The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2/W7
https://doi.org/10.5194/isprs-archives-XLII-2-W7-897-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W7-897-2017
13 Sep 2017
 | 13 Sep 2017

CHANGE DETECTION BY FUSING ADVANTAGES OF THRESHOLD AND CLUSTERING METHODS

M. Tan and M. Hao

Keywords: Change Detection, Medium Resolution, Remote Sensing, Threshold, Clustering, Advantage Fusion

Abstract. In change detection (CD) of medium-resolution remote sensing images, the threshold and clustering methods are two kinds of the most popular ones. It is found that the threshold method of the expectation maximum (EM) algorithm usually generates a CD map including many false alarms but almost detecting all changes, and the fuzzy local information c-means algorithm (FLICM) obtains a homogeneous CD map but with some missed detections. Therefore, we aim to design a framework to improve CD results by fusing the advantages of threshold and clustering methods. Experimental results indicate the effectiveness of the proposed method.