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ABSTRACT:

Land cover classification has many applications like forest management, urban planning, land use change identification and environment
change analysis. The passive sensing of hyperspectral systems can be effective in describing the phenomenology of the observed area
over hundreds of (narrow) spectral bands. On the other hand, the active sensing of LiDAR (Light Detection and Ranging) systems
can be exploited for characterising topographical information of the area. As a result, the joint use of hyperspectral and LiDAR
data provides a source of complementary information, which can greatly assist in the classification of complex classes. In this study,
we fuse hyperspectral and LiDAR data for land cover classification. We do a pixel-wise classification on a disjoint set of training
and testing samples for five different classes. We propose a new feature combination by fusing features from both hyperspectral
and LiDAR, which achieves competent classification accuracy with low feature dimension, while the existing method requires high
dimensional feature vector to achieve similar classification result. Also, for the reduction of the dimension of the feature vector,
Principal Component Analysis (PCA) is used as it captures the variance of the samples with a limited number of Principal Components
(PCs). We tested our classification method using PCA applied on hyperspectral bands only and combined hyperspectral and LiDAR
features. Classification with support vector machine (SVM) and decision tree shows that our feature combination achieves better
classification accuracy compared to the existing feature combination, while keeping the similar number of PCs. The experimental
results also show that decision tree performs better than SVM and requires less execution time.

1. INTRODUCTION

The use of hyperspectral and Light detection and ranging (Li-
DAR) data for land cover classification and tree species classifica-
tion has been an active topic of research in recent years (Dalponte
et al., 2008; Matsuki et al., 2015; Man et al., 2014; Ghamisi et al.,
2015). Hyperspectral sensors capture hundreds of narrow bands
of the electromagnetic spectrum from visible to short-wave in-
frared wavelengths and provide detailed and continuous spectral
information of different objects. On the other hand, LiDAR has
been known as a vital method for characterizing vertical struc-
tures, including height and volume. As a result, the joint use of
hyperspectral and LiDAR data provides a source of complemen-
tary information, which can greatly assist in the classification of
complex land covers.

Land cover classification methods using the fusion of hyperspec-
tral and LiDAR data can be classified into three categories: pixel-
level, feature-level and decision level fusion (Priem and Can-
ters, 2016; Man et al., 2014). Pixel-level fusion is the lowest
level of image fusion which provides original information but is
vulnerable to noise and requires relatively long processing time.
Feature-level fusion extracts spatial features using object shape
and neighbourhood information, spectral and topographical fea-
tures by keeping sufficient information with a certain level of ac-
curacy. Decision level fusion is the highest level of fusion which
combines the classification results in classifier level.

Luo et al. (2016) performed land cover classification using hy-
perspectral and LiDAR data and classified seven different classes
including buildings, road, water bodies, forests, grassland, crop-
land and barren land. They applied pixel based fusion (also called
layer stacking) and Principle Component Analysis (PCA) on fused

hyperspectral and LiDAR features. The fusion was done on vary-
ing spatial resolutions, which helped to select the best performing
spatial resolution. In this framework, PCA was applied on com-
bined hyperspectral and LiDAR features cube ( all features from
both modalities applied on a cube), which was different from
most of the related work such as Khodadadzadeh et al. (2015)
where PCA was used on a single modality (hyperspectral). Man
et al. (2015) fused hyperspectral and LiDAR data for urban area
classification. Firstly, they used pixel-based fusion and classi-
fied land covers separately using support vector machine (SVM)
and maximum likelihood (MLC) classifiers. To improve the ac-
curacy they combined pixel and object-based classification. In
the object-based classification, they set some rules depending on
the shape and nature of the classes which were applicable for the
dataset that they used but it was not generalised for all the urban
areas. Morchhale et al. (2016) investigated classification from
the pixel-level fusion of hyperspectral and LiDAR data by ap-
plying convolutional neural networks (CNN). Their experimental
results proved that pixel-level fusion is an effective approach for
the classification using CNN. However, they ignored natural spa-
tial relationship among the nearby pixels.

Ghamisi et al. (2015) proposed an automatic method for fus-
ing hyperspectral and LiDAR data. They used attribute profile
(AP) for capturing spatial information both from hyperspectral
and LiDAR. For extracting spectral information from hyperspec-
tral data three different supervised feature extraction techniques
were used. All the extracted features from hyperspectral and Li-
DAR were fused into a stacked vector and classified by super-
vised SVM and Random tree classifiers. Supervised feature ex-
traction step was unnecessary for the used data sets because it
increased the complexity of the classifiers without making signif-
icant improvements. The winning algorithm (Debes et al., 2014)
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of 2013 IEEE GRSS Data fusion contest introduced a parallel
unsupervised and supervised classification. Wang and Glennie
(2015) used feature level fusion of synthesised waveform (SWF)
and hyperspectral data for land-cover classification. Recently, the
fusion of multiple classifiers also improved the classification ac-
curacy which is a form of decision level fusion (Bigdeli et al.,
2015).

From the above discussion, it is clear that most of the contribu-
tions of the previous works were based on pixel-level after ex-
tracting spectral and topological features from hyperspectral and
LiDAR data. To reduce the misclassification, spatial relationships
among the pixels and the shape and volume of the object were
also considered after the pixel-based classification as a post clas-
sification step. It is a great challenge to select a reduced number
of discriminative features from pixel level and selection of appro-
priate classifier/classifiers combination which give a generalised
model with good performance.

In our method, we undertake pixel-based classification approach
using the features extracted from hyperspectral and LiDAR data.
Our extracted feature combination is able to classify five different
classes with a high classification accuracy with the dimensional-
ity of 8. For the classification, we used supervised classifier SVM
and decision tree. SVM is the most popular supervised classifier
for the classification of hyperspectral and LiDAR data (Dalponte
et al., 2008; Luo et al., 2016; Gu et al., 2015; Wang and Glennie,
2015). However, in our case, the decision tree is performing bet-
ter than SVM. The main aim of our study is to examine the per-
formance of different features from two modalities (hyperspectral
and LiDAR) and fuse them in different ways to improve the clas-
sification accuracies of various land-cover classes. To accomplish
this goal our study contributes in the following ways:

• We implement an image inpainting algorithm for replacing
missing LiDAR points for improving the quality of Digital
Surface Model (DSM) and intensity images from LiDAR
point cloud.

• We compare the performance of our feature combination
with the feature combination proposed in (Luo et al., 2016).
Our proposed additional features with the features used by
Luo et al. (2016) improves the classification accuracies. Ad-
ditionally, one of our feature combination without using all
hyperspectral bands provides impressive classification accu-
racies with limited feature vector dimensionality of 8.

• We implement two fusion techniques named layer stacking
and Principal Component Analysis (PCA). We use PCA in
two different ways. Firstly, PCA is applied on hyperspectral
bands only and additional features with the first few PCs
were added. Secondly, PCA is applied on the whole, feature
vector from hyperspectral and LiDAR as Luo et al. (2016).
Our former technique for using PCA provides higher classi-
fication accuracies. Also, we measure the classification ac-
curacies of our feature combination and the feature combi-
nation proposed by Luo et al. (2016) when applying PCA on
the whole feature vector. Our feature combination achieves
higher classification accuracies with the same number of
PCs than the mentioned existing one using the decision tree.

• Our method for classifying land cover classes is not depen-
dent on any prior knowledge like road width/tree height. It
can be used in other datasets without any adjustment that is
required by some existing method (Man et al., 2015).

• Most of the recent land-cover classification used SVM for
classification and SVM outperformed other classifiers. In
our case, decision tree outperforms SVM in most of the fea-
ture combination with a limited number of features. Be-
cause our selected features easily categorise samples which
fit with the construction structure of the decision tree. As a
result, using decision tree we achieve good classification ac-
curacies with a limited number of features. Limited number
of features reduce the dimension of the feature vector and
simplifies the classification process.

• Our methods execute in reasonable CPU processing time.
Comparing two supervised classifiers, decision tree outper-
forms SVM in terms of execution time. The reason behind
faster classification by decision tree is that constructing de-
cision tree is computationally inexpensive even when the
size of the training set is large.

In this paper section 2 illustrates our proposed methodology
where we explain all our approaches in detail. We discuss
about registration process, data recovery, feature extraction
and mapping in that section. Section 3 discusses our exper-
imental setup, brief introduction of input data and experi-
mental outcomes. We conclude novelty of our works and
future plans in section 4.

2. METHODOLOGY

Our framework consists of three main sections including prepro-
cessing and feature extraction, fusion and classification, same as
other research done on land cover classification. After extract-
ing features from both hyperspectral and LiDAR data separately,
we fuse them for the classification of five different land cover
classes, i.e., “Road”, “Tree”, “Grass”, “Water” and “Soil”. Fig-
ure 1 shows the framework of our land-cover classification sys-
tem.

2.1 Data Preprocessing

In Figure 1, the first section of preprocessing shows the steps of
processing and feature extraction both from hyperspectral and Li-
DAR data. It shows two flows of steps coming from LiDAR and
hyperspectral that are combined in the co-registration step. In the
flow coming from LiDAR, LiDAR point clouds are initially ras-
terized according to the pixel size of hyperspectral. In our case, it
is 0.5 centimetre. Digital Elevation Model (DEM) is created from
the ground return of LiDAR data using ENVI 5.3. The first pulse
Digital Surface Model (FP DSM) is generated through rasteriz-
ing the first LiDAR return of pixel locations. In the same way, the
last pulse Digital Surface Model (LP DSM) is created. We gen-
erate the intensity image by calculating the intensity of the first
pulse.

Figure 2(a) shows LiDAR point cloud aligned with the hyper-
spectral RGB image of an area. From the figure, we can see
LiDAR points are missing in several regions. For recovering
missing LiDAR points we use inpainting process by Pingel et
al. (2013). The reason behind applying inpainting is, our miss-
ing LiDAR points are random across the whole image so simple
interpolation or regression model is not able to produce the de-
sired result. After creating FP DSM, LP DSM and intensity im-
ages, we apply inpainting process for generating missing point
values, which improves the quality of FP DSM, LP DSM and in-
tensity image to a great extent. The inpainting technique is based
on least square approach, which is mathematically explained by
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Figure 1. Proposed Framework.

function S characterized by two unknown values β1 and β2 in
Equations (1) and (2):

S(β1, β2) = [10− β1]
2+[β2−β1]

2+[3−β1]
2+[5−β1]

2

(1)
We will get the unknown values β1 and β2 by solving the partial
derivative equations of the following:

∂S

∂β1
= 0

∂S

∂β2
= 0

(2)

After co-registration of hyperspectral and LiDAR point cloud,
we are able to generate a feature vector for each pixel using fea-
tures from both hyperspectral and LiDAR. From Figure 2(a) it is
observed that after registration LiDAR point cloud is not properly
aligned with the hyperspectral image. From the image, it is clear
that LiDAR point cloud is shifted upward in the direction of Y-
axis. We manually corrected this registration error for the proper
alignment of these two types of data. Figure 2(b) and Figure 2(c)
show the DSM with missing LiDAR points (white colours) and
the processed DSM after applying inpainting. We normalise the
feature vector of each pixel between 0 and 1 as expressed in Equa-
tion (3). In Equation (3), x = (x1, x2, . . . , xn) and zi is the ith

normalized data. We do this normalisation because different fea-
tures have different ranges of values. But when we fuse them for
classification, different ranges of values disrupt the learning and
classifying processes of the classifier.

zi =
xi −min(x)

max(x)−min(x)
(3)

Figure 3 shows the RGB images of five different areas from where

(a) LiDAR point cloud aligned with hyperspectral RGB of Area 1
(94×98)

(b) Area 1 DSM with missing
points (334×479)

(c) Area 1 DSM after applying
Inpainting

Figure 2. Registration error and inpainting algorithm for
recovering missing LiDAR points.

we collected samples for our experiment for the classification of
five different land cover classes.

2.2 Feature Extraction

Feature extraction is an important step for land-cover classifica-
tion. The classification accuracy depends on the discriminative
property of the features extracted from various classes. In this
research, we extract spectral and texture features from the hyper-
spectral image (HSI). From LiDAR, we extract various height in-
formation such as DEM (Digital Elevation Model), DSM (Digital
Surface Model), nDSM (Normalised Digital Surface Model), dif-
ference between the first and the last LiDAR returns (FP LP), the
intensity of the LiDAR pulse and texture information of nDSM
like entropy. The following subsection discusses the texture and
colour features we use in the land cover classification.

• Normalised Difference Vegetation Index (NDVI) The Nor-
malised Difference Vegetation Index (NDVI) is a numerical
indicator to evaluate whether the target being observed con-
tains live green vegetation Holm AM (1987).

In our case, we calculate NDVI using the following equation

NDV I =
RNIR −Rred

RNIR +Rred
(4)

We use NIR (795.16nm, band 42) and Red (679.46nm, band
30) for calculating NDVI using Equation (4). Figure 4(h)
shows NDVI image of an area. The tree and grass areas are
nearly white for high NDVI. On the other hand, road/soil
areas are black for low NDVI.

• Digital Elevation Model (DEM) Digital Elevation Model
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(DEM) is typically used to represent the height of the bare-
earth terrain. Figure 4(a) shows the DEM of Area 1.

• Digital Surface Model (DSM) Digital Surface Model (DSM)
captures the height of natural and built features on earth.

In this study, we implement image inpainting techniques for
filling missing points values of LiDAR return. Figure 4(b)
shows the DSM of Area 1. We discussed our inpainting
techniques in the previous section - data preprocessing.

• Normalized Digital Surface Model (nDSM) Normalized
Digital Surface Model (nDSM) is calculated by subtracting
bare earth returns from the first return reflected by an object
on the ground. Figure 4(c) shows the DSM of Area 1.

• Difference Between the First and Last LiDAR Returns
(FP LP) In modern LiDAR systems, multiple returns are
received for a single laser pulse. In the case of a tree, the
laser pulse may go down and partially reflect from different
parts of the tree leaves, trunk and branches until it finally
hits the bare ground. If there is a solid object like a build-
ing or ground, it will just hit the surface. The difference
between the first and the last LiDAR returns represents an
important property of the reflecting object. We measure the
height of first and last LiDAR return of each pixel location
(i, j) and calculate the difference between them. In the case
of a tree, the difference is larger than a road/bare surface.
Figure 4(e) represents the difference between the first and
the last LiDAR returns of a land cover area.

• Intensity LiDAR sensor measures the relative strength of
the return pulse which is called intensity. Figure 4(d) shows
the intensity image of Area 1. From Figure 4(d) we can
observe that the intensity of grass and tree regions varies
frequently but the intensity of road is quite stable.

• Entropy In our land cover classification, entropy gives im-
portant texture information for the classification. For ex-
ample, the surface of road, tree, grass, water and soil differ
from one another in terms of texture smoothness. The sur-
face texture of tree and grass are rougher when we compare
these to road and water.

Our hyperspectral images contain 62 bands. We select 3
bands associated with red (wavelength 650.84, band 27),
green (wavelength 536.64, band 15) and blue (wavelength
564.92, band 18) to generate an RGB image from the hyper-
spectral image. The grayscale image is obtained from the
RGB image as follows Gonzalez et al. (2003). After con-
verting the RGB image into the gray-scale image we calcu-
late the entropy of the gray-scale image.

We also calculate entropy from the nDSM (Normalised Dig-
ital Surface Model). Trees give higher entropy in nDSM
as the surface of the trees frequently varies with height but
the road gives lower nDSM entropy. Figure 4(g) represents
the gray-level entropy of Area 3 and 4(f) shows the nDSM
entropy of the same Area 2. For gray-level entropy, wa-
ter represents low entropy value for its smooth texture but
grass, tree and soil are contain higher entropy values for
their rough texture.

2.3 Data fusion of extracted features

After extracting the features from every pixel, features are con-
catenated to produce the signature of each pixel. We produce

(a) Area 1 (94×98) (b) Area 2 (234×272)

(c) Area 3 (334×479) (d) Area 4 (255×368)

(e) Area 5 (334×392)

Figure 3. RGB images and dimensions of five different areas.

nine different types of signatures by combining different features.
For fusing data from hyperspectral and LiDAR, we applied two
strategies. One is simple layer stacking/ concatenation and an-
other is Principal Component Analysis (PCA).

• Concatenation/Layer stacking This is commonly used method
for the fusion of hyperspectral and LiDAR. In layer stack-
ing, different features are linearly concatenated to produce
the signature of each pixel.

• Principal Component Analysis (PCA) PCA is a useful sta-
tistical technique for finding patterns in data of high dimen-
sion. PCA transforms the data into a lower dimensional
subspace which is optimal in terms of sum-of-squared er-
ror (Jolliffe, 2002). PCA reduces the dimensionality of data
into a new set of uncorrelated variables, called Principal
components (PCs), by a linear transformation of the input
data. The first PC has the largest variance (largest eigen-
value), the second component has the second largest vari-
ance (second largest eigenvalue), etc. PCs are orthogonal to
each other and are ordered according to descending eigen-
values. We use PCA in two different ways in the fusion
technique as discussed before. All the classification results
will be shown in the results and discussion section.

2.4 Classification

Classification is a pervasive problem that encompasses many di-
verse applications. From the machine learning point of view, ma-
chines are primarily trained by known examples according to the
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(a) DEM of Area 1 (b) DSM of Area 1

(c) nDSM of Area 1 (d) Intensity of Area 1

(e) FP LP of Area 2 (f) nDSM entropy of Area 2

(g) Gray Entropy of Area 3 (h) NDVI of Area 2

Figure 4. Eight different features extracted from each area

nature of classification we want to apply. After training, a knowl-
edge/model is created by which the machine can categorise un-
known samples into several classes based on their attribute val-
ues. SVM is the most popular classifier used to classify fused
hyperspectral and LiDAR data and in most of the cases, it out-
performs Random forests and Maximum likelihood classifiers.
For our land cover classification, we use supervised classifiers:
Linear SVM and decision tree. The classification accuracies and
execution time are reported in the results and discussion section.
Decision tree achieved higher classification accuracies than SVM
for our dataset and the feature combinations we used for classifi-
cation. Also, decision tree classifies data much faster than SVM.
The reason behind the smaller execution time of decision tree is
that SVM requires parameter tuning to achieve optimal results,
while decision tree does not require such tuning process.

3. EXPERIMENTAL RESULT

The data was collected from “Yarraman State Forest” and its adja-
cent area located in 170 km north-west of Brisbane, Queensland,

Australia. The total area was almost 8 km2. The data was cap-
tured 2015 between the month June to July. Table 1 and Table 2
show the sensor parameters which captured LiDAR and hyper-
spectral data.

We manually labelled pixels with the help of Google maps. We
collected our samples from five different areas shown in Figure 3.
Table 3 shows the number of pixels for five different classes. We
create 10 different training and testing sets by randomly splitting
pixels equally from each class for the evaluation of our methods.

Table 1. LiDAR data

Parameter Specification
Recorded returns 6
Average point spacing 0.2m

Table 2. Hyperspectral data

Parameter Specification
Sensor name AISA
Number of Bands 62 (408.54 nm- 990.62 nm)
Spatial resolution 0.5 m
Spectral resolution 8.94-9.81 nm

To compare the performance of our features, we develop nine
methods by exploring different combinations of the features. We
compare the performance of our method with other approaches.
We briefly describe our methods as follows:

• Method 1: All 62 bands from hyperspectral data are used
for the classification.

• Method 2: Only LiDAR DSM is used for the classification.

• Method 3: All hyperspectral bands and LiDAR DSM, DTM,
nDSM and intensity are used for the classification (Luo et
al., 2016).

• Method 4: All hyperspectral bands, Gray entropy, NDVI
and LiDAR DSM, DTM, nDSM, intensity, FP LP, nDSM
entropy are used for the classification.

• Method 5: Gray entropy, NDVI from hyperspectral and Li-
DAR DSM, DTM, nDSM, Intensity, FP LP, nDSM entropy
are used for the classification.

• Method 6: PCA is used to reduce the dimensionality of HSI
data. PCs, LiDAR DSM, DTM, nDSM, Intensity are used
for the classification.

• Method 7: PCA is used to reduce the dimensionality of
HSI data. PCs, Gray entropy, NDVI, LiDAR DSM, DTM,
nDSM, Intensity, FP LP, nDSM entropy are used for the
classification.

• Method 8: PCA is applied on the feature vector used in
Method 3 (Luo et al., 2016). The PCs are used for the clas-
sification.

• Method 9: PCA is applied on the feature vector used in
Method 4. The PCs are used for the classification.

Table 4 shows the features and their relationship with nine differ-
ent methods. Table 5 shows the classification accuracies and exe-
cution time by each method by using SVM and decision tree. We
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Table 3. Distribution of samples collected from five areas for
five different classes.

Class Number of Pixels
Road 845
Tree 1422
Grass 821
Water 409

Ground 810
Total 4307

also graphically explain the performance of 9 different methods
shows in Figure 5. Method 6 to 9 which use PCA, we consider the
accuracies of 5 PCs in Table 5 and Figure 5 but we recorded accu-
racies of all PCs. The graphs which shows the accuracies related
to each PCs are shown in Figure 6 and Figure 7. All the methods
were programmed in MATLAB on a computer having an Intel
Core (TM) i5-4590 processor (3.30 GHz) and 8 GB memory.

Figure 5. Performance of different methods using SVM and
decision tree.

Figure 6. Dimension of PCA and Overall Accuracy (OA)
obtained by decision tree.

Figure 7. Dimension of PCA and Overall Accuracy (OA)
obtained by SVM.

3.1 Algorithm Evaluation

Accuracy assessment is based on confusion matrix generated by
Matlab R2016a. The confusion matrix is n×nmatrix where n is
the number of classes. In the confusion matrix, each row repre-
sents the actual class/ground truth and each column represents the
predicted class. From the confusion matrix, we calculated overall
accuracy (OA) and average accuracy (AA). Before that, we cal-
culated precision and class-wise accuracy/recall. The Equations
are as follows:

Precision =
True positive

True positive+ False positive
(5)

Accuracy =
True positive

True positive+ False Negative
(6)

OverallAccuracy =

∑
Correctly Classified Samples

Total Number of Samples
(7)

AverageAccuracy =

∑
Acuuracy of all classes

Number of classes
(8)

3.2 Results and Discussion

Table 5 provides information related to the classification accu-
racies of SVM and decision tree of nine different methods. For
Method 1, raw 62 hyperspectral bands were used as features so
the dimension of the feature vector was 62. Decision tree ob-
tained higher classification accuracy than SVM which were 4.72%
higher for AA and 4.05% higher for OA. Method 2 used LiDAR
DSM only as a feature. Decision tree improved OA by 42.13%
than SVM. For Method 3, the AA and OA we slightly improved
by the SVM than decision tree which were 0.74% and 0.86%, re-
spectively. Like Method 3, in Method 4 SVM AA and OA were
a bit higher than decision tree, which were 0.10% and 0.50%.
Method 5 used extracted features from hyperspectral and LiDAR
without considering raw hyperspectral bands with dimensionality
8, where decision tree was performing better by improving AA by
4.5% and OA by 3.85% than SVM. Both Method 6 and Method 7
reduced hyperspectral bands using PCA and concatenated it with
additional features from LiDAR and hyperspectral. In Method 6,
we considered five PCs from hyperspectral bands and concate-
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Table 4. Relationship between features and different methods. ‘Y’ means that a particular feature is used by a method.

Sl.no Features Method
1

Method
2

Method
3

Method
4

Method
5

Method
6

Method
7

Method
8

Method
9

1 DSM Y Y Y Y Y Y
2 DTM Y Y Y Y Y
3 nDSM Y Y Y Y Y
4 Intensity Y Y Y Y Y
5 FP LP Y Y Y
6 nDSM Entropy Y Y Y
7 Gray Entropy Y Y Y
8 NDVI Y Y Y
9 HSI bands Y Y Y

10
PCA

(Sl no.9) Y Y

11
PCA

(Sl no. 1 to 4 and 9) Y

12
PCA

(Sl no. 1 to 9) Y

Table 5. Classification accuracies from SVM and decision tree.

Features Dimension SVM Decision tree
Mean
(AA)
(%)

STD
(AA)
(%)

Mean
(OA)
(%)

STD
(OA)
(%)

Time
(sec)

Mean
(AA)
(%)

STD
(AA)
(%)

Mean
(OA)
(%)

STD
(OA)
(%)

Time
(sec)

Method 1 62 88.86 6.92 88.89 6.83 71.98 93.58 0.71 92.94 0.73 5.10
Method 2 1 35.63 3.07 24.72 2.86 24.16 63.66 0.87 66.85 1.09 0.31
Method 3 66 96.90 0.19 96.79 0.15 50.76 96.16 0.53 95.93 0.54 0.62
Method 4 70 97.35 0.25 97.27 0.25 45.58 97.25 0.35 97.22 0.36 0.65
Method 5 8 92.37 0.51 92.47 0.47 27.45 97.06 0.25 97.06 0.22 0.22
Method 6 9 92.78 0.90 93.33 0.53 29.32 97.28 0.48 97.18 0.50 0.19
Method 7 13 96.72 0.25 96.76 0.23 30.09 97.22 0.73 97.20 0.71 0.23
Method 8 5 65.06 0.22 68.51 0.21 25.42 96.89 0.69 96.75 0.68 0.13
Method 9 5 59.56 0.23 68.51 0.22 24.41 97.05 0.82 96.98 0.71 0.15

nate them with four LiDAR features DSM, DTM, nDSM and In-
tensity. Decision tree AA and OA were 4.5% and 3.85% higher
than SVM, respectively. In Method 7, we added additional fea-
tures FP LP, nDSM Entropy, Gray Entropy and NDVI with the
features of Method 6. The performance of SVM was improved
for Method 7 than Method 6. As before, the performance of de-
cision tree was a bit higher than SVM for Method 7. Methods 8
and 9 applied PCA on all the features coming from hyperspectral
and LiDAR. The feature combination of Method 8 was similar to
Method 3 while Method 9 was similar to Method 4. For Method
8 and Method 9, decision tree performed much higher than SVM,
approximately 31.83% higher for AA and 28.24% higher for OA.

Method 1 to 5 were based on layer stacking feature fusion from
hyperspectral and LiDAR. Among them, Method 4 delivered the
highest OA and AA using both SVM and decision tree with a
feature vector dimensionality 70. Method 3 represented the fea-
ture combination used by (Luo et al., 2016) with dimensionality
66. If we compared the performance of Method 5 and Method
3, Method 5 improved AA by 0.9% and OA by 1.13% using de-
cision tree compared to Method 3 while reducing dimensionality
from 66 to 8. If we compared the performance of Method 1 and
Method 2 with Method 3, Method 4, Method 5, we also noticed
that fusing features from hyperspectral and LiDAR improved the
classification accuracies as well as reduced the feature vector di-
mensionality (Method 5) to a great extent.

Method 6 to Method 9 used PCA for feature fusion from hyper-

spectral and LiDAR. In Method 6 and Method 7 we used PCA
to reduce the bands of hyperspectral and add additional features
from hyperspectral and LiDAR. Method 8 and Method 9 apply
PCA on features from both hyperspectral and LiDAR as exist-
ing method (Luo et al., 2016). Method 6 and Method 8 use the
feature combination proposed by (Luo et al., 2016). Table 5 and
Figure 5 only considered the accuracies of 5 PCs. The graph in
Figure 6 and Figure 7 recorded the accuracies of Method 6 to
Method 9 considering all PCs. From Table 5 and figures it is
clear that Method 6 and Method 7 perform better than Method 8
and Method 9. Keeping the same number of PCs our proposed
feature combination Method 7 and Method 9 perform better than
Method 6 and Method 8 using both decision tree and SVM.

4. CONCLUSION

In this paper, a novel combination of features both from hyper-
spectral and LiDAR is used for the classification. Based on the
experimental results, several conclusions can be made such as
FP LP, nDSM Entropy and Gray Entropy help to discriminate
pixels in addition to commonly used features like DSM, DTM,
nDSM, Intensity and NDVI. Entropy from both hyperspectral and
LiDAR gives us the spatial relationship among pixels. Fusing
features from hyperspectral and LiDAR improves classification
accuracies from 4.12% for decision tree and 3.58% for SVM by
reducing feature dimension from 62 (all hyperspectral bands) to
8 (Method 5). Also, when we compare our feature combination
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(Method 5) with an existing one (Method 3), our proposed fea-
ture combination improves OA by 1.13% while reducing feature
dimension from 66 to 8. PCA applied on only HSI bands rather
than HSI bands and other LiDAR features prove to be effective
for the used dataset. Also, our feature combination (Method 9)
achieves higher classification accuracies by using decision tree
than the existing feature combination (Method 8) while keep-
ing the same number of principal components (5). Decision tree
achieves higher classification accuracies than SVM using a lim-
ited number of features (reduced feature dimension). On the other
hand, SVM achi-eves better accuracies for a large number of fea-
tures (Method 3 and 4). Our aim is to achieve good classifica-
tion accuracy with a limited number of features that is ignored by
other existing studies. Our experimental results proved that deci-
sion tree classifier achieves a better result with a limited number
of features and also faster than SVM. Our selected feature combi-
nation is effective for the discriminative construction of decision
tree from the training set, which is also generalised for various
land cover classes.

In future, we will try to apply other feature reduction techniques
and more advanced spatial feature extraction techniques. Besides
this, we are trying to develop a novel feature fusion technique
instead of layer stacking method.
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