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ABSTRACT: 

The integration of computer vision and photogrammetry to generate three-dimensional (3D) information from images has 

contributed to a wider use of point clouds, for mapping purposes. Large-scale topographic map production requires 3D data with 

high precision and accuracy to represent the real conditions of the earth surface. Apart from LiDAR point clouds, the image-based 

matching is also believed to have the ability to generate reliable and detailed point clouds from multiple-view images. In order to 

examine and analyze possible fusion of LiDAR and image-based matching for large-scale detailed mapping purposes, point clouds 

are generated by Semi Global Matching (SGM) and by Structure from Motion (SfM). In order to conduct comprehensive and fair 

comparison, this study uses aerial photos and LiDAR data that were acquired at the same time. Qualitative and quantitative 

assessments have been applied to evaluate LiDAR and image-matching point clouds data in terms of visualization, geometric 

accuracy, and classification result. The comparison results conclude that LiDAR is the best data for large-scale mapping.  

* Corresponding author

1. INTRODUCTION

Faithful 3D reconstruction of urban environments represents a 

topic of great interest in photogrammetry, remote sensing and 

computer vision expertise, as it provides an important 

prerequisite for applications such as city modelling, scene 

interpretation or urban accessibility analysis (Weinmann and 

Jutzi, 2015). Several remote-sensing techniques and image-

based photogrammetric approaches allow an efficient 

generation of massive 3D point clouds of our physical 

environment. The efficient processing, analysis, exploration, 

and visualization of massive 3D point clouds constitute 

challenging tasks for applications, systems, and workflows in 

disciplines such as urban planning, environmental monitoring, 

disaster management, and homeland security (Richter, Behrens 

and Doellner, 2013). Progressive development in 3D point 

clouds creates various option to generate 3D point clouds data 

especially in the image-based matching construction. This 

attracts the map producer to use these as an alternative to 

accelerate the base map provision in efficient and effective way, 

compliant with the map standard. Fully automated image-based 

creation of dense point clouds with an elevation measurement at 

each pixel is nowadays feasible at low cost and makes the 

technology competitive with LiDAR-based surface 

measurements (Leberl et al., 2010).  

One of the advantages of image-based matching is its ability to 

encode the points with spectral RGB (Red, Green, and Blue) 

information, which is potentially useful to obtain a better 

classification. On the other hand, LiDAR data acquired from the 

Airborne Laser Scanning (ALS) system has many benefits with 

its capability to penetrate the dense canopies and produce 

accurate geometric 3D position of huge point datasets. This 

method also able to measure in the shadow areas where 

photogrammetric might difficult to observe. 

The combination of both photogrammetric and LiDAR data is 

considered to increase the usability and benefits with proper 

fusion or integration. As stated by Mishra and Zhang, (2012), a 

complete surface representation that is presenting both spectral 

and 3D coordinate information is important for many remote 

sensing applications, such as classification, feature extraction, 

building construction, canopy modelling, 3D city modelling etc. 

Much research has been done in photogrammetry, remote 

sensing and computer vision to find and further exploit the best 

fit of photogrammetric and LiDAR data integration.  

An accurate registration of LiDAR and optical image dataset 

remains an open problem due to their different characteristics 

(Mishra and Zhang, 2012). Fusion of optical images and 

LiDAR point clouds has been proposed, but the current state is 

still not satisfying in some applications (Zhang and Lin, 2016). 

The investigation into the use of aerial images and LiDAR data 

to detect building changes is carried on but has limitation to 

extract building boundaries due to the noise and uncertainties of 

photogrammetric point clouds (Du et al., 2016). Chiabrando et 

al. (2015) investigate the orthophoto generation from SfM and 

conclude that traditional digital photogrammetric technique was 

the best solution for a complete and accurate 3D survey. 

Therefore, it is necessary to examine point cloud characteristics 

in order to assess data quality and assure suitability for different 

3D applications.  

This study investigates the characteristics of different point 

clouds and identifies the advantages and limitations to help 
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readers selecting suitable methods for further 3D application, 

especially for large-scale mapping. By using different point 

clouds that have no time gap, this study is expected to resume a 

comprehensive, fair, and reliable comparison based on 

qualitative and quantitative analysis. 

2. STUDY AREA AND DATA DESCRIPTION 

2.1 Study Area 

The study area is located in Mataram City of Lombok Island of 

Indonesia. This area has urban-coastal characteristics and low-

flat topography. It covered an area about 430 meters by 1320 

meters or 56 ha. 

 

 

 

 
 

Figure 1. The study area, LiDAR data coverage, and the 

footprint of aerial photo frames 

 

2.2 Data Description 

The primary data in this study consist of aerial photos and a 

LiDAR point cloud. Both datasets were acquired by the same 

aircraft platform at the same time, on June 17, 2016. The 

datasets use WGS1984 as horizontal reference and EGM2008 

as the vertical datum. Further details of the datasets are 

described below: 

 

a. Aerial Photo 

Digital medium format aerial photos were taken by a 

Leica RCD30 instrument with a focal length of 53 

mm and combined with Exterior Parameters (EO) and 

pre-marking Ground Control Points (GCP) datasets. 

The RGB images size is 6732 x 9000 pixels and has 

15 cm ground sampling distance. The aerial photos 

were acquired with a minimum overlap of 60% and 

sidelap of 40%. Based on the independent check 

points measured by dual-frequency geodetic GPS, the 

horizontal geometric accuracy (CE90) of aerial photo 

is 0.406 meter and the vertical accuracy (LE90) is 

0.390 meter. 

b. LiDAR 

The total number of LiDAR point clouds in the study 

area is 6.392.505 points, acquired from Leica ALS70 

instrument. The LiDAR point cloud has a density of 

11 points per meters (ppm). The vertical accuracy of 

LiDAR point clouds data which measured from 70 

ground check points by using dual-frequencies 

geodetic GPS is 0.198 meter. 

 

 

3. GENERATION OF IMAGE-BASED MATCHING 

POINTS 

3.1 Image-based Matching Points using SfM Approach 

The process of estimating the 3D geometry (structure) and 

camera pose (motion) is commonly known as Structure from 

Motion (SfM). This algorithm can reconstruct a sparse 3D point 

cloud of large complex scenes from series of overlapping 

photos (Snavely et al., 2006). The SfM approach computes 

simultaneously both this relative projection geometry and a set 

of sparse 3D points. To do this, it extracts corresponding image 

features from a series of overlapping photographs captured by a 

camera moving around the scene (Verhoeven et al., 2013). 

SfM relies on algorithms that detect and describe local features 

for each image and then match those two-dimensional (2D) 

points throughout the multiple images. Using this set of 

matched points as input, SfM computes the position of those 

interest points in a local coordinate frame (also called model 

space) and produces a sparse 3D point clouds that represent the 

geometry or structure of the scene. As mentioned previously, 

the camera pose and internal camera parameters are retrieved 

also (Szeliski, 2011). Afterward, some details are given about 

the subsequent process, the multi-view stereo (MVS) is applied 

as the last stage by using the SfM result as an input to generate 

a dense 3D model (Verhoeven, 2013). 

 

 

Figure 2. The SfM-based point clouds generation workflow 

In this study, the SfM-based 3D point cloud generation uses the 

Agisoft Photoscan software. Once the pertinent photos are 

imported into chunks, the feature matching and photo alignment 

is started. At this stage, tie points are detected based on stable 

viewpoint and lighting variations and generates the descriptor 

based on its local neighbourhood. The descriptors are then used 

to aligning the overlapping photos. This algorithm is similar to 

the well-known SIFT (Scale-Invariant Feature Transform) 

algorithm (Agisoft Forum, 2011) in resulting a sparse point 

cloud. The next step is find the initial camera location and 

refine them by using bundle adjustment algorithm based on 

photos Interior Parameter (IO) and Exterior Parameter (EO). 

Finally, the dense image matching points are constructed based 

on multi view algorithm, as one of the used approach. The last 

step is texture mapping to perform a texture and assigning the 

RGB information. 

 

In this matching point generation process, there are two 

necessary conversions during the image-base matching process 
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because of the digital-frame airborne aerial photos data has its 

own calculated EO and IO. The first conversion is the EO 

parameter conversion, from omega phi kappa to roll pitch yaw. 

The second conversion is datum reference transformation from 

elipsoid to geoid since the Photoscan set the vertical reference 

in ellipsoid automatically.  

 

The SfM-based point cloud is improved by using Iterative 

Closest Points (ICP) algorithm to get a better alignment. ICP is 

conducted to minimize the position difference between two 

point clouds by estimating the transformation parameters 

iteratively with the assumption of the existence of a good a 

priori alignment (Gressin, Mallet, David, 2012). 

 

The SfM-based point clouds result has average point density 

25,01 points per meter square and produce 14.780.288 points in 

total within the study area. 

 

3.2  Image-based Matching Points using SGM Approach 

The Semi Global Matching (SGM) stereo method is based on 

the idea of pixel-wise matching cost (disparity) of Mutual 

Information (MI) for compensating the radiometric differences 

of input images and uses a smoothness constraint. Accurate and 

fast pixel-wise matching is done by optimizing the pathwise of a 

global cost function (Hirschmueller, 2008). The core algorithm 

of SGM aggregates the matching costs under consideration of 

smoothness constraints. The minimum aggregated cost leads to 

the disparity map for a stereo pair and subsequently to textured 

3D point clouds in object space (Nebiker et al., 2012). 

The large numbers of matches found in this way allow for the 

creation of very detailed 3D models. The SGM algorithm 

maintains sharper object boundaries than local methods and 

implements mutual information (MI) based matching instead of 

intensity based matching because it “is robust against many 

complex intensity transformations and even reflections” 

(Hirschmueller, 2005).  

The SGM-based matching points generation in this study is 

carried out by using XPro SGM of Erdas Imagine 

Photogrammetry. The threshold for disparity difference 

assigned in the process is 1 with the pyramid levels 0. The 

disparity threshold is the maximum blunder allowed when 

doing reverse matching. Thus, this study allowed the disparity 

difference for one pixel in maximum. The higher the disparities 

value, the more points will be generated but this may also 

increases noises. On the other hand, disparity threshold 0 means 

no difference is allowed and it will be harder to find the 

matched points. The pyramid is built to speed up the run time 

processing and faster display, thus this study uses the photos 

original resolution for the statistics calculation. Imagine 

Photogrammetry uses binomial interpolation (Kernel) algorithm. 

 

Figure 3. The SGM-based point clouds generation workflow 

The generated SGM-based point clouds result has an average 

point density 25,25 points per meter square. The total number 

of extracted 3D points in the study area is 14.923.383 points. 

The XPro SGM producing point clouds in each overlap areas of 

two photos and this study uses minimum overlap 50%. Thus, 

there are two point clouds file generated in this step that 

generated from the overlap of two photos in flight line 15 (or 

upper part photos) and flight line 16 (lower part photos). There 

are overlap points in both dataset and there are certain 

conditions where both point clouds dataset able to complement 

each other in filling voids or holes caused by shadows of high 

objects as shown in Figure 4. 

 

 
 

(a) Two stereo pair photos (b) Combination of two SGM-

based points 

  
(c) Point clouds from upper 

photos 

(c) Point clouds from lower 

photos 

Figure 4. The SGM point clouds result 

 

3.3 DEM Generation from Point Clouds 

Each of the image-based point clouds as well as the LiDAR 

point cloud is resampled into a raster DEM and then used as the 

basis of visual comparison and quantitative evaluation. The 

DEMs in this study are triangulated from each point clouds by 

using same parameter values and have 0,25 meter pixel size. 
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Figure 5. The DEM of SGM-based surface representation 

 

The hill-shaded DEM helps to visualized the surface, especially 

in detecting the possible noise in flat surfaces. Figure 5 shows 

that the integration of two SGM-based point cloud creates more 

noise especially in the planar surface. 

4. RESULT AND DISCUSSION 

This study uses qualitative and quantitative analysis to evaluate 

and compare the point cloud datasets. The qualitative analysis 

uses criteria such as the completeness, shape, sharpness, and 

flat-planes based on data visualization, while the quantitative 

approach uses geometric and classification accuracy criteria. 

The comparison of point clouds in this study uses LiDAR point 

cloud data as the reference. 

 

 LiDAR SfM-based SGM-based 

Total Points 6.392.505 14.780.288 14.923.383 

Point Density 11 25.01 25.25 

Table 1. Resume of the comparable point clouds 

 

4.1 Visualization 

Visualization is the easiest way to do general comparison and 

preliminary evaluation as well as to identify the problems. 

Moreover, some application still need human perspective point 

of view and visual interpretation in certain level or process 

phase, especially during quality control step. Thus, this study 

employs some criteria to make comparison of point clouds 

datasets based on their visualization.  

The image-base matching has a superior ability over LiDAR 

point cloud in providing a RGB information. Both image-based 

matching methods are able to generate RGB point clouds with 

exact colours as aerial photos, as shown in Figure 7A. 

 

 

 

 

 

 
(a) LiDAR 

 

 
(b) SfM-based point cloud 

 

 
(c) SGM-based point cloud 

Figure 6. The 3D visualization and profile of point clouds 

 

4.1.1 The 3D Profiles: A 3D profile and visualization of 

different point clouds shows definite differences in terms of 

point density, details, and noise. The 3D profile shows that 

LiDAR system is able to detect small and low vegetation and 

also the middle part of high trees. This may necessary for some 

applications but may also become disadvantages for some other 

applications, especially for trees or canopies modelling. Ground 

points are better constructed in LiDAR than in image-based 

matching data due to LiDAR ability penetrates dense vegetation. 
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The SfM-based has similar point density as SGM-based data, 

but the 3D profile shows that SfM-based yields more noise on a 

planar roof than SGM-based as shown in Figure 6.  

 

4.1.2 Completeness and Voids: In the study area, almost all 

of objects in the surface are constructed and presented in each 

of point clouds data except for some dense trees. Many voids or 

holes exist in the image-based matching point clouds due to 

dark shadow in the image or insufficient texture of object 

surfaces. The most significant different found in this study area 

is the absence of some dense trees in the SfM-based point 

clouds as shown in Figure 7B. The problems in constructing 

points of a high dense trees may failed due to positional 

changes in the corresponding images, because tree leafs are 

moved by the wind, which then also creates different spectral 

value and resulting zero key points during the SfM processing.  

 

In the study area, there are some small voids found on zinc-

metal building roof surface (Figure 7C) and SGM-based is 

likely producing more small voids on zinc-metal roofs than in 

SfM-based data. Metal surface has low texture and susceptible 

to sun angle. Different acquisition angles cause different 

reflectance value of metal surface in photos, which then leads to 

harder matching process. 

Moreover, there is an absence of points on very high buildings 

and the surroundings, such as towers. 

 

4.1.3 Flatness and Sharpness of Built Objects: The hill-

shaded DEMs generated from point cloud show LiDAR has 

better visualization in performing building roof edges. As seen 

in Figure 7D., the building roofs are looks smoother in LiDAR 

DEM than in image-based matching DEM data. 

 

 

 

 

1. Aerial Photo 2. LiDAR point cloud 3. SfM-based point cloud 4. SGM-based point cloud 

 

 

A 

    

 

 

B 

    

 

 

C 

        

 

 

D 

    

 Figure 7. Visual comparison of aerial photos, LiDAR, SfM-based, and SGM-based data point clouds 
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4.1.1 Peak Representations: The 3D visualization of point 

clouds as shown in Figure 8. is shows that the SfM-based points 

are able to detect a small peaks in the roof but have more noise 

in detecting the objects surface. On the other hand, the SGM-

based point cloud is not able to detect the small peak but it has 

less noise so that it has sharper edges and shapes especially in 

detecting the building roof surface. The LiDAR points are still 

the best for detecting the small high objects as well as the object 

details. 

 

 
(a) LiDAR 

 

 
(b) SfM-based point cloud 

 
(c) SGM-based point cloud 

Figure 8. 3D point cloud visualization of small sharp peak object 

 

4.2 Geometric Accuracy 

Evaluation of the geometric accuracy is carried out to define the 

relative position of each point cloud in comparison with LiDAR 

data in X, Y and Z position. The check points are assigned 

based on visibility and the sharpness of the object in the 

generated DEMs. The check points should also well-distributed 

and well-identified in all of DEM. There are 42 check points 

calculated and used within the study area. 

 

 

 

 

 

 

 

 
(a) Check point 

distribution 

 
(b) LiDAR check points 

 
(c)  SfM Check points 

 
(d)  SGM Check points 

Figure 9. Check-points placement for geometric accuracy 

assessment 

 

The geometric accuracy is calculated by adopting the US-

NMAS (United States National Map Accuracy Standards) 

formula as follows: 

Horizontal accuracy (CE90)  = 1,5175 x RMSEr 

Vertical accuracy (LE90)  = 1,6499 x RMSEz 

Where: 

RMSEr = Root Mean Square Error in x and y position 

RMSEz = Root Mean Square Error in z position 

 

The RMSE value is calculated from the X, Y, and Z position of 

each appointed check points on SfM, SGM, and LiDAR data.  

The result of relative vertical accuracy of SfM data achieves 

0.81 meters while the SGM is 0.62 meters. For the horizontal 

accuracy, the SfM data achieves 1.79 meters and the SGM is 

0.47 meters. 

 

4.3 Vertical Distance Differences 

The M3C2 technique allows rapid analysis of large point clouds 

with complex surfaces that span a range of surface orientations 

(Barnhart & Crosby, 2013).  

Lague et al. (2012) invented an accurate 3D comparison of 

complex topography. Once the normal is defined for the core 

point i, it is used to project i onto other cloud at scale D (called 

projection scale). This scale use to define the average positions 

i1 and i2 of each subset of points in the neighbourhood of i. 

This is done by defining a cylinder radius (d/2) whose axis goes 

through i and oriented along the normal vector N. The cylinder 

intercept two subsets of points of size S1 and S2. Projecting 

each of subsets on the axis of a cylinder gives two distributions 

of distances (with an origin i). The mean of the distribution 

gives the average position of the points subset along the normal 
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direction, i1 and i2, and two standard deviations give local 

estimation of the point cloud roughness σ1(d) and σ2(d) along 

the normal direction. If outliers are expected in the data (such as 

vegetation), i1 and i2 can be defined as the median of the 

distance distribution and the roughness is measured by the 

interquartile range. The local distance between the two clouds L 

is given by the distance between i1and i2. 

 
Figure 10. Illustration of M3C2 concept 

 

Averaging point cloud position is done by defining the core 

points within the cylinder. The core points are used to define 

points for the cylinder and it is where the distance calculation is 

started. It is necessary to define the minimum sampling distance 

and scale, since the approximate distance (L) between two point 

clouds is computed once core point is selected and find the 

nearest points in the cylinder. This study uses normal 

orientation in Z direction to measure the surface height 

differences. 

 

  
(a) SfM to LiDAR (b) SGM to LiDAR 

Figure 11. The M3C2 vertical distance of two point clouds 

 

The M3C2 distance provides the vertical difference range from 

negative to positive direction of image-based matching point to 

LiDAR point position. The negative direction means that height 

value in LiDAR is lower than in image-based matching point 

cloud, while the positive direction means that height value of 

LiDAR is higher than image-based matching. The M3C2 

distance, as shown Figure 11., is dominated by green colours 

which means that most of the vertical difference between two 

point clouds is near to zero. 

The highest vertical difference between SGM-based to LiDAR 

in negative direction is detected in the tower and surrounding 

area. LiDAR data able to construct tower point which has 

summit height of 48 meters while SGM is only able to detect 

tower points with 10 meters height. On the other hand, there is a 

void or hole exist in SfM-based distance since SfM failed to 

construct any point of the tower object and its surrounding area. 

Because a pointed tower is very high, it may looks leaning 

differently in some corresponding images due to object relief 

displacement. The image-based matching algorithm may unable 

to find corresponding pixel of a very high tower metal-made, 

which have significant differences in position, shape and colour. 

 

  
(a) LiDAR data (b) Aerial Photo 

  
(c) SfM-based point cloud (d) Distance SfM to 

LiDAR 

 
 

(e) SGM-based point cloud (f) Distance SGM to 

LiDAR 

Figure 12. The communication tower in LiDAR and the M3C2 

distance to image-based matching point 

 

The highest vertical distance of SGM in positive direction is 

found in the ground shadow areas of high buildings. In these 

areas, LiDAR point has lower elevation and it detects the 

ground accurately. In the same area, SfM is not able to produce 

the points. 

Mostly, a high difference in positive and negative direction for 

both image-based matching points happens in the shadow area 

under or near to the high dense trees. The high negative 

direction difference occurs because LiDAR points have lower 

elevation than image-based matching points due to LiDAR 

capabilities in penetrating to ground surface through dense 

canopies. Furthermore, the high differences in positive direction 

is mostly caused by insufficient texture information in black 

shadow areas, or higher disparities level that cause low 

confident level in image-based matching points.  

Another distance difference is found along the narrow dark 

shadowed street areas that are located between dense buildings. 

The higher M3C2 distance between LiDAR and image-based 

points is presented in yellow colour in Figure 13. This situation 

emphasizes that image-based matching has dependency on 

spectral and object texture to find corresponding pixels. 
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(a) Distance SfM to LiDAR (b) Distance SGM to LiDAR 

 
(c) Aerial photo 

Figure 13. The distance in narrow shadowed street 

 

4.4 Building Classification Accuracy 

Buildings belong to the most important objects to be presented 

in in maps. Thus, this study also examines the classification 

correctness of full resolution point clouds in order to have a 

broader comparison. For the classification accuracy assessment, 

the samples of polygon building roof are randomly chosen and 

delineated by manual/visual interpretation. Then, a building 

classification is carried out for all the point clouds datasets by 

applying the same planarity methods, parameters, and threshold 

(minimum height 30 cm, minimum building size 25 square 

meters and Z tolerance 40 cm). By selecting all of points 

located inside the polygons, the number of building points that 

correctly assigned as building and non-building is known. The 

result shows that all these point clouds has the same correctness 

percentage for building roof classification. 

 

 Point 

Clouds 

SGM SFM LiDAR 

Points % Points % Points % 

Roof 255903 76.07 202724 76.28 75171 76.69 

Not Roof 80498 23.93 63055 23.72 22847 23.31 

Total 336401 100% 265779 100% 98018 100% 

Table 1. Classification Result 

The classification assessment result shows that point density is 

not affecting very much the accuracy of point clouds 

classification. 

5. CONCLUSION AND RECOMMENDATION 

This study investigates the comparison of different point clouds. 

There are no time gaps between all the datasets. Understanding 

the characteristics of LiDAR and image-based matching point 

clouds should help many applications to select suitable methods, 

which meet their criteria and specification. We conclude that 

topographic base mapping production should preferably use 

LiDAR point cloud data because LiDAR has the capability to 

penetrate dense vegetation and produce ground points 

accurately. Image-based matching point clouds are considered 

an applicable, fast, and low-cost method for any application that 

does not require an absolute accuracy of terrain or ground 

surface, but instead use relative computation. For other 

applications such as mining, tree, forest, or other surface 

volumetric calculation, a priori knowledge of the project areas 

and its surrounding condition (vegetation type and density, 

urban type, etc) is necessary. Classification accuracy is not 

improved by using higher point density unless it augmented by 

RGB information. The building classification result proves that 

the image-based matching is able to produce stable planar 

points on the surface with tolerable noise. 

In terms of geometric position, significant differences exist 

between different methods. These geometric differences become 

a major obstacle for data fusion. Therefore, the objective to 

integrate the 3D positions of LiDAR and RGB value of image-

based matching point clouds accurately for large-scale mapping 

still needs to be studied further. 
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