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ABSTRACT: 

 

In this paper, an integrated fusion framework for joint information reconstruction and resolution enhancement is proposed. In the 

proposed framework, an integrated variational model based on multi-source and multi-temporal remote sensing images is constructed, 

which is able to simultaneously achieve resolution enhancement and joint cloud and cloud shadow removal. In addition, the ground 

feature changes between multi-temporal scenes are comprehensively considered. Through this integrated framework, a promising 

cloud and cloud shadow free fused image with both high spatial and spectral resolutions is obtained. The experimental results 

confirm the effectiveness of the proposed method. 

 

 

1. INTRODUCTION 

Due to the technical limitations of sensors and other factors, the 

existing optical remote sensing images often feature a tradeoff 

between the spatial and spectral resolutions (Shen et al., 2016; 

Zhang, 2004). Accordingly, most of the remote sensing 

satellites provide both high spatial resolution (HR) 

panchromatic (PAN) images with a low spectral resolution, and 

low spatial resolution (LR) multispectral (MS) images with a 

relatively higher spectral resolution. In addition, optical remote 

sensing images are often obscured by clouds and cloud shadows, 

which seriously hinders their usability (Shen et al., 2015). 

 PAN/MS fusion, which is typically referred to as 

“pansharpening”, is an effective way to improve the quality of 

degraded images and obtain a high spatial and spectral 

resolution image. It is originated in 1970s (Daily et al., 1978; 

Harris and Graham, 1976), to date, a variety of pansharpening 

methods (Alparone et al., 2015; Zhang et al., 2012) have been 

proposed. In general, they can be grouped into several 

categories: 1) component substitution based methods (Carper, 

1990; Laben and Brower, 2000); 2) multiresolution analysis 

based methods (Aiazzi et al., 2002; Meng et al., 2016); and 3) 

model-based methods (Li and Yang, 2011; Meng et al., 2015a; 

Meng et al., 2014; Zhang et al., 2012). Among them, the model-

based methods have attracted ever-increasing attention in recent 

years. 

Although numbers of pansharpening methods have been 

proposed, most of the existing methods do not consider the 

possible cloud contamination in the PAN and MS images. 

However, it should be noted that, at any one time, 

approximately 35% of the global land surface is covered by 

clouds (Shen et al., 2015). Therefore, for the cloud-

contaminated optical remote sensing images, how to achieve the 

integration of pansharpening and cloud removal to obtain a 

cloud-free fused image with both high spatial and spectral 

resolutions is a promising and challenging task. To the best of 

our knowledge, very few papers  have addressed this problem. 

Therefore, in this paper, an integrated fusion framework for 

joint information reconstruction and resolution enhancement is 

proposed. The proposed framework can simultaneously achieve 

pansharpening, and cloud and cloud shadow removal, obtaining 

promising cloud-free fused images with both high spatial and 

spectral resolutions. 

 

2. THE PROPOSED METHOD 

2.1 Framework Description 

In this paper, an integrated fusion framework for joint 

information reconstruction and resolution enhancement is 

proposed. The proposed framework can obtain an HR MS fused 

image without cloud and cloud shadow contamination, as 

shown in Figure 1. To obtain the desired fused image at the 

target time, the corresponding multi-temporal auxiliary PAN 

and MS images are utilized. The proposed integrated framework 

is based on a variational model, and the information 

reconstruction and resolution enhancement are integrated. 

Furthermore, ground feature changes between the target images 

and auxiliary images are comprehensively considered. 

Accordingly, multi-temporal radiometric normalization and thin 

cloud and light cloud shadow removal techniques are developed. 

Through the proposed framework, a final cloud-free fused 

image with high spatial and spectral resolutions is obtained 

 

2.2 Method 

Some notations are first introduced. We let 
0y  and 0z  denote 

the target LR MS and HR PAN images, respectively. 
1y  and 

1z  

denote the multi-temporal auxiliary LR MS and HR PAN 

images, respectively. It should be noted that there may be 

multiple auxiliary images utilized. The desired fused image is 

represented as x  
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Figure 1. Schematic diagram of the proposed integrated fusion framework for joint information reconstruction and resolution 

enhancement. 

 

2.2.1. Multi-temporal Radiometric Normalization: The multi-

temporal radiometric normalization is performed on the 

auxiliary MS and PAN images. It is first performed by moment 

matching, based on the cloud-free areas. 
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where '

0y , '

1y , '

0z , and '

1z  denote the corresponding cloud-free 

areas. In addition, Poisson editing (Pérez et al., 2003) is further 

employed to eliminate the radiometric difference. 

 

2.2.2. Thin Cloud and Light Cloud Shadow Removal: To 

preserve as many surface features of the target images as 

possible, the thin clouds and light cloud shadows of the target 

MS and PAN images should be removed. In this paper, sliding 

window based local moment matching is proposed, as shown in 

Figure 2. The corresponding radiometrically normalized 

auxiliary images are regarded as the reference, and the thin 

clouds and light cloud shadows of the target images are 

removed by considering the contextual information of the pixels. 

Finally, the thin clouds and the cloud shadows can be efficiently 

removed while preserving the ground features. 

 

Local moment matching 

 
(a) (b) 

Figure 2. Schematic diagram of sliding window based local 

moment matching for thin cloud and light cloud shadow 

removal. (a) Target image with cloud shadows. (b) Auxiliary 

image. 

2.2.3. Variational Model Based Integrated Framework: An 

integrated variational model is established for the joint 

information reconstruction and pansharpening. The total energy 

functional includes three terms, i.e., a spectral fidelity term, a 

spatial enhancement term, and a prior term. 

 

A: Spectral Fidelity Term: The spectral fidelity term relates 

the desired fused image and degraded MS observations. It is 

represented as the following energy form: 

 
2

1 2|| ||E  Y MDSx                                (2) 

 

where S  denotes the blurring matrix, D  denotes the down-

sampling matrix, and 
0 1,

T

   M M M  denotes the image masks. 

Here, 
0M  is the cloud-free mask, and 

1M  is the mask for thick 

clouds and dark cloud shadows. 
0 0 1 1,

T

   Y M y M y  denotes the 

group of corresponding degraded MS images, where 
0y  is the 

target LR MS image with thin clouds and light cloud shadows 

removed, and 
1y  is the auxiliary LR MS image with multi-

temporal radiometric normalization. 

 

B: Spatial Enhancement Term: It is assumed that the desired 

HR MS image has similar spatial structures to the HR PAN 

image (Ballester et al., 2006; Wen et al., 2006). It can be 

represented as 
b z x , where [ , ]T

H V     denotes the 

gradient operators, and bx  denotes the bth  band of x . In this 

paper, moment matching of the gradient features is introduced 

to further enhance the robustness. The energy functional is 

represented as: 

 

2

2 2

1

|| ( ) ||
B

b

b

E f


    Z Θ x                      (3) 

 
where ( )f   denotes the moment matching of the gradient 

features, and Θ  represents the corresponding masks at the 

spatial scale of the HR PAN images. It should be noted that M  

in (1) is a down-sampled version of Θ . Z  denotes the group of  
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Figure 3. Experimental datasets and results. (a) Target MS image with clouds and cloud shadows on March, 31, 2015. (b) Target 

PAN image with clouds and cloud shadows on March, 31, 2015. (c) Auxiliary MS image on May 30, 2015. (d) Auxiliary PAN image 

on May 30, 2015. (e) PCA fusion result. (f) GS fusion result. (g) The fusion result of the proposed integrated framework.  

corresponding HR PAN images, and B  represents the number 

of spectral bands. 

 

C: Total Energy Functional: The total energy functional is 

finally obtained by combining (2), (3), and the Laplacian prior 

term (Meng et al., 2015b). It is represented as: 

 

2 2 2

1 2 2 2 2
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where 

1  and 
2  are the tradeoff parameters, 

bw  is the adaptive 

weight to balance the spatial enhancement for each spectral 

band, and Q  denotes the spatial activity measure. Finally, the 

classical gradient descent method (Zhang et al., 2012) is 

employed to minimize (4). 

 

3. EXPERIMENTS 

3.1 Experimental Datasets 

Multi-source, multi-temporal very high resolution (VHR) 

imagery at level 1 C, as provided by the 2016 IEEE GRSS data 

fusion contest, were employed in the experiments. The datasets 

were acquired on March 31 and May 30, 2015, over Vancouver, 

Canada (49°15’N 123°6’W), by the DEIMOS-2 satellite. The 

target MS and PAN images on March 31, 2015, are shown in 

Figure 3 (a) and Figure 3 (b), respectively, and the MS and 

PAN images on May 30, 2015, act as the auxiliary images. The 

main task is to obtain the HR MS image without clouds and 

cloud shadows on March 31, 2015. 

 

3.2 Experimental Results 

The experimental results are shown in Figure 3. Among them, 

Figure 3 (g) shows the experimental result of the proposed 

integrated fusion framework with 
1 1.5  and 

2 0.001 . 

Figure 3 (e) shows the fusion result of the popular PCA 

(principle component analysis) fusion method, and Figure 3 (f) 

shows the fusion result of the popular GS (Gram-Schmidt) 

fusion method. They are both implemented by the popular 

ENVI software. It can be clearly seen that the result of the 

proposed integrated framework has both high spectral fidelity 

and high spatial resolution structures. What is more, the clouds 

and cloud shadows have been successfully removed. In contrast, 

there is still cloud and cloud shadow contamination in the 

fusion results of the PCA and GS fusion methods. To allow a 

more detailed evaluation, three typical zoomed-in areas of the 

proposed fusion result are shown in Figure 4, i.e., a region of 

cloud shadows, a region of clouds, and a cloud-free region. It 

can be seen that the result of the proposed framework is 

inspiring, and it can obtain an HR MS image without cloud and 

cloud shadow contamination. 

    
(a) (b) (c) (d) 
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Figure. 4. Three typical zoomed-in areas, i.e., a region of cloud 

shadows, a region of clouds, and a cloud-free region, of the 

fusion result of the proposed framework,. 

    Table 1 shows the quantitative evaluation results. Four 

popular evaluation indices (Shen et al., 2015; Zhang et al., 2012) 

are employed, including the correlation coefficient (CC), the 

peak signal-to-noise ratio (PSNR), the dimensionless global 

error in synthesis (ERGAS), and the spectral angle mapper 

(SAM). It should be noted that due to the lack of a reference 

image, the evaluation was only implemented on the cloud-free 

region by down-sampling to the original MS image (Wald et al., 

1997). It can be seen that the proposed framework obtains the 

best quantitative evaluation results compared to the PCA and 

GS methods with all the evaluation indices. On the whole, the 

proposed integrated fusion framework can successfully achieve 

the joint information reconstruction and resolution enhancement, 

and the final result is competitive. 

Table 1 The quantitative evaluation results 

 CC PSNR ERGAS SAM 

PCA 0.9578 105.2744 2.9328 1.4153 

GS 0.9537 104.8384 3.0649 1.3325 

Proposed 0.9927 112.1613 1.2153 0.9501 

 

4. CONCLUSION 

This paper has presented an integrated fusion framework for 

joint information reconstruction and resolution enhancement. In 

the proposed framework, an integrated variational model based 

on multi-source and multi-temporal images is proposed, which 

can simultaneously achieve pansharpening, and cloud and cloud 

shadow removal. The ground feature changes between multi-

temporal scenes have also been considered, especially in thin 

cloud and cloud shadow regions. Even though, it is still 

inevitable to introduce some errors in thick cloud regions, 

because the information of the target images in these areas is 

completely missing, and this problem may be solved by making 

use of useful information from more auxiliary images. On the 

whole, the proposed method can yield the effective fused 

images, and the result is promising. 
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