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ABSTRACT: 
 
Automatic extraction of building changes is important for many applications like disaster monitoring and city planning. Although a 
lot of research work is available based on 2D as well as 3D data, an improvement in accuracy and efficiency is still needed. The 
introducing of digital surface models (DSMs) to building change detection has strongly improved the resulting accuracy. In this 
paper, a post-classification approach is proposed for building change detection using satellite stereo imagery. Firstly, DSMs are 
generated from satellite stereo imagery and further refined by using a segmentation result obtained from the Sobel gradients of the 
panchromatic image. Besides the refined DSMs, the panchromatic image and the pansharpened multispectral image are used as input 
features for mean-shift segmentation. The DSM is used to calculate the nDSM, out of which the initial building candidate regions are 
extracted. The candidate mask is further refined by morphological filtering and by excluding shadow regions. Following this, all 
segments that overlap with a building candidate region are determined. A building oriented segments merging procedure is 
introduced to generate a final building rooftop mask. As the last step, object based change detection is performed by directly 
comparing the building rooftops extracted from the pre- and after-event imagery and by fusing the change indicators with the roof-
top region map. A quantitative and qualitative assessment of the proposed approach is provided by using WorldView-2 satellite data 
from Istanbul, Turkey. 
 
 

1. INTRODUCTION 

High and very high resolution remote sensing data consisting of 
satellite observations of land surface offer new opportunities for 
timely and accurate change detection, which could be used for 
understanding the relationships and interactions between human 
and natural phenomena in order to promote a better decision 
making. Various change detection technologies based on 
satellite imagery have been extensively studied and applied. 
(Singh, 1989; Petit et al., 2001; Coppin et al., 2004; Lu et al., 
2004; Liu et al., 2014). Classical 2D image processing 
techniques are laborious due to the higher amount of features 
required to locate buildings. This problem can be avoided when 
3D information is available.  
 
Besides LiDAR, 3D information can be derived from satellite 
stereo imagery, which exhibit a larger field of view and are 
available at a lower cost per km2 with respect to aerial imagery. 
In recent years, 3D change detection has gained considerable 
attention as it could distinguish the changes that are not clear in 
2D imagery, and it can also avoid some mis-detection caused by 
differences of the compared images in sensor geometry models 
and photometric properties (Qin et al., 2016). As one of the 
important 3D change detection approaches, post-classification 
methods compare the resulting labels from classification/objects 
detection results, which avoid direct comparison of spectral or 
height information. In addition, post-classification methods are 
able to provide a type change matrix and reuse historic land-
use/land-cover results. However, accuracy of these methods 
mostly depends on the mono-temporal classification /object 
detection results. Therefore, in the context of rooftop change 
detection, the rooftop detection approach is of crucial 
importance to improve the final result.  
 
Although many rooftop/building extraction approaches have 
been proposed for stereo imagery and still an improvement in 

robustness and efficiency is required, especially for buildings 
with complex shapes. An image based method usually starts 
with pixel based classification. Through clustering/segmentation 
the accuracy of the classification can be improved. In this paper, 
an improved segmentation approach is proposed to enhance the 
quality of the Digital Surface Model (DSM) and to generate a 
region map for rooftop extraction. In the second procedure, the 
region map is used to extract the accurate rooftop masks, which 
are further adopted in post-classification and region-based 
change detection approaches. In section 3, the proposed method 
has been tested on WorldView-2 data which were captured over 
Istanbul, Turkey. Discussions and conclusions are presented in 
Section 4 and Section 5. 
 

2. METHODOLOGY 

To improve the accuracy of building extraction and change 
detection, a region-based building rooftop extraction and change 
detection approach is proposed. Firstly the region map is 
prepared based on a two-step segmentation approach. In the 
second step the region map is adopted to assist the building 
rooftop extraction and change detection procedure. 

2.1 Segmentation 

2.1.1 Workflow: As the quality of the DSM has a large 
impact on the results of further steps, as shown in Figure 1, in 
the first step, the DSM quality has to be analyzed and improved 
before adopting it for segmentation. In the mean-shift 
segmentation procedure the pansharpened multispectral data 
and the improved DSMs are used as input. 
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Figure 1. Workflow of the segmentation  

2.1.2 Gradient based segmentation 
As a first step for the gradient based segmentation, noise in the 
panchromatic image is reduced with a median filter. 
Subsequently the image contrast is adjusted to provide a better 
distinction between buildings and their surroundings. Figure 2 
shows an example of the prepared panchromatic image (Figure 
2a) and the prepared segments (Figure 2d) based on the lines 
extracted by Sobel gradient (Figure 2c).  
 

 
Figure 2: (a) Original panchromatic image; (b) Sobel gradient in 
horizontal and vertical direction; (c) Sobel lines (d) Original 
segment. 
 
2.1.3 DSM refinement 
The initial region map presented in Figure 2 (d) is an obvious 
over-segmentation result. Thus a region merging procedure is 
necessary. Several procedures are adopted for this purpose. 
Some small sized regions are mainly located at object 
boundaries. Therefore, these small segments with a size below a 
predefined threshold are assigned a “no data” – value, zero for 
instance. In the first step, the small sized regions that are 
encapsulated by other regions are merged to their neighbours. If 
more than one neighbour is available, the label of the most 
similar segment is selected (Tian et al., 2013).  
 

The DSM can then be refined by using the resulted region map. 
However, one of the possible remaining problems after merging 
is under-segmentation, which is introduced mainly by similar 
textures between building roofs and streets. Thus, an error 
check is performed to avoid introducing inaccurate height 
values for some large regions. In this approach the average 
height over the segments are compared to the original height of 
these pixels. If the mean standard error between this average 
height and the original height is above a threshold T, the 
segment is not used for the refined DSM. Instead the original 
height values are kept in the refined DSM.  
 
As shown in Figure 3. Figure 3 (a) is the original DSM that is 
characterized with unsharpened edges. Figure 3(b) is the refined 
DSM by directly taking the average height for all regions. 
Figure 3(c) is the refined DSMs with restriction check.  

 

Figure 3. (a) Original DSM. (b) Refined DSM with average 
over boundaries. (c) Refined DSM result. (d,e,f) Height profiles 
of a,b,c. 

2.1.4 Region map preparation 
In this section the principal component analysis (PCA), is 
performed on the pan-sharpened image. The components and 
the refined DSMs are used in the mean-shift segmentation 
procedure (Comaniciu and Meer, 2002). After that all segments 
that are smaller than a predefined size are merged to their 
neighbour region with the most similar height. Furthermore, 
encapsulated areas are merged, as they are assumed to be part of 
the segment that surrounds them. Figure 4 shows the significant 
reduction of noise in the segmentation result after these two 
steps. 
 

 
Figure 4: (a) Segmentation result. (b) Segmentation after 
merging small areas. (c) Segmentation after merging based on 
encapsulation. 
 
2.2 Building mask generation and change detection 

The workflow of the second part of the proposed approach is 
shown in Figure 5. At first the initial building candidate 
segments are determined, after that a building oriented merging 
is performed. As the last step change detection can be 
performed based on the building masks derived from the pre- 
and after-event datasets. 
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Figure 5. Workflow of rooftop extraction and change detection. 
 
2.2.1 Initial building candidate selection 
This step tries to find possible building locations with the help 
of the refined DSM. Therefore, the DSM is normalized with a 
morphological reconstruction function (Arefi and Hahn, 2005) 
to get the normalized DSM (nDSM). In the nDSM all pixels of 
ground regions have a value of less than about two meters, 
while objects like buildings have relative height values in 
reference to the ground. However, it is quite difficult to give a 
proper threshold value in this step. A higher threshold value 
leads to possible miss detections. When using a lower threshold, 
some buildings may be wrongly connected together due to 
limited DSM quality. Therefore, a low threshold value is used. 
After that shadows are adopted in this step to further separate 
the buildings. As shown in Figure 6, the buildings which are 
displayed in Figure 6 (a) as one mask are well separated in 
Figure 6 (b). After erosion, they are successfully split as six 
regions.  

 
Figure 6. (a) Initial building candidate areas. (b) Building 
candidate areas after exclusion of shadow regions. (c) Building 
candidate areas after erosion. 
 
2.2.2 Building oriented region merging 
After the building locations have been labelled, these regions 
are dilated to recover the original region size. Then, the 
segments which are overlapped by these masks are selected as 
building candidate segments. All the segments with a size below 
a defined threshold are merged to their best fitting neighbours in 
terms of height and intensity. After the merging procedure, 
building detection is performed. In order to get the final 
building footprint map, a local threshold method is proposed. 
Instead of using a uniform threshold value for the whole test 
region, a minimum building height 𝑇𝑇ℎ,𝑗𝑗  is automatically selected 

for each building candidate region (1 .. j) separately. For that, 
the average height 𝜇𝜇𝐻𝐻𝑗𝑗 and the standard deviation 𝜎𝜎(𝐻𝐻𝑗𝑗) are 
calculated from the nDSM for those areas that overlay the 
segments of the candidate region.  𝜔𝜔 is thereby a weight to 
adjust the threshold. Based on this, the local threshold is defined 
that distinguishes between buildings and background.  
 
𝑇𝑇ℎ,𝑗𝑗 = 𝜇𝜇𝐻𝐻𝑗𝑗 −  𝜔𝜔 ∗ 𝜎𝜎(𝐻𝐻𝑗𝑗)                            (1) 
 
This provides benefits especially when the previous separation 
procedures failed, and if there is more than one building within 
one building candidate region left, as is shown in Figure 7. In 
such cases it is possible to separate large regions into single 
building areas, as shown in Figure 7 (d). Therefore it is needed, 
that the areas between the buildings exhibit a lower average 
height than the buildings themselves (see Figure 7(c)). 
 

 
Figure 7. (a) Building candidate area. (b) Segments after 
merging. (c) Average height of the Segments. (d) Building 
footprint after applying the local threshold. 
 
2.2.3 Change detection 
After the building footprints are derived from the pre- and post-
event data, building changes can be detected by comparing them 
on the object and pixel level. Each building footprint in the later 
scene that has a low overlap rate with one of the earlier scene, is 
supposed to be a new object. Therefore a minimum rate needs to 
be defined as the threshold in highlighting the changed object. 
 
The other possibility to detect newly built buildings is to fuse 
the building footprint from the post-event data and the change 
indicator derived with the pixel-based change detection 
approach. In this approach, an existing pixel-based 3D change 
detection approach was used which was proposed by Tian et al 
(2015). Thereby, the building change probability of each pixel 
is determined by using a belief function model. After that the 
average change probability of each building mask can be 
calculated. Building masks with a higher probability to be 
changes remain in the change detection results.  
 

3. EXPERIMENT 

3.1 Data sets 

Two test sites (a, b) were chosen for the experiments. Both are 
located in a mixed industrial and residential area in the east of 
Istanbul. This area is dynamic and fast changing, which makes 
it a good test region for change detection. In Figure 8, the 
images (a1, b1) are shown, which were captured on the 24th of 
August 2011 and (a2, b2) at the 7th of July 2012. They have a 
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size of 350 × 400 m (a) and 500 × 500 m (b), respectively. All 
images are acquired by the WorldView-2 satellite, which has 
one panchromatic band and eight multispectral bands. The 
multispectral bands are covering a spectral range from 400nm to 
1050nm and with a spatial resolution of 1.84m (Padwick et al., 
2010). Also along track panchromatic stereo data have been 
acquired in the same orbit. 
 
The DSM was calculated from this panchromatic stereo data 
and has originally 1 meter resolution (Tian et al., 2013). The 
DSMs have been resampled to 0.5 meter resolution in order to 
have the same resolution as panchromatic images. After 
pansharpening the resolution of the multispectral image could 
be improved to 0.5m, the same as the resolution of the 
panchromatic image. 

 
Figure 8. Study sites: (a1, b1) are the pre-event images. (a2, b2) 
are the after-event change images.  

3.2 Results and evaluation 

3.2.1 Building rooftop extraction 
 
In the original generated DSMs, the boundaries of objects are 
usually very blurry due to occlusions near the building 
boundaries leading to no-data areas close to buildings, which 
have been filled using interpolation. After the line based 
refinement, the boundaries of some buildings are sharper than 
before. 

 
For the building candidate detection procedure, a threshold of 4 
meter is set to select the high-level pixels. After the pre-
processing procedure, as described in the methodology part, all 
segments within a candidate region are kept and then tried to 
merge. Thereby, at first all areas with a size smaller than 70 
pixels (17.5 m2) are merged to their nearest neighbours, if the 
height difference between them is smaller than two meters. 
After that, merging is performed for all segments by using the 
multi feature merging procedure. Eq. (1) with 𝜔𝜔 = 1.5 is used 
to Eq. (1) to calculate the local threshold. All segments with an 
average height higher than the threshold are forming the 
building and are transferred into the building footprint.  
 
The obtained building rooftop masks have been overlaid with 
the building reference map and are shown in Figure 9. It shows 
only the rooftop mask from the post-event data. In this result the 
majority of the large size buildings are green which represent 
true positive, while especially small buildings are often blue. 
This trend is also represented in Table 1. In Table 1, the result is 
evaluated for different building sizes. While only few buildings 
with a size smaller than 125 m2 are detected, almost all 
buildings larger than 375 m2 are detected. Very few false 
positive objects were thereby recognized. As Figure 9 shows, 
most detected building boundaries match well with the 
manually labelled reference data. The statistics are presented in 
Table 2, where the number of pixels for each of the classes can 
be seen, for all four test regions. The true positive, true 
negative, false positive, false negative detection rates and the 
Kappa Index of Agreement (KIA) (Tian et al., 2013) are 
calculated.  
 
 

 
Figure 9. Detected building rooftop result on the post-event 
dataset (Green: True positive; Red: False positive; Blue: False 
negative).  
 

 
 

 

building size < 125 
[m2] 

125[m2] < building 
size < 250[m2] 

250[m2] < building 
size <  375[m2] 

building size >= 
375[m2] 

Over all 

True False 
negative True  False 

negative True False 
negative True False 

negative 
False 

positive 
a1 1 20 21 10 11 4 19 0 0 
a2 7 24 20 9 11 2 9 0 1 
b1 4 17 19 17 9 2 15 4 2 
b2 9 30 18 9 8 1 11 2 2 

Table 1.  Object based evaluation of the building footprints. 
 

 True positive False negative False positive True negative KIA 
a1 65434 30476 8218 455872 0.73 
a2 68818 24781 9385 457016 0.77 
b1 59355 46066 11198 883381 0.64 
b2 70056 32301 11282 885871 0.74 

Table 2. Pixel based building footprint evaluation. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-903-2017 | © Authors 2017. CC BY 4.0 License.

 
906



3.2.2 Change detection 
 

 
Figure 10. Change detection results, (a) and (b) are the region 
based change probability maps, (c) and (d) are the change 
detection results overlaid on the change reference mask (Green 
True positive; Red: False positive; Blue: False negative). 
 
Figure 10(a) and 10(b) are the change detection results from 
post-classification approach, where the two building footprints 
of one scene are compared with each other. All Segments with 
an overlap ratio lower than 0.7 are considered to be newly built 
buildings. The change detection results are overlaid on the 
change reference data. The region/ pixel based building mask 
evaluation approaches are further used to evaluate the change 
detection results. It can be seen that again the most of the larger 
new buildings are detected, while especially smaller ones are 
missing. However, there is also a big number of false alarms 
(red objects) that is leading to smaller KIA values (0.51 for test 
site a and 0.65 for Test site b, see Table 3). Better results are 
achieved with the second change detection approach (M2-a and 
M2-b). As can be seen in Figure 10(c), much fewer false 
positive are observed. The KIA values have been improved to 
0.66 and 0.71, respectively. The region based evaluation results 
are displayed in Table 4. 
 
Table 3. Pixel based evaluation of change detection results for 
the two test sites. 
 

 True 
positive 

False 
negative 

False 
positive 

True 
negative KIA 

M1-a 6485 4653 7211 541651 0.51 
M1-b 12136 6032 6415 975417 0.65 
M2–a 6485 4653 1993 546869 0.66 
M2–b 12136 6032 3840 977992 0.71 

 
Table 4. Region based evaluation of change detection results for 
the two test sites. 
 

 True 
positive 

False 
negative 

False 
positive 

M1-a 6 3 8 
M1-b 5 9 2 
M2–a 6 3 0 
M2–b 5 9 2 

 

4. DISCUSSION 

The DSM refinement method is leading especially to a better 
distinction of buildings that are standing close together. Further, 
single objects are getting a more homogeneous height value. 
Although the improvements are limited, they are bringing 
benefits for the following segmentation and are by this 
improving the final results. Segmentation without the 
refinement would be also possible, but the results would be 
more vulnerable to errors. 
 
Over-segmentation could be handled with merging, under-
segmentation would be more difficult to refine. Therefore, the 
first segmentation results are over-segmented and then refined 
with a merging procedure. For this, it is important to have a first 
segmentation that match well with the object boundaries. For 
boundaries that are not well recognizable in some of the images, 
multiple input features are used. Although this leads to longer 
processing times, sometimes it is necessary for accurate results. 
To reduce over-segmentation effects, merging is performed for 
the whole image, although just the building areas are of interest. 
 
In this approach, all segments with a height larger than the local 
height based threshold are assumed to be buildings. Thus, it is 
possible to detect and separate multiple buildings within one 
candidate area. However, sometimes there are parts of the 
buildings missing, like is shown in the red marked area in 
Figure 10. This is due to height differences within buildings and 
due to the already discussed cases of over-segmentation in 
buildings, which cannot be fully eliminated. Other approaches, 
like (Lee et al. 2003) and (Tian and Reinartz, 2013) propose to 
use Hough lines to extract accurate building shapes. Hough 
lines are thereby representing the main directions in an image. 
In case of having just one, or a few quadrangle buildings within 
one candidate area, this might truly increase the accuracy of the 
building footprints. Having many buildings in one candidate 
area, might however decrease the accuracy. 
 
Additional to these method based errors, some buildings could 
not be detected due to errors in the underlying data. Especially 
the inaccuracy of the DSM is causing some missing buildings, 
as objects need to have a certain height in order to be 
determined as a building. Overall, it can be stated that it is 
possible with this method to detect the majority of the big 
buildings, while small buildings are not well recognized. Due to 
the use of the previous segmentation, the shapes of the building 
footprints are close to those of the real buildings. Sometimes 
however, small parts of the buildings are missing, which 
influences the final result accuracy. 
 

5. CONCLUSION 

For urban planning, map updates, insurance, hazard prevention 
and real estate monitoring it is important to have actual data 
about all buildings in an area. Especially in urban areas, where 
the façades, the structures and alignment of buildings change 
fast, it is important to update data efficiently and reliably; 
therefore, there is a growing interest in the development of tools 
and sensors used for the detection of buildings – with reduced 
working times and reasonable costs (Gamba and Houshmand, 
2000). 
 
In this paper, an efficiently automatic building rooftop 
extraction and building change detection approach is shown and 
accurate results can be achieved based on WorldView-2 stereo 
data. It was shown that the results are very dependent on the 
DSMs quality. Better results would be achieved when more 
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accurate DSMs are available. Together with a further improved 
method this could lead to better usability of the automatic 
building footprints and change detection results. As lot of 
buildings/changes are correctly extracted with the proposed 
approach, it can be used to get a fast overview over an area. For 
especially smaller buildings are sometimes missing and the 
building boundaries are not always accurate, it should however 
be used in a semi-automatic way together with visual inspection 
to update maps or databases. In this research, fusing of the 
rooftop mask and the decision probability map has delivered the 
change detection results with higher accuracy. However, if there 
would be already one building footprint available, for instance 
some GIS cadastral data etc., the post-classification approach 
could be even more efficient, to detect change objects. Further 
comparison with existing approaches will be performed.  
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