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ABSTRACT: 

Hyperspectral imaging system can obtain spectral and spatial information simultaneously with bandwidth to the level 

of 10 nm or even less. Therefore, hyperspectral remote sensing has the ability to detect some kinds of objects which 

can not be detected in wide-band remote sensing, making it becoming one of the hottest spots in remote sensing. In 

this study, under conditions with a fuzzy set of full constraints, Normalized Multi-Endmember Decomposition 

Method (NMEDM) for vegetation, water, and soil was proposed to reconstruct hyperspectral data using a large 

number of high-quality multispectral data and auxiliary spectral library data. This study considered spatial and 

temporal variation and decreased the calculation time required to reconstruct the hyper-spectral data. The results of 

spectral reconstruction based on NMEDM showed that the reconstructed data has good qualities and certain 

applications, which makes it possible to carry out spectral features identification. This method also extends the 

application of depth and breadth of remote sensing data, helping to explore the law between multispectral and 

hyperspectral data.  

1. INTRODUCTION

Hyperspectral remote sensing is widely used for 

ground exploration, hydrology, meteorology, 

oceanography, geology, and other aspects of forest 

research (Hunt, 1979). Unfortunately, there are 

relatively few hyper-spectral sensors among the civil 

satellites in orbit, and it is difficult and expensive to 

acquire hyper-spectral data for a region of interest 

(Tong Q-X, et al., 2006). There is a conflict between 

spatial and spectral resolution due to energy 

conservation, so hyper-spectral imaging tends to have 

lower spatial resolution over the actual course of a 

study. It is very difficult to calibrate tens of thousands 

of sensing elements, resulting in images that have a 

large number of bad lines, and most bands exist to 

varying degrees in many stripes. In addition, 

hyperspectral sensors experience significant 

performance degradation within a short time. These 

problems severely restrict use of hyper-spectral data 

(Chen Y-Y, 2008). In recent decades, high-quality 

multispectral data has become available, but has not 

been fully used. Multi-spectral sensors have a relatively 

stable spectrum performance through continuous 

scaling and can provide long-term reliable 

multispectral data. 

In this paper, we developed a reconstruction method 

 Corresponding author

based on hyperspectral imaging and spectroscopy 

between multi-spectral and hyper-spectral images that 

can effectively overcome the shortcomings discussed 

above. Hyperspectral reconstruction based on a multi-

spectral sensor can: (1) analyze the physical nature of 

the process of hyperspectral imaging and solve a mixed 

reconstruction of the dual relationship (Zhang L-F, 

2005); (2) provide mixed pixel un-mixing reverse 

means; (3) use strong stability of a multi-parameter 

spectrometer to determine why hyper-spectral sensor 

parameters are easily degraded in the process; (4) 

determines the association between hyper-spectral and 

multi-spectral data; and (5) obtains high-quality hyper-

spectral data in the absence of real data and with 

incomplete knowledge of the ground. In addition, 

reconstructed hyperspectral image data can be a useful 

supplement to existing data, and synthetic 

hyperspectral, making it conducive to feature analysis 

and detection (Valero et al., 2007; Heikkinen et al., 

2007)  

The focus of this paper was the reconstruction of hyper-

spectral image data under the conditions of a fuzzy set 

(FS) of full constraints and normalized multi-

endmember spectral decomposition. We used the 

inverse process of unmixing to understand the nature of 

hyper-spectral imaging, based on the theory of the 

Normalized Multiple Endmember Decomposition 
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(NMED) and FS operations. Starting from the multi-

spectral image and spectral characteristics, through 

normalized multi-endmember decomposition the 

conditions of FSs were fully constrained, using the dual 

relationship of unmixing – reconstruction, to 

reconstruct the continuous spectrum curve. This 

expanded the spectral range and depth of mining for 

spectral information. Spectral reconstruction was 

undertaken with several classes of endmember using a 

representative and universal spectral library. On the 

basis of accurate unmixing, we considered the subtle 

temporal and spatial variations of endmembers, while 

at the same time improving the efficiency and 

reconstructing hyper-spectral data. This made it 

possible to obtain a continuous spectral reflectance 

from the multispectral image. 

 

2. METHOD AND MATERIALS 

 

2.1 Method 

 

In the spectrum reconstruction model, it was assumed 

that each incident photon affected only a single pixel 

component ( Chen Y-Y, 2008; Imai et al., 2000). A 

signal (R) consisting of mixed pixels can be a pure 

spectral component signal and the spectral weights 

(weights determined by the sub-pixel coverage) (Zhang 

L-F, 2005; Liu S-H, 2013; Luo B, 2010; Foppa et al., 

2007) are described as follows. A multispectral image 

feature extraction spectrum can be expressed as the 

spectrum shape. The spectrum can be expressed as a 

linear combination of several kinds of standard spectral 

patterns and residual items: 

 

1 1 2 2 n nR= f e + f e + + f e +r…   (1) 

where R is the reflectivity of a pixel 

1 2e ,e ,…， ne  are different components of 

an actual scene, index is the number of endmembers 

f is coverage, 

r is residual error 

The multi-spectral sensor can be presented as: 

 

M M MR e f r             (2) 

where M is the multi-spectral sensor. Endmember 

composition and their abundance ratio did not change 

in the hybrid scenario, and we obtained the coverage 

f  through the FS operations.  

 

As long as we replaced 
Me with

He , which was 

previously found by multiport decomposition in 

spectral libraries, we could obtain hyperspectral data 

that required reconstruction： 

 

H H HR e f r           (3) 

where H represents the hyper-spectral sensor 

HR is reconstructed hyper-spectral data 

 

2.2 Materials 

 

We reconstructed hyperspectral data from multi-

spectral data. In terms of the quality and accessibility 

of hyperspectral data the choice is quite limited, but in 

this study we used Hyperion data. In contrast, there is 

a lot of data that can be used for multispectral data. To 

make the reconstruction as accurate as possible, we 

needed to consider multispectral and hyperspectral 

imaging data together as closely as possible. For this 

reason, we used Advanced Land Imager (ALI) multi-

spectral data, which is the same platform as the Earth 

Observing One (EO-1) mission. 

 

3. RESULTS AND DISCUSSION 

 

We separately extracted the soil and vegetation 

endmember spectrum from the spectral library of water, 

and these endmember spectra were averaged as a mixed 

spectrum. We then reconstructed the soil and 

vegetation endmember spectrum by the UPDM and 

FSME models, respectively, in addition to the 

reconstruction to remove the uncalibrated and vapor 

absorption bands. The simulated spectrum and original 

spectrum were subjected to a comparative analysis. 

Figure 1 shows that the results for (a) water, (b) soil and 

two pure endmembers by the two reconstruction 

methods were relatively close. For (c) vegetation, and 

(d) two mixed spectral features, the FSME simulation 

results were significantly better than the UPDM results.  

 

(a) 

 

(b)  

 
 (c) 

 
(d) 

Figure 1. Original spectra (gray) and The Unified 

Profile for DoDAF and MODAF (UPDM) 

reconstruction (blue) and Fuzzy Set Multi-Endmember 

(FSME) reconstruction (red): (a) water (b) soil (c) 

vegetation (d) mixture 
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Figure 2 shows a comparison of the corresponding 

residuals. Because water and soil has a low reflectivity, 

there is a very small difference between the two 

reconstruction methods. For the vegetation with higher 

reflectance spectra and the hybrid spectrum, the 

residual error plots clearly indicated that FSME 

produced better simulation results. In particular, it 

should be noticed in Figure 4 (c) that for the UPDM 

near 720 nm, the position of the red edge had large 

residuals, but for FSME there were better 

reconstruction results, which did not produce this 

phenomenon. 

(a) 

(b) 

(c) 

(d) 

Figure 2. Comparison of the residual errors of UPDM 

(blue) and FSME (red): (a) water  (b) soil  (c) 

vegetation  (d) mixture 

Considering the root mean square error (RMSE) of the 

two reconstructed models for water, vegetation, soil, 

and mixed spectra (Table 1), it can be seen that FSME 

was significantly better than the UPDM. For vegetation, 

the RMSE of FSME was only 0.0161, less than the 

RMSE of the UPDM of 0.0317. For water, the RMSE 

of the FSME was approximately 0, also better than the 

RMSE of the UPDM of 0.0021. For soil, the RMSE of 

the FSME was greater than the RMSE of the UPDM, 

reaching 0.0102.  

Table 1. Root mean square error (RMES) of the 

universal pattern decomposition method (UPDM) and 

Fuzzy Set Multi-Endmember (FSME) models 
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(f)           (g)           (h)          (i)           (j) 

Figure 3 False color composite image of a reconstructed hyper-spectral cube: composite bands 43 (854 nm), 24 

(659 nm), and 15 (569 nm). 

(a)~(j) are the following reconstructed products: EO1H1260432004281110PY，EO1H1260432003326110PZ，

EO1H1180242004154110KY，EO1H1190242001271111PP，EO1H1230392011316110KF，

EO1H1230402006226110KF，EO1H1210412009157110PX，EO1H1200402003211110KY，

EO1H1290312003244110KP，and EO1H1290312003228110KP 

For the reconstructed and original images, we choosed 

43 (854 nm), 24 (659 nm), and 15 (569 nm) composite 

false colors and 24 (659 nm), 15 (569 nm) and 7 (487 

nm) composite true colors. Figure 3 presents false color 

composite images of a reconstructed hyper-spectral 

cube. For synthetic images, we can see the analog 

images and the original images have no significant 

difference; the two images of color, texture, shape, and 

boundaries were basically the same, which clearly 

shows that the characteristics and information of the 

original image remain in the analog image. Visually, 

the analog image is brighter and more brilliant than the 

original image, mainly because the analog video taken 

directly from the measured spectrum simulation was 

less affected by atmospheric and instrument noise. For 

a further analysis of the details, we also compared the 

similarities of the original and the reconstructed images 

for a single band. We randomly selected 7 (487.8679 

nm), 43 (854.1786 nm), 52 (972.9932 nm), 68 

(1134.3796 nm), 81 (1265.5618 nm), and 147 

(2274.4175 nm) bands, and found that 6 bands were 

quite similar, with the gray texture information being 

better. For the 52 and 68 bands, the bad lines and bands 

of the reconstructed image were eliminated. Overall, 

the reconstructed image contrast ratio was also stronger. 

The main reason may be that the reconstructed image 

was less affected by the atmosphere. 

4. CONCLUSIONS

We propose a new reconstruction model-FSME, in 

which multispectral data is used to simulate hyper-

spectral data. This new model can be applied at the 

surface or using a portable spectrometer based on field 

or laboratory measurements of spectra obtained from a 

library or directly from the base of the spectrum image 

data. Only three end-members participated in the 

simulation and contributed to the spatial and temporal 

variability of endmembers in the simulation process. 

The results showed that our proposed reconstructed 

model was fully rational and the reconstructed image 

was considered to be good. Our conclusions are 

summarized as follows: 

(1) Reconstruction of spectrum can be achieved

according to the principles of science. The most

important material basis is the construction of a

spectral library. The ideal condition is to cover the

construction of different times and a variety of

typical spectral features in a spectral library on

Earth. However, due to differences in surface

features and imaging conditions, this is basically

impossible to achieve. There is also an issue

regarding the actual interference of the "synonyms

spectrum" of remote sensing with the “spectrum

foreign body" phenomenon.

(2) Another problem concerns scaling effects. The

remote sensing image resolution scale is

inconsistent with the observed spectral features,

which was not considered in the study. This

resulted in the study being disjointed, which also

affected the efficiency of the spectral library.

(3) The spectral reconstruction model determines the

physical principles of spectrum reconstruction and

realization. The material basis of the spectral

library reconstruction model is then the theoretic-

cally reconstructed physical spectrum. The

spectral reconstruction model used in this study

was a simple spectral model (SMA) based on the

inverse model. It mainly used the reverse process

solution mix for each pixel and, based on

thousands of spectra, an iterative spectral library

cycle determined endmember components and the

end Genpo of the optimal linear fit to obtain the

best reconstruction model. This model was simple

and easy to implement and, with respect to the use

of a standard spectrum (usually the average), the

presence of the same class endmembers in

different environments significantly improved the

accuracy of the reconstruction. Based on the

above, if the reconstruction error was too large, it
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may be due to the multiple scattering of a non-

linear reconstruction. However, it is clear that still 

not sufficient. The reconstruction range of the 

spectral reconstruction can span the entire optical 

remote sensing range (0.3 ~ 2.5 ) for different 

applications, such as a reconstruction of the 

vegetation of the spectrum, the various features of 

its green reflection peak, and the red absorption 

edge position. Valley performance is clearly not 

the same and the sensitivity of each band is also 

not the same. In our reconstruction model, all of 

the bands were reconstructed in the same way, and 

there was no difference between the features 

under consideration. 

(4) The reconstruction calculation is enormous. For

example, in a three endmember reconstruction, if

each class has a 100 endmember spectrum, the

entire computing process needs to be 100 × 100 × 

100 (i.e., 1,000,000) cycles to determine the

optimal reconstruction model. If an image is 1,000

× 1,000 pixels, it also needs 1,000,000 cycles of

calculation, which is clearly undesirable. There-

fore, the model must be optimized and candidate

reconstruction models must be screened for. As

mentioned in the previous section, we can select

the feature band or sensitive bands to reduce the

number of bands required for reconstruction,

thereby reducing the amount of data used in the

calculation. In addition, it is possible to optimize

the reconstruction of the model under different

conditions to reduce the number of loop iterations.

For such a large amount of computation, parallel

computing should be used to improve computa-

tional efficiency.

This study used a large amount of high-quality multi-

spectral data to reconstruct corresponding hyper-

spectral data. This reconstruction makes it possible to 

indirectly use the spectral waveform information from 

multispectral Earth observation data, with precise 

feature identification. This will expand the depth and 

breadth of applications of remote sensing data, and 

enable conversion of multi-spectral and hyper-spectral 

information. Spectral reconstruction is the reverse of 

the mixed pixel unmixing process, and is a novel 

procedure. In addition, the reconstruction of hyper-

spectral remote sensing data for various applications 

has many positive uses, such as designing systems, 

understanding the image forming process, and the 

development and validation of data processing 

algorithms. 
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