the land suitability assessment 

procedure in planning 

 
The error in data and the discrepancy of methods can inevitably 
lead to uncertainty of the final suitability result and further 
decision-making (Hu et al., 2007a). In this regard, uncertainty 
exists in data preparation, index standardization, weights 
determination and result visualization. Research has been done 
on the uncertainties of land suitability assessment and 
ecological sensitivity assessment. For instance, the uncertainties 
of the DEM resolution, interpolation method and scale effect of 
terrain description (GAO, 1997; Tang et al., 2003; Chen et al., 
2005; Shi, 2015), index standardization (Bolliger and 
Mladenoff, 2005; Zhou et al., 2007; Zhang et al., 2010), weight 
determination (Hu et al., 2007b; Liu et al., 2012; Zhuo, 2012) 
and result classification and visualization (Hu et al., 2007a). 

Some experts focus on the uncertainty analysis of the whole 
process of land assessment (Hu et al., 2007a; Yu, 2010). 
However, this macro perspective neglects the specificity of 
planning and the custom of planners, making it difficult to make 
an anticipative difference in the actual application. The 
ignorance of uncertainty will undoubtedly exert negative impact 
on the scientific nature and accuracy of the later planning. The 
uncertainty might gradually enlarge as the planning procedure 
advances, resulting in the frequent modification of planning 
schemes, illegal land use phenomena and ecological 
environment deterioration. 
 
The paper establishes a framework of the GIS based land 
suitability assessment uncertainty research, ranging from index 
system establishment (the uncertainties of the data itself, the 
discretization of continuous raster data, index weight 
determination), to the classification of the final result.  
 

2.   THE UNCERTAINTY OF THE INDEX SYSTEM 

2.1   The uncertainty of index data 

2.1.1   The uncertainty of raw data: Due to the inherent 
uncertainty of the external world which is a complex, 
multidimensional and nonlinear system, the knowledge 
limitation, the measurement inaccuracy and the error 
propagation during data processing and analysis (Hu et al., 
2007a; Longley et al., 2011; Shi, 2015), the data collected for 
the land suitability assessment possess certain uncertainty.  
 
The reliability of the assessment result depends on the data 
quality and the depth of the land and land-use related 
knowledge (Rossiter, 1996). Land suitability assessment is a 
comprehensive multiple criteria analysis involving the 
consideration of soil condition, hydrology, meteorology, 
geology, humanities, etc. The reliability of these data demands 
emphasis. For instance, the elevation, slope and aspect data 
derived from DEM are generally used in land suitability 
assessment to characterize topographical features, while the 
reliability of DEM to represent spatial information is affected 
by the original sampling and the interpolation method applied to 
generate it (Shi, 2015). 
 
2.1.2   The uncertainty of applying raster data as the 
assessment object: The raster data model has traditionally been 
regarded as the more appropriate approach for land-use 
suitability applications as the raster data structure is area-
oriented (Malczewski, 2004). However, uncertainty exists on 
applying raster data to represent spatial information, such as the 
uncertainty to explain attribute value and identifying the 
location of a set-point (Wang and Du, 2007).  
 
Accuracy loss is also unavoidable during the conversion from 
vector to raster. Some of the vector data collected for the land 
suitability assessment like social and economic data and land 
use data need to be converted to raster for the spatial overlay 
analysis. The spatial resolution of the raster data model is 
determined by the size of the grid cell. In consequence, the 
adoption of large gird cells may risk losing the accurate location 
of the spatial element, while small ones can avoid the problem 
but may increase the overall grid cells and extend the data 
processing time (Liu, 2005). Users generally choose different 
analysis scales according to their specific application 
requirements, thus the loss of accuracy differs from one another. 
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2.2   The uncertainty on the discretization of continuous 
raster data 

The discretization of continuous features can result in the loss of 
the spatial distribution of a feature (Bolliger et al., 2005). In 
terms of land suitability assessment, continuous features like 
elevation, slope and aspect are required to be discretized into 
single-feature classification for the raster weighted overlay in 
land suitability assessment. However, the information loss of 
the process is generally ignored by planners. Take slope as an 
example, planners generally divide slope into five categories: 
0°-5° as the most suitable, 5°-8° as suitable, 8°-15°as 
marginally suitable, 15°-25° as not suitable, those greater than 
25° as the least suitable. Among them, 8.01° and 14.99° belong 
to the same level although they differ a lot form each other. 
While 7.99° and 8.01° belong to two different levels even the 
gap is pretty small (Zhou et al., 2007; Liu et al., 2012). 
 
There are many approaches to explore the uncertainties of 
continuous raster data discretization, such as grey system 
method, rough sets and fuzzy mathematics. Zhou et al. (2007) 
adopted grey system to reduce the uncertainty. He pointed out 
that sampling should be as balanced as possible and the original 
data should be standardized before calculating the correlation 
coefficient. The research of the information loss from the 
continuous numeric features discretization also roots in the 
simple application of machine learning methods such as rough 
sets. Hu et al. (2008) constructed a numeric feature selection 
algorithm based on neighborhood rough set model to directly 
deal with the numeric attribute, saving the process of 
discretization. To solve the uncertainty, some experts apply the 
membership function in fuzzy mathematics to describe the 
degree of continuous data association (Zhang et al., 2010; 
Bolliger et al., 2005). Fuzzy sets are usually combined with 
MCDM in the field of suitable analysis. Corona et al. (2008) 
combined fuzzy sets and the weight linear combination in 
multiple criteria methods to conduct the land suitability 
assessment in south Italy, the result applied rational number 0 
and 1 to represent the suitability grades, 0 as not suitable, 1 as 
very suitable. However, problem exists as how to accurately 
determine the membership function in fuzzy logic method. The 
determination has certain subjectivity because the cognition and 
understanding of the same fuzzy concept differs from one 
another. Some research amended the model to solve the 
problem and achieved higher reliability. Experts applied the 
cloud model to represent the fuzziness of quantitative data 
based on the randomness of the membership function (Hu et al., 
2007b; Fan et al., 2008). Cloud model is a quality-quantity 
interchangeable model combining traditional fuzzy mathematics 
and probability statistics. It integrates fuzziness and randomness 
to realize the conversion between qualitative concept and 
quantitative value (Hu et al., 2007b). Zhou et al. (2014) applied 
normal cloud model to achieve the uncertainty mapping of the 
evaluation indexes on ecological risk grades. Randomness and 
fuzziness of index quantization and level division were 
considered to acquire a more objective result. As to the multiple 
features of the indexes which conclude continuous-value, 
discrete-value and nominal-value, Hu et al. (2005) proposed a 
neural network based method to extract fuzzy rules for multiple 
features. Classification rules can be trained and acquired 
through land samples. Liu et al. (2004) established a fuzzy 
neural network which could enable the membership function 
and rule sets to adjust adaptively. 
 

2.3   The uncertainty of index weight determination 

The land suitability assessment is comprehensively affected by 
objective laws also the development priorities of the region, 
making the determination of the index weights intractable and 
complicated. Research on the uncertainty of the index weight 
determination is abundant. Hu et al. (2006) presented a method 
integrating subjective and objective information to determine 
the final index weights. The method applies an improved Delphi 
method to acquire the subjective weights, and an improved 
correlation analysis method for objective weights. Huang et al. 
(2007) indicated the defects of the comprehensive assessment 
methods generally applied like Analytic Hierarchy Process 
(AHP), fuzzy comprehensive method and Neural Network 
based method. He argued that these methods can only offer a 
comprehensive assessment result without a certainty 
measurement. They are unable to deal with the unknown factors 
as well. He thus promoted a comprehensive assessment method 
based on the D-S evidence theory, which is able to manage two 
different kinds of uncertainty (inconsistency and non-
specificity) compared to Probability Theory which can only 
manage randomness. Zhuo (2012) adopted the entropy method 
to calculate weights. Some research applies variable coefficient 
to expand the internal differences in weights so as to increase 
the differentiation among the classes (Liu et al., 2012). On the 
whole, the methods can be divided into subjective weighting 
method (Delphi method, grey conjunction analysis, AHP, etc.) 
and objective weighting method (mean square deviation 
algorithm, range method, entropy method, etc.) (Guo, 2002) 
.Subjective weighting method means hiring experts who possess 
land knowledge to grade the indexes and then calculate the 
weights, while objective weighting method implies the adoption 
of mathematical theory and method to calculate the weights 
from observation data. One of the prior works for land 
suitability assessment is to integrate the merits of the two 
methods and overcome their demerits, such as the fuzziness and 
randomness of experts’ understanding towards the indexes and 
weights, also the over-emphasis on quantitative method while 
ignoring the subjective attitude of decision-makers (Hu et al., 
2007a).  
 

3.   THE UNCERTAINTY OF THE ASSESSMENT 
RESULT CLASSIFICATION 

As the final step of the land suitability assessment, the raster 
weighted overlay analysis is critical as the result acts as a bridge 
between mappers to decision-makers. Uncertainty in inherent in 
map classification and can generate an unreliable spatial pattern. 
However, uncertainty is largely ignored in choropleth mapping 
(Koo et al., 2017). The classed map is a medium that displays 
the specific land suitability conditions of a region to urban 
planners, public officials and also the public. Neglecting the 
uncertainty of the classification will definitely impact the 
accuracy of the assessment, leading to decision risk. 
 
3.1   The uncertainty of choropleth map classification 

Maps construct a communication channel between mappers and 
users (Mark, 1974; Jenks and Caspall, 1971), making the 
reliability of the map significant especially when the map is 
produced to help explore spatial data or construct spatial 
knowledge (Xiao et al., 2007). Harvey (1970) considers 
classification as “perhaps the basic procedure by which we 
impose some sort of order and coherence upon the vast inflow 
of information from the real world”. However, important 
information might risk being lost during the communication if 
the map is badly prepared (Jenks and Caspall, 1971;Traun and 
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Loidl, 2012). The acceptance of the misclassification level of a 
map is determined by the purpose of the map (Xiao et al., 
2007). As a result, the production of a choropleth map must put 
great emphasis on the application purpose and the 
corresponding users (Mark, 1974). Some papers focus on the 
uncertainty of the choropleth map classification and related 
solutions are proposed (Jenks and Caspall, 1971; Xiao et al., 
2007). It is certain that data inaccuracy and the error 
propagation during information processing can bring doubt into 
the reliability of the classification.  
 
The reliability of GIS tools demands emphasis as well. The 
process of spatial analysis follows a series of well-defined 
stages: problem formulation, planning, data gathering, 
exploratory analysis hypothesis formulation, modeling and 
testing, consultation and review, etc. However, GIS related 
software tools only address the middle sections of the process. 
Besides, GIS software places almost no constraints upon a 
user’s selection of classification method although classification 
should be interpreted in terms of purpose as well as method 
(Smith et al., 2015). As a result, some resulting maps might fail 
to properly reflect data-inherent patterns and a part of which 
might even indicate spatial configurations that have no reliable 
statistical or contextual logic (Maceachren and Ganter, 1990).  
 
Uncertainty also exists during the final classification of the land 
suitability assessment result. Multiple factors influence the 
certainty of the classification, such as data type, class numbers, 
intervals and the autocorrelation of the spatial data (Slocum et 
al., 2005; Traun and Loidl, 2012; Smith et al., 2015). Planners 
ought to avoid the pure application of the software and select 
the most suitable classification method according to the data 
feature and the actual demand of planning. 
 
3.2    The uncertainty of data classification based on 
ArcGIS 

3.2.1   The various methods for data classification based 
on ArcGIS: ArcGIS provides a variety of classification 
methods for raster data, including manual, equal interval, 
defined interval, quantile, natural breaks, geometrical interval 
and standard deviation. A brief introduction of the methods can 
be checked in table 1 (ESRI, 2014). 
 

Methods Description/application 

Manual  

The analyst allows users to define their own 
classes, they can manually add class breaks 
and set class ranges that are appropriate for 
their data.  

Equal 
interval 

Equal interval divides the range of attribute 
values into equal-sized subranges. It is best 
applied to familiar data ranges, such as 
percentages and temperature.  

Defined 
interval 

Defined interval allows users to specify an 
interval size used to define a series of classes 
with the same value range. ArcMap will 
determine the number of classes based on the 
interval size and the range of all field values. 

Quantile 

Each class contains an equal number of 
features. The method is well suited to linearly 
distributed data. Quantile assigns the same 
number of data values to each class.  

Natural 
breaks 

Classes are based on natural groupings 
inherent in the data. Class breaks are 
identified that best group similar values and 
that maximize the differences between 

classes. It is data-specific classification and 
not useful for comparing multiple maps built 
from different underlying information. 

Geometrical 
interval 

The method scheme creates class breaks 
based on class intervals that have a 
geometrical series. This algorithm was 
specifically designed to accommodate 
continuous data. 

Standard 
deviation 

The Standard deviation classification method 
shows users how much a feature's attribute 
value varies from the mean. ArcMap 
calculates the mean and standard deviation.  

Table 1. A brief introduction of classification methods provided 
by ArcGIS. (The content is derived from ArcGIS 10.2 Help: 

Classifying Numerical Fields for Graduated Symbology.) 

 
The difference among the classification methods for univariate 
analysis is remarkable (Chang,1978; Brewer and Pickle, 2002). 
The paper takes the land suitability assessment result of 
Shennongjia Forest District in China to demonstrate the various 
methods provided by ArcGIS. Equal interval, quantile, natural 
breaks and geometrical interval allow users to define the class 
numbers. The paper divides the raster data into 5 classes 
according to the research conclusion suggested in 3.3.1. Fig 2 
shows that the results vary a lot from each other although they 
apply the same raster data into the same numbers of classes. 
Defined interval and standard deviation automatically determine 
the number of classes as 6 (Fig 3). The classification results 
differ from each other as well. 

 
Figure 2. The 5-class land suitability maps of Shennongjia 

Forest District using (a) Equal interval, (b) Quantile, (c) Natural 
breaks, (d) Geometrical interval 

 

 
Figure 3. The 6-class land suitability maps of Shennongjia 

Forest District using (a) Defined interval, (b) Standard deviation 

 
As demonstrated above, the application of different methods 
may lead to distinct results, making the selection of methods 
critical. To comprehend the theory and applicability behind the 
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methods is essential. The natural breaks (Jenks) is broadly used 
by planners as a default priority for the classification of raster 
data (Claggett et al., 2004; Ren, 2012; Chen et al., 2013; Luo, 
2016). The next part will explore the applicability of the method 
in land suitability assessment.  
 
3.2.2   The applicability of the natural breaks (Jenks): The 
natural breaks method in ArcGIS refers to a classification 
method for choropleth map put forward by Jenks (Jenks and 
Caspall, 1971; Jenks, 1977). The method is equivalent to 
unconstrained clustering (Fisher, 1958). Breaks which are 
selected to separate values where large changes in value occur 
are typically uneven. The result can be significantly affected by 
the number of classes (Smith et al., 2015). The method is 
extensively applied in GIS packages such as ArcGIS (Dent, 
1999; Koo et al., 2017). 
 
Jenks Natural Breaks algorithm (Smith et al., 2015): 
“Step 1: The user selects the attribute, x, to be classified and 
specifies the number of classes required, k; 
Step 2: A set of k-1 random or uniform values are generated in 
the range [min{x}, max{x}]. These are used as initial class 
boundaries; 
Step 3: The mean values for each initial class are computed and 
the sum of squared deviations of class members from the mean 
values is computed. The total sum of squared deviations (TSSD) 
is recorded; 
Step 4: Individual values in each class are then systematically 
assigned to adjacent classes by adjusting the class boundaries to 
see if the TSSD can be reduced. This is an iterative process, 
which ends when improvement in TSSD falls below a threshold 
level, i.e. when the within class variance is as small as possible 
and between class variance is as large as possible. True 
optimization is not assured. The entire process can be optionally 
repeated from Step 1 or 2 and TSSD values compared.” 
 
Although the natural breaks (Jenks) method has been broadly 
applied in univariate classification, its applicability in the land 
suitability assessment in planning still requires verification. 
Research has shown that the method considers only variances 
among attribute estimates while ignoring their uncertainties 
(Jenks, 1977; Koo et al., 2017). According to the development 
and application of the natural breaks (Jenks) method besides the 
field of suitability assessment, it is generally applied to the 
classification of some initial data based on their patterns, such 
as mortality map (Brewer and Pickle, 2002), population density 
map (Xiao et al., 2007), rainfall map (Golian et al., 2010), 
median household income map (Koo et al., 2017). The land 
suitability assessment is a comprehensive analysis which covers 
index standardization, weight determination and raster weighted 
overlay before the final classification procedure, making the 
final classification much more complicated than the applications 
mentioned above. The accomplishment of the former 
procedures actually delivers some kind of expectation to the 
final result. However, the adoption of the natural breaks (Jenks) 
method will risk ignoring the expectation while purely focus on 
the pattern of the data itself.  
 
Besides, ESRI (2014) indicates that “natural breaks are data-
specific classifications and not useful for comparing multiple 
maps built from different underlying information”. In terms of 
land suitability assessment, the assessment rule of different 
regions should not differ two much from each other as planning 
site selection follows certain universal law despite of the 
peculiarity of a region. As a result, the adoption of the natural 
breaks (Jenks) method might end up distinct difference between 
the land suitability levels of the same region from two different 

scales of analysis. The paper applies the natural breaks (Jenks) 
in a town named Songbai inside Shennongjia Forest District 
from the forest district scale and the town scale. The results 
differ a lot from each other, especially in the low level where 
the difference in area percentage reach up to 12.2% (Fig 4, 
Table 2). 

 
Figure 4. Two land suitability maps of Songbai Town. (a) 
Shennongjia Forest District scale, (b) Songbai Town scale 

 

Classes Forest District 
scale (%) 

Town scale 
(%) D-value 

Very low 5.2 5.2  0 
Low 10.8 23.0 -12.2 
Medium 35.1 31.4 3.7 
High 30.2 27.0  3.2 
Very high 18.7 13.4 5.3 
Table 2. The area percentage of the 5 land suitability classes 

from Shennongjia Forest District scale and Songbai Town scale 

 
3.3   The uncertainty of the assessment result classification 

3.3.1   The number of classes: The selection of different 
numbers of class will definitely leads to different result (Jenks 
and Caspall, 1971; Slocum et al., 2005; Traun and Loidl, 2012; 
Smith et al., 2015). As to the land suitability assessment in 
planning, there is no uniform standard for the numbers of class. 
The current existing class numbers including 3 classes (Corona, 
2008; Liu et al., 2012; Ren, 2012), 4 classes (Chen et al., 1999; 
Chen et al., 2010) and 5 classes (Zhou et al., 2007; Zhuo, 2012). 
Research indicates that the number of breaks should be an odd 
value as even number of classes misses a central class. With a 
number of classes less than 4 or 5 the level of detail obtained 
may be too limited while more than 9 classes makes it difficult 
to distinguish key differences between zones (Smith et al., 
2015). Integrating actual applications with expert advice, the 
paper applies 5 classes for the demonstration. 
 
3.3.2   The location of intervals: The location of the intervals 
co-determined by the class number and classification method is 
also critical. Robinson (1960) claimed the selection of intervals 
as the most important problem. Research suggests that class 
breaks should be located at “critical” values derived from field 
observations or a particular known or unknown bias held by the 
map-maker (Jones, 1930). Various methods are applied for the 
classification of the land suitability assessment besides those 
provided by ArcGIS, such as the combination of limiting 
conditions with weighted index method (Chen et al., 1999), and 
machine learning methods like neural network (Jiao, 2004; Hu 
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et al., 2005), K-Means clustering (Zhou et al., 2007) and ant 
colony optimization (Yu, 2010). The main challenge is to 
integrate the expectation delivered from the former procedures 
and the specific pattern of the data to achieve a better result.  
 
3.3.3   The spatial autocorrelation of geographical data: 
Almost all geographical data possesses the nature of 
autocorrelation while it is commonly ignored as the 
classification for choropleth maps is generally based on non-
spatial attribute values (Traun and Loidl, 2012). According to 
Tobler’s first law of geography (Tobler, 1970), attribute values 
that are close in space tend to have similar values and are more 
likely to fall into the same class interval (Mak and Coulson, 
1991). Research has revealed that land-use spatial data follow 
the first law of geography and possess certain autocorrelation 
(Xie et al., 2006; Qiu et al., 2007; Gao et al., 2010). To ensure 
the accuracy of the land suitability assessment analysis, the data 
acquired should be as precise as possible. Elevation and slope 
data derived from DEM ought to get a resolution as high as 
possible. Consequently, the final result of the assessment might 
end up being too trivial in some areas (Fig 5), leaving erratic 
“islands” within a certain class just because the grid value falls 
slightly above or below the class interval. Traun and Loidl 
(2012) concluded the current spatially aware classification 
methods and their possibility of improvement. They also 
presented a new approach named “Regioclassification”, which 
adapts to the degree of spatial autocorrelation in data through 
the combination of the Moran’s I scatter plot with the Fisher–
Jenks algorithm. According to the research, the classifications 
for spatially autocorrelated data utilizing “Regioclassification” 
are visually less complex than those employing non-spatial 
classification approaches. The method can be further explored 
for classification of land suitability.  

 
Figure 5. The erratic “islands” in the land suitability map of 

Shennongjia Forest District 
 

4.   CONCLUSION AND DISCUSSION 

Specific to the MCDM planners generally adopt for land 
suitability assessment, the paper discusses the uncertainties of 
the index system establishment (the uncertainties of the data 
itself, the discretization of continuous raster data, index weight 
determination) and the classification of the final result. Further 
research can be carried out on the uncertainty of index selection, 
the quantization of the uncertainty in each link and the 
uncertainty propagation during the whole process. The 

comparison between MCDM and the arising artificial 
intelligence (AI) approach should as well be considered.  
  
The applicability of machine learning methods like neural 
network and K-means in classification also demands further 
investigation. As discussed above, land suitability assessment is 
much more comprehensive and complicated than pure data 
classification and clustering. Thus, machine learning methods 
ought to be modified to integrate the expectation delivered from 
the former procedures and the specific pattern of the data to 
achieve a better classification result. Planning possesses high 
spatiotemporal complexity as a particular application field of 
spatial data and spatial analysis. The information technology 
application in this field should integrate this complexity with 
the actual demand so as to guarantee the equity and accuracy of 
the analysis, so should the research of the land suitability 
assessment uncertainty. 
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