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ABSTRACT 

Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high 
temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation 
of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches 
offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. 
A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique 
(MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, 
an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) 
collected by MODIS daily 1-km and Landsat – TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily 
radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) 
images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. 
In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution.  The constrained unmixing 
preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-
cover classes and the size of the moving window for spatial unmixing.  
Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach. 

1. INTRODUCTION

Thermal infrared (TIR) data is critical to model surface 
energy balance (Anderson et al., 2011), 
evapotranspiration and surface moisture (Carlson, 2007) 
and climate change (Weng, 2009). Biophysical variables 
and land-cover changes can be retrieved from radiometric 
data in this spectral region.  
Due to technical and financial constraints, no single 
sensor provides TIR data with both high spatial and 
temporal resolution (Price, 1994). Temporal 
characteristic are essential to detect rapid surface 
changes, decisive in crop-growth monitoring and intra-
seasonal ecosystem disturbance (Shabanov et al., 2003). 
The spatial resolution is compulsory in detailed land-
oriented applications to minimize the interpretation errors 
of the mixed pixels which may represent a mixture of 
different objects.  
Data-fusion models offer synthetic data integrating high 
spatial and temporal resolution from different sensors. It 
is a feasible and lost-cost way to enhance the capability 
of remote sensing to monitor land surface dynamics. 
Thermal downscaling typically requires preserving the 
radiometry of original TIR radiance to quantitatively 
derive radiometry changes caused by phenology 
(Stathopoulou  and Cartalis, 2009). The remote-sensing 
community has developed two well – documented 
approaches to do spatial and temporal data fusion. On one 
hand, the spatial and temporal adaptive reflectance fusion 
model (STARFM) proposed by Gao et al. (2006), in 

which daily Landsat synthetic data were generated from 
several pairs of Landsat and MODIS images on the same 
day and one MODIS image on the required day, using a 
weighted-average approach. On the other hand, existing 
spatial thermal sharpening techniques rely on 
disaggregating sensor radiance to higher resolutions 
usually supported by shorter wavebands, like visible and 
near-infrared (Dominguez et al., 2011), preserving the 
spectral configuration of coarse resolution data. These 
multiresolution image fusion techniques use various 
deterministic or statistical predictors (Zhukov and Oertel, 
1996).  
In this research, a new fusion algorithm to predict daily 
TIR data at 10-m resolution is developed. In the first step, 
Landsat 8/TIRS (Thermal Infrared Sensor) and MODIS 
data are blended to obtain daily TIR data at 30-m 
resolution. After that, the spatial resolution is improved to 
10-m, taking advantages of the visible bands of Sentinel 2
MSI, based on a regularized spatial unmixing technique
to reduce unmixing error among the mixed pixels.
The paper is organized as follows: after this brief
introduction, the proposed methodology is described.
Next, the results and the discussion are presented.
Finally, conclusions are drawn.

2. METHODOLOGY
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The proposed approach was designed to generate high 
temporal and spatial resolution synthetic TIR data based 

on MMT algorithm. Figure 1 clarifies the workflow and 
the data products of our method, explained below.  

 

Fig.1. TIR image result of the proposed methodology. 
 
First of all, TIR data from different sensors at a close 
acquisition time should be radiometrically calibrated, 
geometrically rectificated and atmospherically corrected 
to radiance at sensor to be comparable spatially and 
temporally (Masek et al, 2005). Nevertheless, factors as 
acquisition time, bandwidth, orbit parameters, 
geolocation errors, effective pixel coverage and spectral 
response function, generate systematic biases among data 
from different sensors.  
The proposed methodology is constituted by different 
steps. First, an adaptive radiance model is applied based 
on spectral unmixing analysis from TIR data to model the 
estimator. Using this approach, the high-temporal revisit 
frequency of MODIS and the high-spatial resolution of 
Landsat 8/TIRS are combined to generate a blended 
image on the required date. TIR radiance data at TOA 
collected by MODIS daily 1-km and Landsat 8/TIRS 16-
day sampled at 30-m resolution are used to generate 
synthetic daily radiance images at TOA at 30-m spatial 
resolution on the required date. These synthetic TIR 
radiances should be corrected for the intra-annual 
variability, modelled using Fourier series by theoretically 
calculating the yearly evolution for a range of cases as a 
function of terrain, land cover and hydrological 
conditions using Harmonic Analysis of Time Series 
(HANTS) algorithm (Menenti et al., 1993; Alfieri et al., 
2005). The algorithm combines harmonic analysis with 
curve fitting in iterative steps. At each pixel, the signal is 
modelled using a Fourier series, as equation 1 describes: 

𝑦𝑦(𝑡𝑡) = 𝑎𝑎0 + � �𝑎𝑎𝑖𝑖 cos(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡𝑦𝑦) +𝑏𝑏𝑖𝑖 sin(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡𝑦𝑦)�
𝑛𝑛𝑓𝑓

𝑛𝑛=1
 (1) 

where nf is the number of frequencies, a0 is the average of 
the series and ty the time of observation. The coefficients 
a and b are the coefficients of trigonometric components 
functions at the frequency i. 
After this correction, an unsupervised classification is 
used to identify pixels within the local moving window 
which are spectrally similar to the central pixel. Next, a 
weight function is applied that expresses the influence of 
neighbouring pixels on the central pixel. The weight 
function is adjusted to the location of the similar pixels 
and TIR radiance similarity between the fine and coarse 
resolution data. Finally, an extra-filter is applied to 
remove poor quality observations and to retain cloud-free 
pixels. 
The next step consists of unmixing the 30-m (now lower 
resolution) TIR data using the information about their 
pixel land-cover composition from co-registered images 
at higher spatial resolution (Figure 2). In our study case, 
synthesized TIR data were un-mixed to the Sentinel 2 
MSI 10 m resolution. Thereby, the MMT yields a high-
resolution synthetic data at the required date. For this 
purpose, a classification map of the high resolution image 
through unsupervised algorithms (Zurita-Milla et al., 
2008) is derived. The isodata algorithm is applied, which 
main contribution is that the number of cluster and their 
initial centroids do not need to be known. This algorithm 
was chosen among other unsupervised algorithms, such 
as k-means, with the aim at developing a more general 
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methodology, applicable to images independently of 
observed land cover, e.g. rural, urban, desert or forest 
areas.As an assumption, classes recognizable in the high-
spatial resolution data, have the same spectral features in 
the central and surrounding pixels within the coarse 
resolution window. This constrained unmixing ensures 
that the emittance balance for the central pixel is met.. A 
moving window processing can be applied to reduce the 
spatial scale of the within-class averaging to the selected 
window size. A window size of 5*5 pixels in the high 
resolution image was found to be a good compromise 
between an acceptable spatial averaging scale of the 
coarse classes and a sufficient number of coarse pixels 
for a stable inversion (Zhukov et al., 1999). Then, the 
contributions of each cluster to the signal that falls within 

each Landsat-pixel  inside the sliding window is 
evaluated.. By combining the obtained proportion matrix 
and class spectra, the algorithm is used to downscale the 
coarse-resolution Landsat TIR data and retrieve more 
accurate spectral information for each cluster recognized 
in the high-resolution data. In order to preserve the 
available TIR radiometric information of the coarse 
resolution data, only the excess high spatial frequency 
components have to be transferred to the low-resolution 
bands. Finally, fused results at high spatial resolution are 
obtained by assigning the unmixed spectral information 
to each class by an inversion of a system of linear 
mixture equations to the fine resolution clustering map 
presented in the central pixel of the moving window (Xu 
et al., 2015).  

 

Fig.2. TIR image result at high spatial resolution 

3. EXPERIMENTAL RESULTS  

The proposed approach was tested using the data set in 
the study area, covering 115 km × 100 km South-East of 
The Netherlands. The predominant wind direction in the 
Netherlands is southwest, which causes a moderate 
maritime climate with warm summers and cool winters 
and typically high humidity. It is a complex area covering 
many different land cover types, including farmland, 
forest, bare soil, urban land, wetlands and water as 
identified by the Netherlands Environmental Assessment 
Agency (PBL). Cropland patches are small and show 
distinct temporal patterns based on planting and harvest 
schedules and local environmental conditions such as soil 
water content, nutrition and health. In this context, 
monitoring this crop growth requires high spatial 
resolution imagery to isolate particular fields and high 
temporal resolution imagery to track development.  
In this study, Landsat-8 level 1T geotiff product (Band 
10) at 30 m resolution and MODIS level-1 MOD021KM 
from collection 6 (Band 31) at 1 km resolution was 
employed. No time correction was applied for the sensor 
overpass time, choosing the MODIS acquisition time at 
10:00 am, same time that Landsat-8 overpasses. This TIR 
dataset, used to model the estimator, was acquired for 
both sensors from 14th March 2016 and 20th July 2016. 
MODIS and Landsat data have to be geometrically pre-
processed to the same pixel size and covering the same 
area and radiometrically calibrated, to ensure the radiance 
similar pixels. Furthermore, MODIS data was re-
projected into Landsat WGS84 projection system by    
 
 

 
MODIS Reprojection Tools which use a bilinear 
resampling method. Moreover, a shared cloud mask was 
created for both Landsat and MODIS images to remove 
poor quality pixels, like cloudy areas, from the 
computation.  
The date required for computation was 1st May; 
accordingly, MODIS image from this date was as well 
used. To generate the clustering map, Sentinel 2 MSI 
resolution data on the required date was used. In this step, 
a 5×5 pixel moving window for the unsupervised 
classification was chosen. 
On this required date, there is a real TIR Landsat-8 image 
used to validate the proposed methodology. Figure 3 
shows the reached result with the proposed methodology 
(figure 3a)) and the real TIR Landsat-8 image in radiance 
values. It worth noticed that the synthetic image is cloud-
free, while the L8/ TIRS image includes a large cloud-
covered area (light blue). The histogram of both image is 
illustrated in Figure 4, resampled to the same size. The 
mayor difference is due to the cloud values.  
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Fig. 3. Synthetic high resolution TIR image (a) and 
existing TIR Landsat-8 (b) in radiance values from the 
same date. 
 

 
Fig. 4. Histogram of the synthetic high resolution TIR 
image (in red) and the existing TIR Landsat-8 (in green) 
in radiance values . 

At this point, results are still being evaluated, with 
particular attention for the required quality of the data 
streams required to apply our approach. 

4. CONCLUSIONS 

In conclusion, the proposed methodology advances in the 
capability for producing remotely sensed TIR data 
products with both high spatial resolution and frequent 
coverage from multi-source satellite data. Such a 
capability is vital to monitor intra-annual biophysical 
dynamics at the spatial scales most relevant to crop 
development during the growing season and the 
fragmentation of most agricultural landscapes. 
Special attention was paid to the Annual Temperature 
Cycle (ATC) model by using HANTS algorithm. To 
characterize the annual variations of the thermal radiance, 
HANTS algorithm based on Fourier series was applied. 
Thereby, thermal radiance changes due to ATC at the 
coarse temporal resolution can be applied to high 
temporal resolution pixel. 
However, this approach contains a few limitations. The 
algorithm is not able to predict thermal changes not 
reflected in the pixels from images, giving uncertainty to 
the model. Regarding the spatial unmixing algorithm, the 
clustering map may affect the quality of the fused result, 
since it accounts only for the classes recognized in the 
high resolution image. As an advantage, it performs 
averaging only within the class areas in the window and 
therefore, the sharpness of the classification map is 
preserved in the derived image.  
Further studies will address to fill up the missing values 
caused by clouds. Moreover, the extension of the 
clustering map to multisource data fusion with different 
spectral bands will be considered. 
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