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ABSTRACT: 

 

In recent years, the increasing incidence of climate-related disasters has tremendously affected our environment. In order to effectively 

manage and reduce dramatic impacts of such events, the development of timely disaster management plans is essential. Since these 

disasters are spatial phenomena, timely provision of geospatial information is crucial for effective development of response and 

management plans. Due to inaccessibility of the affected areas and limited budget of first-responders, timely acquisition of the required 

geospatial data for these applications is usually possible only using low-cost imaging and georefencing sensors mounted on unmanned 

platforms. Despite rapid collection of the required data using these systems, available processing techniques are not yet capable of 

delivering geospatial information to responders and decision makers in a timely manner. To address this issue, this paper introduces a 

new technique for dense 3D reconstruction of the affected scenes which can deliver and improve the needed geospatial information 

incrementally. This approach is implemented based on prior 3D knowledge of the scene and employs computationally-efficient 2D 

triangulation, feature descriptor, feature matching and point verification techniques to optimize and speed up 3D dense scene 

reconstruction procedure. To verify the feasibility and computational efficiency of the proposed approach, an experiment using a set 

of consecutive images collected onboard a UAV platform and prior low-density airborne laser scanning over the same area is conducted 

and step by step results are provided. A comparative analysis of the proposed approach and an available image-based dense 

reconstruction technique is also conducted to prove the computational efficiency and competency of this technique for delivering 

geospatial information with pre-specified accuracy. 

 

 

 

1. INTRODUCTION 

Over the past two decades, the changes in the climate and 

associated increasing concentration of atmospheric greenhouse 

gas emissions have dramatically affected our environment (Van 

Aalst, 2006). These changes have caused destructive natural 

disasters which negatively impact all aspects of sustainable 

development including infrastructures, energy reservoirs, 

transportation systems, forestry, farming, and agriculture. 

Moreover, these catastrophes have significantly affected 

communities’ well-being and public health. In order to 

effectively assess, manage, and diminish the vulnerability and 

risks associated to these events and improve the resilience of the 

communities, developing timely disaster management and 

emergency response plans is needed (Wisetjindawat et al., 2014). 

The effective implementation of such plans is contingent on 

having timely access to accurate and up-to-date geospatial data 

which provide valuable insights into location, nature, extent, and 

progress of the areas under influence (Zlatanova and Li, 2008). 

Due to inaccessibility and hazardousness of the affected areas, 

the required data are usually collected using low-cost imaging 

and georeferencing sensors onboard unmanned platforms 

(Giordan et al., 2017). The ability of these platforms to 

manoeuvre in closer distances and slower speed in these areas 

and thus providing near real-time high-resolution geospatial data 

makes them optimal alternatives for rapid-response mapping 

applications (S. Thenkabail, 2015).  
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The collected geospatial data onboard unmanned platforms are 

then processed to provide the required geospatial information 

(including dense coloured 3D point clouds and textured 3D 

models) for decision makers and first responders in such 

emergency situations. So far, different approaches have been 

proposed and implemented for 3D scene reconstruction which are 

classified into active and passive methods. Active 3D 

reconstruction methods are implemented based on laser scanning 

data (Hernandez et al., 2007). In spite their potential to provide 

high quality 3D information from the scanned objects, these 

methods are not always applicable due to costly initialization and 

operation of data acquisition tools.  On the other hand, passive 

3D reconstruction approaches only use photometric information 

to generate 3D reconstructed models. The approaches in this 

category, which are implemented based on a set of overlapping 

images captured from a scene, can be categorized into four 

classes. The methods in first class are implemented by 

partitioning the scene into a 3D grid (e.g., voxels), computing a 

cost function for individual voxels, and reconstructing the voxels 

with costs below a threshold in a same pass (Seitz and Dyer, 

1999; Hertzmann and Seitz, 2005). Although these methods are 

widely utilized due to their simplicity and uniformity, they suffer 

from two major shortcomings. First, they do not involve a 

regularization procedure and second, the excluded voxels in a 

pass cannot be restored later during the reconstruction procedure 

(Ladikos, 2011). The second class of these approaches is carried 

out by generating a preliminary mesh or level-set representation 
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of the scene and iteratively evolving the initial surfaces to 

decrease or minimize a cost function  (Faugeras and Keriven, 

2002; Pons et al., 2007). The drawback of these methods is that 

they are implemented locally and might fall into local minima 

during the minimization procedure.  

The methods in third class, image-space methods, compute a set 

of depth maps initially. Then, they enforce consistency 

constraints between the computed depth maps (Szeliski, 1999; 

Gargallo and Sturm, 2005) or merge them in a post processing 

step to ensure a consistent 3D representation of the scene 

(Narayanan et al., 1998). These techniques avoid resampling the 

geometry on a 3D domain and choose a 2D representation 

alternatively. Different from the aforementioned approaches, the 

methods in fourth class firstly detect, extract, and match a set of 

features points within a scene. The surface patches are then fitted 

to the reconstructed feature points and grown by adding new 

patches at the borders of initial ones (Faugeras et al., 1990; 

Manessis et al., 2000). These approaches suffer from limited 

feature correspondence in close-range imagery. 

In spite of rapid delivery of the collected data onboard unmanned 

platforms, the existing 3D reconstruction techniques are not yet 

capable of timely/incrementally data processing and transferring 

the processed information (3D models and other mapping 

products) for disaster management and emergency response 

applications. These methods mainly focus on highly accurate 

data processing while sacrificing the computational efficiency as 

they require execution times which are not suitable for these 

applications (Remondino et al., 2014). Hence, new image-based 

3D reconstruction techniques should be developed for timely 

provision of geospatial information from the affected areas. 

In this paper, a new approach for progressive dense 3D scene 

reconstruction from consecutive images collected onboard 

unmanned platforms is introduced. To optimize the 

computational efficiency and reduce the required processing 

time, the proposed approach is implemented based on prior 

knowledge of the scene (sparse 3D point clouds collected using 

a laser scanner or derived using image-based sparse point cloud 

generation techniques) from the scanned scenes. This approach 

attempts to achieve a denser overview of the scanned scene in a 

shorter time and provide incrementally-refined 3D information 

for different emergency response applications. Furthermore, the 

proposed approach is capable of delivering 3D point clouds with 

required accuracy and avoid further unnecessary processing. 

Figure 1 shows the outline of the proposed method. 

 

Figure 1. The outline of the proposed incremental                   

3D dense reconstruction technique 

This paper starts by the introduction of the proposed approach for 

progressive 3D scene reconstruction using consecutively-

acquired imagers and prior knowledge of the scene (sparse 3D 

point cloud). Afterwards, the feasibility of the proposed approach 

is verified by conducting an experiment using imagery and low-

density LiDAR point cloud collected over the same scene. The 

achieved experimental results prove the competency of this 

technique for providing progressively denser representation of 

the scanned scene. Finally, concluding remarks and 

recommendations for future research work are presented. 

2. METHODOLOGY 

In this section, the proposed algorithm for progressive 3D scene 

reconstruction using consecutively-acquired images onboard 

unmanned platforms is described. Since this approach is 

implemented based on prior knowledge of the scene, the existing 

scene points from a laser scanning data or a sparse point cloud 

achieved through other techniques, are firstly projected on the 

first captured image. Secondly, a 2D triangulation of the 

projected points is established and the suitability of the achieved 

triangles for scene reconstruction is examined. The centroids of 

triangles passing suitability conditions are then computed to 

provide scene information in areas between known points instead 

of their vicinity. In the third step, a computationally efficient 

descriptor is computed for individual centroid points to find and 

match their correspondents within successive overlapping 

images. The matched centroid points are finally reconstructed in 

3D space and verified using next images. This procedure is 

successively implemented for all images to achieve a 

denser/more accurate 3D view of the scanned scene. The detailed 

explanation of these steps is provided in following subsections. 

2.1 Scene-to-Image Point Projection 

In the first step of the proposed approach, prior knowledge of the 

scanned scene is employed as an auxiliary data to optimize the 

efficiency of 3D reconstruction procedure. The objective of this 

step is to avoid initial feature detection and matching steps using 

a previously-acquired low-density laser scanning data or a sparse 

point cloud over the scene. In order to initiate 3D reconstruction 

procedure, the 3D points in this point cloud are projected onto the 

first acquired image – that has certain percentage of overlap and 

corresponding features in next images – using collinearity 

equations (Novak, 1992; Habib et al., 2007). This projection is 

performed using available camera calibration and georeferencing 

parameters of the first image which are reliable in early mission 

phase. The projected 2D points will be then used as the basis of 

3D reconstruction procedure.   

2.2 2D Triangulation 

In order to identify reasonable points to densify the existing 

sparse point cloud, a 2D triangulation technique is used to 

generate a mesh of the projected points and partition the image 

space into a set of triangular facets. In this approach, a modified 

version of  Delaunay triangulation technique (Delaunay, 1934) is 

used for the image tessellation due to its computational 

efficiency, robustness, ease of parallelism, and ability to preserve 

geometry (Shewchuk, 2012). The suitability of the derived 

triangles for 3D scene reconstruction is then examined based on 

a set of conditions as follows: 

1. Expected accuracy: A triangle is considered to be suitable 

if its surface is larger than a predefined threshold. This 

threshold is specified based on the expected accuracy of the 

reconstructed 3D model. 
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2. Interior angles: An obtuse triangle – including an interior 

angle less than 15° in our case – is not considered a suitable 

one and will be rejected (Brunnett et al., 2012). 

The centroids of the triangles, satisfying the abovementioned 

conditions, are then computed and selected as the next points to 

be reconstructed as they are located in maximum distance from 

triangles’ nodes and provide optimal visual entropy (Figure 2). 

Centroid

 
Figure 2: Identification of next points of scene to be 

reconstructed 

The vertices of the achieved triangles are then projected onto the 

next image to limit the search space for their matching points. 

The corresponding triangles in an image pair will be matched and 

considered for 3D reconstruction if they pass the following 

conditions: 

1. Ratio between areas of triangular facets: The corresponding 

triangular facets will be matched if the ratio between their 

areas is less than 2 (in our case). 

2.  Orientation of facet vertices: The corresponding triangles 

will be matched if the orientation of their vertices is 

preserved in both images. 

The triangles satisfying these conditions in the second image are 

detected as confined search spaces for matching centroid points. 

The rejected triangles will be handled later by optimization of the 

triangular mesh. Figure 3 schematically shows the described 2D 

triangulation and established centroid points for 3D 

reconstruction. 

 

Projected sparse point cloud 

               

            Triangulated mesh                 Verified centroid points  

Figure 3: 2D triangulation and identification of candidate points 

for 3D reconstruction 

2.3 Computation of Centroids’ Descriptors 

In order to efficiently find matches for the identified feature 

points – centroid points of triangles passing suitability 

conditions, reliable and computationally-efficient feature 

descriptors need to be selected and accurately estimated. The 

proposed progressive dense reconstruction procedure employs an 

efficient feature descriptor, called Synthetic BAsis (SYBA), 

which has been specifically designed for accurate feature 

matching in real-time applications (Desai, 2015). This feature 

descriptor provides high matching accuracy and optimized 

computational efficiency which are essential in our progressive 

dense reconstruction procedure. One should note that the utilized 

feature descriptor requires minimal computational resources and 

can be optimally implemented on unmanned platform’s onboard 

embedded processors.  

The selected feature descriptor is estimated for the centroid 

points of an established triangles in first image and multiple 

candidate pixels within the bounded search spaces for their 

matches (corresponding triangles passing validity conditions) in 

the next image. 

2.4 Matching and 3D Reconstruction of Centroids 

In the fourth step, the centroid points of suitable triangles in the 

first image are matched with their correspondents in the next 

image according to the estimated feature descriptors. To improve 

the computational efficient of the matching procedure, the search 

for individual centroid points in first image is limited to the 

intersection of their associated epipolar lines and corresponding 

triangles in the next image (Figure 4). As mentioned before, the 

selected feature descriptor is estimated for all the pixels lying on 

this intersection line and compared to the estimated descriptor for 

the investigated centroid point in the first image. The centroid 

point will be matched one of the pixels on the bounded search 

space, if their matching quality – computed according to the 

derived feature descriptors is more than a pre-defined threshold. 

Furthermore, there should be no other pixels within search region 

that can be matched to the centroid point with the same quality. 

In this technique, the comparison between the estimated feature 

descriptors is performed based on the sum of the absolute 

differences – instead of Euclidean and Mahalanobis distances -  

to avoid computational complexity of the feature matching 

procedure (Desai, 2015).  

Triangle Centroid Bounded Search Space

Left Image Right Image

 
Figure 4. The bounded search space for conjugate feature points 

Finally, the 3D coordinates of the matched image points are 

estimated using a Direct Linear Transformation (DLT). The 

selection of DLT for 3D triangulation is due to its accepted 

computational efficiency, accuracy, and simplicity for rapid-

response mapping applications. The reconstructed 3D point will 

be then projected onto the other 3 images which include three 

nodes of their associated triangles – once they are being 

processed for point cloud densification – to identify possible 

outliers due to occlusions or false matching problems. The 

investigated points are rejected if none of these images confirms 

them at the projected positions. However, these points might be 

reconstructed in next steps (within other image combinations). 

The steps 2 - 4 are repeated for consecutive images while adding 

the reconstructed 3D points onto the modified 2D TIN. The 

midpoints of the newly generated triangles are then matched 

within next images and reconstructed using the same procedure. 

The densification of prior sparse point cloud is continued until 

the required level of detail and accuracy for decision makers and 

first responders is achieved. 

 

3. EXPERIMENTAL RESULTS 

In this paper, we presented a new technique for progressive 

image-based 3D dense reconstruction based on prior knowledge 
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of the scene. The proposed approach attempts to address and 

resolve the computational inefficiency of traditional image-based 

dense reconstruction methods by avoiding feature detection in 

images, using low-density point clouds which has been 

previously collected or generated over the scene, and 

implementing computationally efficient triangulation, feature 

descriptor estimation, feature matching and 3D point 

reconstruction algorithms. In order to evaluate the performance 

and computational efficiency of the proposed approach, an 

experiment using a set of consecutive images collected onboard 

a UAV platform and a sparse point cloud (previously acquired 

over the scene) is conducted and step by step results are provided. 

The investigated dataset includes 28 consecutive images acquired 

using a GoPro Hero 3+ camera mounted on a DJI Phantom 2 

UAV at an average flying height of 26m and a low-density 

airborne laser scanning data collected by an Optech ALTM 3100 

laser scanner over a complex building located in Calgary, AB, 

Canada. Table 1 summarizes the specifications of the used laser 

scanning point cloud and imagery as presented by data providers. 

Figure 5.a shows an overview of the provided low-density laser 

scanning point cloud and figure 5.b shows some of the captured 

images over the investigated scene.  

Dataset 
Photogrammetric 

data 

Laser scanning 

data 

System 
GoPro HERO 3+ 

black edition 

Optech ALTM 

3100 

Date acquired 2015 2013 

Number of overlapping 
images/scans                                                                                         

28 4 

Average GSD/point 

density 
1.7 cm 3 pts/m2 

Planimetric accuracy 1.7 cm 13 cm 

Vertical accuracy 15 cm 6 cm 

Table 1. A summary of the characteristics of imagery and laser 

scanning point cloud utilized in this experiment 

 
(a) 

   
(b) 

Figure 5. (a) Low-density laser scanning point cloud and (b) 

some of the captured images over the investigated scene 

Figures 6.(a - c) show the progressively densified point clouds 

after iteration 6, when a complete view of the scene has been 

achieved. Moreover, Figures 7.(a - c) show the generated 

triangular mesh for each point cloud which will be used as a basis 

for reconstruction of new scene points. As demonstrated in 

provided results, there are some areas in the scene that cannot be 

successfully reconstructed due to occlusion problems or filtering 

of the associated triangles. In order to evaluate the computational 

efficiency of the proposed procedure, the computation time for 

each iteration was also measured. The proposed approach was 

implemented on an Intel Xeon processor with 2.4 GHz, 32 GB of 

RAM, and nVidia NVS 315 graphics device.  

 
(a) Iteration 6 

 
(b) Iteration 9 

 
(c) Iteration 12 

Figure 6. (a – c) Progressive dense reconstruction outcome 

 
(a) Iteration 6 

 
(a) Iteration 9 

 
(c) Iteration 12 

Figure 7. (a – c) Triangular mesh reconstruction from 

progressive dense reconstruction 
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Table 2 summarizes the processing time for delivering presented 

results and a dense point cloud generated using an available 

image-based dense matching approach (Moulon et al., 2017).  In 

our progressive approach, the required processing time increases 

in each iteration until the majority of constructed triangles meet 

the expected accuracy. It will then decreases until the procedure 

is finalized. As it can be comprehended from Table 2, the 

required processing time to achieve the expected accuracy 

(5mm), in our approach, is 123s (almost 2min) which is a quarter 

of the required processing time to achieve a point cloud with the 

same accuracy from a sole image-based dense reconstruction 

technique. Figure 8 provides a visual comparison of the point 

clouds with expected accuracy which have been attained using 

the proposed progressive and the investigated image-based dense 

matching techniques. The inspection of the demonstrated results 

verifies that the proposed approach is able to provide a dense 

point cloud with the expected accuracy in much shorter time 

which is the interest of first responders and decision makers in 

emergency-response applications. 

Dense reconstruction technique Processing time 

Progressive Technique (Iteration 6) 24s 

Progressive Technique (Iteration 9) 38s 

Progressive Technique (Iteration 12) 61s 

Progressive Technique (Iteration 13) 11s 

OpenMVG (image-based dense 

matching technique) 
8 min 

Table 2. The comparison between the required processing time 

in successive iterations of the proposed progressive technique 

and an available image-based dense reconstruction technique 

 
(a) 

 

(b) 

Figure 8: Visual comparison of the dense point clouds achieved 

using (a) the proposed progressive technique and (b) image-based 

technique 

 

4. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE RESEARCH WORK 

To conclude, we presented a new approach for progressive dense 

3D reconstruction of the scanned scenes by consecutive images 

collected onboard an unmanned mapping platforms which is 

required for disaster management and emergency response 

applications in this paper. In order to optimize the computational 

efficiency of this technique, prior knowledge of the scene (in the 

form of previously acquired or computed sparse point cloud) is 

used as the basis of dense reconstruction procedure. The 

utilization of this information improves the computational 

efficiency of 3D reconstruction procedure by avoiding keypoint 

feature detection within consecutive images. Moreover, this 

approach optimizes and speeds up the feature matching 

procedure by bounding the search space for conjugate features 

within successive images. Finally, this technique employs 

efficient DLT for 3D triangulation to reconstruct 3D points with 

reasonable accuracy for emergency response applications. In 

order to verify the feasibility and computational efficiency of the 

proposed approach, an experiment using a set of consecutive 

images collected onboard a UAV platform and a low-density 

airborne laser scanning point cloud over the same scene were 

conducted and progressive results were provided. The 

comparative analysis of the required processing times and 

qualitative evaluation of the achieved point clouds using the 

proposed approach and image-based dense reconstruction 

technique proves feasibility, competency, and computational 

efficiency of this technique. 

Future research work will be concentrated on the development of 

efficient sparse 3D scene reconstruction techniques to enable 

implementation of this technique without the need for laser 

scanning data. Furthermore, real-time context-aware 3D object 

reconstruction techniques will be investigated and optimized to 

be used in emergency response and disaster management 

applications. 
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