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ABSTRACT: 

 

A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is 

composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. 

In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud 

segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the 

smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. 

Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In 

the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is 

performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies 

are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects. 

 

 

                                                                 

*Corresponding author. 

1. INTRODUCTION 

Airborne Laser Scanning (ALS) point clouds have many 

benefits in contrast with the commonly used 2D remote sensing 

images for a variety of applications, such as ground point 

extraction (Sithole and Vosselman, 2004; Meng et al., 2010; 

Chen et al., 2016; Zhang and Lin, 2013; Yang et al., 2016), 3D 

city modelling (Sampath and Shan, 2007; Chen et al., 2014; 

Jarzgbek-Rychard and Borkowski, 2016; Sampath and Shan, 

2010; Yu et al., 2016), etc. Over the past two decades, 

significant contributions to the consolidation and extension of 

ALS data processing methods have been witnessed (Yan et al., 

2015). Among these processing methods, classifying the ALS 

point cloud data into categorical object instances is the first and 

most critical step for further data processing and model 

reconstruction (Guo et al., 2015). The existing studies of ALS 

point cloud classification could be divided into three strategies, 

i.e., individual point classification, segment-based classification, 

and multiple entity classification.  

Recently, most majority of research works focus on the strategy 

of individual point classification. Individual point classification 

methods compute features for each point and classify point 

clouds considering individual point as the computational unit. 

Generally, features of each point are first computed, then, a 

classifier such as Random Forests (Breiman, 2000) is trained 

using a number of selected training samples which are labeled. 

At last, all the points in the input ALS point cloud are classified 

by the trained classifier. In this procedure, a neighborhood of 

each point is required to be determined, when it computes 

features for each point. There are three types of neighborhoods, 

i.e., spherical neighborhood (Lee and Schenk, 2002), cylindrical 

neighborhood (Filin and Pfeifer, 2005), k-closest neighborhood 

(Linsen and Prautzsch, 2001). To determine these 

neighborhoods, a scale parameter, either a fixed radius or a 

constant value  is required. However, the 3D local structures 

and point densities are variable, a constant scale parameter 

cannot describe the local structural configurations. Therefore, a 

neighborhood optimizing step is performed to determine the 

scale parameter before feature computation. A number of 

neighborhood optimizing methods (Guo et al., 2015; Mitra and 

Nguyen, 2003; Lalonde et al., 2005; Pauly et al., 2003; Belton 

and Lichti, 2006; Demantke et al., 2011; Weinmann et al., 2014) 

have been proposed. Unfortunately, these neighborhood 

optimization methods are rather time-consuming (Wang et al., 

2016), which is the main disadvantage of this kind of 

classification strategy.  

For the strategy of segment-based classification, point cloud 

segmentation is employed. Local points with the same 

geometric structure (such as planar structure) are clustered into 

the same segment. After an input ALS point cloud data is 

segmented, features for each segment are extracted. To classify 

these segments, either several classification rules (Yang et al., 

2015) or a fuzzy model classifier (Lee and Schenk, 2002) are 

utilized. The performance of these existing methods relies 

heavily on the result of the employed point cloud segmentation 

method. The existing point cloud segmentation methods focus 

mainly on planes or smooth surfaces extraction, and only one 

kind of segments is extracted. Unfortunately, 3D scenes are 

complex, and only one kind of segments can hardly depict them 

appropriately. Therefore, a point cloud segmentation method 

which extracts more kinds of segments is necessary. Although 

several shortages exist in the existing segment-based 

classification methods, they still has some benefits in contrast 
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with individual point classification ones. The benefits are 

shown as follows: 

(i) Segments are helpful to compute geometric features, and 

thus relieve the dependence on the neighborhood 

optimization. 

(ii) Segments give a new attribute of each point, and semantic 

rules are easier to be employed. 

(iii) Segments are considered as the computation unit, and 

reduce the computational burden when we extract features 

and make classification.  

To solve the problem that only one kind of segments cannot 

depict the geometric properties of a 3D local structure, multiple 

entity classification (Xu et al., 2014) is proposed. The method 

in Xu et al., (2014) is a hierarchical classification procedure, 

and it first divides the input ALS point cloud into ground and 

non-ground points. Next, planar segments are extracted from 

the non-ground points, and classified into several classes. Then, 

the remained scattered points are point-wise classified. At last, 

in the complex areas, mean shift segments are extracted to 

classify these areas. In this case, three entities are derived from 

ALS point clouds, i.e., points, planar segments, mean shift 

segments. However, these entities are derived from different 

segmentation methods individually, which involves many 

classification steps. 

To address these problems, a point cloud segmentation method 

which handles three kinds of segments is proposed in Ni et al. 

(2017), and a straightforward classification framework is 

presented. However, the method has the following two 

shortages: 

(i) It only uses geometric features of segments, and ignores 

spectral information and point intensity of an input ALS 

point cloud. Therefore, different types of objects with 

similar geometric properties are classified into the same 

class.  

(ii) Only five classes are extracted, and some classes such as 

ground should be classified into some sub-classes.  

In this paper, we propose a multiple-primitives-based 

hierarchical classification method for 3D urban areas. The step-

wise point cloud segmentation method presented in Ni et al. 

(2017) is employed to extract three kinds of segments, i.e., 

planar, smooth, and rough surfaces. Classification rules and a 

fuzzy classifier are both utilized to classify these segments. 

Spectral information and point intensities are taken into 

consideration to point-wise classify ground points into bare land, 

artificial ground and greenbelt. Moreover, the proposed method 

is designed for urban areas, and we presume the ground surfaces 

are smooth and flat.  

The outline of this paper is shown as follows. Section 2 presents 

the methodology of our proposed multiple-primitives-based 

hierarchical classification. The experiments and discussions are 

shown in Section 3. At last, Section 4 summarizes the 

methodology and give a conclusion of this paper.  

 

2. METHODOLOGY 

The proposed classification framework is a hierarchical 

procedure. First, the step-wise point cloud segmentation is 

performed, and the input ALS point cloud is divided into two 

subsets, i.e., planar and smooth surfaces, and rough surfaces. To 

simplify the expression, the planar and smooth surfaces are 

named regular surfaces. Next, points in regular surfaces are 

divided into ground points and building points by semantic 

rules. Then, several features of rough surfaces are extracted, and 

vegetation and vehicles are classified by a supervised 

classification procedure using Random Forests (RF). At last, 

individual point features of ground points are extracted, and the 

ground points are classified into bare land, artificial ground and 

greenbelt. The workflow of this procedure is shown in Figure 1. 

In the following of the section, we will present the key steps of 

this procedure. 

 

Figure 1. The workflow of the proposed multiple-primitives-

based hierarchical classification method. 

 

2.1 Three Types of Primitives 

Three types of primitives are extracted and utilized in the 

classification procedure. To extract these types of primitives, 

step-wise point cloud segmentation method (Ni et al., 2017) is 

employed. The segmentation method is able to handle three 

kinds of segments, i.e., planar, smooth, and rough surfaces. The 

performance of the segmentation method is shown in Figure 2. 

However, we consider the planar and smooth surfaces as one 

type of primitives, and name them regular surfaces for 

simplifying expression. Therefore, two types of primitives are 

extracted by the employed point cloud segmentation method. 

Besides, individual points are considered as the third type of 

primitives. In other words, the three types of primitives that are 

utilized in this paper are regular surfaces, rough surfaces, and 

individual points. The three types of primitives are shown in 

Figure 3. 

 

2.2 Classification of Regular Surfaces 

The regular surfaces extracted by the step-wise point cloud 

segmentation method are classified into ground and building. 

Two semantic rules are utilized to make the classification, 

which are shown as follows: 

(i) The relative elevation between a query segment and its 

adjacent segments should be smaller than a given threshold. 

To compute the relative elevation, we first determine the 

adjacent segments  for  of a query segment  

in XY-plane. Then, the nearest point pair  in  
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and  is determined. At last, the relative elevation  is 

defined as: 

 for ,              (1) 

where  is the z-coordinate of , and  is the z-

coordinate of .  

(ii) The areas of ground segments are much larger than those of 

building segments. The rule is correct due to that the step-

wise point cloud segmentation clusters the points in 

ground surfaces into a small number of segments with 

large areas in a 3D urban scene. In this paper, the number 

of points is defined as the area of a segment, because the 

point densities of building and ground are identical.  

The classification result of regular surfaces in a small area is 

shown in Figure 4. Ground points and building points are 

correctly divided.  

 

  
(a)                                             (b)                          

Figure 2. The result of the employed step-wise point cloud 

segmentation, (a) is the original ALS point cloud data which is 

colored by elevations, and (b) is the segmentation result which 

is colored by segments.  

 

Figure 3. The three types of primitives. 

 

2.3 Classification of Rough Surfaces 

To classify the rough surfaces into vegetation and vehicle, 

semantic rules lose the effectiveness. Therefore, we utilize a 

supervised classification procedure to reach the requirement. 

First of all, 15 segment-based features are extracted by 

considering rough surfaces as the computational units. The 

features are list as follows.  

 

 

(a) 

  

(c)                                          (d)  

Figure 4. Classification result of regular surfaces, (a) is the 

regular surfaces in a 3D local area, (b) is the top view of the 

classification result, and (c) is the side view of the classification 

result. The points coloured by red are building, and the points 

coloured by grey are ground. 

 

 (1) Average intensity 

The average intensity of a rough surface is the mean value of all 

the points’ intensities.  

(2) Area 

The point number of a rough surface. 

(3) Eigenvalue-based features 

Ten eigenvalue-based features are extracted from a rough 

surface. the covariance matrix is first determined by a segment, 

and then a set of positive eigenvalues  

(Chehata et al., 2009) and normalized eigenvalues  

with  are computed. Ten eigenvalue-based features 

are: highest eigenvalue , medium eigenvalue , lowest 

eigenvalue , linearity , planarity , scattering , 

anisotropy , omnivariance , eigenentropy  and change of 

curvature . The latter seven features are computed as: 

                                       (2) 

                                      (3) 
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                                          (4) 

                                        (5) 

                                    (6) 

                             (7) 

                                     (8) 

(4) NDSM-based features 

Ground points are extracted in the classification of regular 

surfaces procedure, therefore, NDSM is able to be computed. 

First, a TIN surface is constructed by these ground points. Then, 

the vertical distances to the TIN surface of all the points in a 

rough surface are computed. Finally, the maximum, minimum 

and mean elevation differences are the NDSM-based features.  

After these features are extracted, a number of rough surfaces 

are selected as the training samples to train a RF classifier, then, 

all the rough surfaces are classified by the trained RF classifier. 

The classification result of the rough surfaces is shown in 

Figure 5.  

 

(a) 

 

(b) 

Figure 5. The classification result of rough surfaces, (a) is the 

rough surfaces, and (b) is the classification result. The points 

colored by blue are vegetation, and the points colored by red are 

vehicles. 

 

2.4 Point-wise Classification for ground points 

To classify ground points into bare land, artificial ground and 

greenbelt, the RGB information and point intensities of the 

input ALS point cloud are utilized. A man may argue why the 

RGB information is not utilized in the previous steps. The main 

reason is that the RGB information has low geometric accuracy, 

especially for the small objects such as vehicles. If we utilize 

the RGB information to classify vegetation and vehicle, more 

misjudgements will be arose. In this procedure, five features are 

extracted for each individual point, i.e., R, G, B values, grey 

value , and point intensity. The grey value is derived from 

the RGB information as following: 

          (9) 

where , , and  are the R, G, B values, respectively.  

After the point features are extracted, a supervised classification 

procedure is performed. In this procedure, RF classifier is 

utilized to make classification. The classification result of the 

ground points is shown in Figure 6.  

   

(a)                                              (b) 

Figure 6. The classification result of ground points, (a) is the 

ground points colored by RGB information, (b) is the 

classification result coloured by classes. The points coloured by 

red, green, and blue are artificial ground, greenbelt, and bare 

land, respectively. 

 

3. EXPERIMENTS AND DISCUSSIONS 

3.1 The Testing Data 

To validate the proposed multiple-primitives-based hierarchical 

classification method, we utilize the State of Utah Acquired 

Lidar Data. The dataset covers over 8380  with high-

resolution (0.5-1.0 meter). We select an urban area to test our 

proposed method. The urban area is shown in Figure 7 which is 

coloured by RGB information. The ground surface in the area is 

flat and smooth, and are composed of bare land, artificial 

ground and greenbelts. Buildings are composed of complex roof 

structures, and overlapped by trees. There is a small number of 

vehicles parking on the roads, or near buildings or trees.  

 

 

Figure 7. The testing data which is coloured by RGB 

information. 

3.2 Evaluation Metrics 

For evaluation, we employ the confusion matrix and consider 

five commonly used measures: overall accuracy , Kappa 

coefficient , precision , recall , and -score. They are 

computed according to the confusion matrix as follows: 

                                   (10) 

           (11) 

                                    (12) 

                                    (13) 

.                                   (14) 

where  is the main diagonal element in -th row,  is 

computed from the sum of -th column, excluding the main 
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diagonal element,  is the sum along -th row, excluding the 

main diagonal element,  is the number of classes, and  is the 

number of all the points in an input point cloud. 

 

3.3 Results and Discussions 

The classification result and the interior results of the testing 

data are shown in Figures 8-11. The confusion matrix and the 

accuracies of the classification result are shown in Table 1. 

From the aspect of different primitives, ground points and 

building points are well divided in the regular surfaces due to 

the ground is flat and smooth. There are some misjudgements in 

the classification result of rough surfaces. A close-up visual 

inspection shows that vehicles often parked near vegetation. 

Furthermore, some low vegetation has the same geometric 

structure with vehicles. When deviation exists in the objects’ 

spectral information, misjudgements between vehicles and 

vegetation are inevitable. For the point-wise classification, there 

are noises in the classification result of the ground points, which 

is a common problem individual point classification methods 

encountered.  

 

 

(a) 

 

(b) 

Figure 8. Primitives extraction, (a) is the extracted planar or 

smooth surfaces, and (b) is the extracted rough surfaces. 

 

(a) 

 

(b) 

Figure 9. The classification results of planar or smooth surfaces, 

(a) is the classified ground points, and (b) is the classified 

building points. 

 

Figure 10. The classification result of rough surfaces, the points 

colored by blue are vegetation, and the points colored by red are 

vehicles. 

 

Figure 11. The classification result of ground points, the points 

colored by red, green, and blue are artificial ground, greenbelts, 

and bare land, respectively. 

 

Figure 12. The classification result of the whole testing data. 

From the aspect of different classes, the -score of class 

greenbelt (0.959) is higher than the other classes. The reason is 

that the RGB information of greenbelt is different with those of 

bare land and artificial ground which contributes to the 

accuracy value most. In contrast, the -scores of bare land and 

artificial ground are relatively low due the fact that the RGB 

information of most majority of bare lands is similar to artificial 

ground. For the class building, the most serious problem is that 

the building elements such as chimneys are often mislabeled as 

vegetation. However, the problem does not affect the accuracy 
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of the class building too much. Vegetation makes the urban area 

much complex, it covers buildings and vehicles, and has various 

geometric structures. However, the base number of vegetation is 

large, the misjudgements between other classes affect the 

accuracy of it a little, and it achieves a high -score (0.959). In 

contrast, the base number of vehicle is small, and the 

misjudgements between vegetation affect the accuracy of it 

much. Besides, the RGB information of vehicles is noisy, and 

has no contribution to the classification of the class vehicle. 

Therefore, the class vehicle achieves the lowest  -score 

(0.372).

 

Table 1. The confusion matrix, and accuracies of the classification result. 

Overall Accuracy: 0.942496    Kappa Coefficient: 0.9216 

 Bare land Artificial ground Greenbelt Building Vegetation Vehicle Missing 

points 

Recall 

Bare land 38083 5407 1647 0 0 0 0 0.844 

Artificial 

ground 

2898 325608 4812 0 80 58 6 0.976 

Greenbelt 1679 34203 510774 0 1078 22 0 0.932 

Building 0 0 0 141575 17747 1309 7 0.881 

Vegetation 0 0 0 4308 391662 7086 423 0.971 

Vehicle 12 427 316 68 2506 3490 1 0.512 

Precision 0.892 0.891 0.987 0.970 0.948 0.292   

-score 0.867 0.931 0.959 0.924 0.959 0.372   

 

4. CONCLUSION 

A multiple-primitives-based hierarchical classification strategy 

is proposed in this paper. Three types of primitives are utilized, 

i.e., regular surfaces, rough surfaces, and individual points. The 

step-wise point cloud segmentation method which extracts two 

types of primitives is first employed and performed. Next, the 

ground points and building points are classified in the regular 

surfaces based on two semantic rules. Then, Vegetation points 

and vehicle points are classified in the rough surfaces based on 

a supervised classification procedure. At last, the ground points 

are point-wise classified into bare land, artificial ground, and 

greenbelts based on RGB information and point intensities. 

Experiments show that most of the classes achieve high 

classification accuracies. Besides, there is a limitation of this 

classification strategy. The problem how to improve the 

classification accuracy of small objects when the base number 

of them is rather small, is still remaining.  
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