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ABSTRACT: 

 

Remotely sensed land surface temperature (LST) downscaling is an important issue in remote sensing. Geostatistical methods have 

shown their applicability in downscaling multi/hyperspectral images. In this paper, four geostatistical solutions, including regression 

kriging (RK), downscaling cokriging (DSCK), kriging with external drift (KED) and area-to-point regression kriging (ATPRK), are 

applied for downscaling remotely sensed LST. Their differences are analyzed theoretically and the performances are compared 

experimentally using a Landsat 7 ETM+ dataset. They are also compared to the classical TsHARP method. 
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1. INTRODUCTION 

Land surface temperature (LST) is a crucial variable that 

impacts on many aspects of the human and physical 

environments. Remotely sensed images provide good sources 

for estimating LST, which can be retrieved from the thermal 

infrared (TIR) bands (e.g., in Landsat 5 TM, Landsat 7 ETM+ 

or Landsat 8 TIR sensor (TIRS) data). However, the TIR band 

often has a coarser spatial resolution than the corresponding 

multispectral bands. For example, the spatial resolutions of TIR 

bands of Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 TIRS 

are 120 m, 60 m and 100 m, but the corresponding multispectral 

bands of the Landsat data are all at a finer spatial resolution of 

30 m. In real applications, users always need to obtain more 

detailed spatial information of LST. Thus, it is great interest to 

downscale the LST to a finer spatial resolution for more reliable 

applications. 

 

The availability of finer spatial resolution (30 m) Landsat 

multispectral bands provides excellent opportunity to be fused 

with the LST image to produce 30 m LST. A classical method 

based on TsHARP (Agam et al., 2007) was developed for this 

issue. However, this method produces block artifacts in 

predictions. In this paper, four geostatiscal solutions, including 

regression kriging (RK) (Mukherjee et al., 2015), downscaling 

cokriging (DSCK) (Atkinson et al., 2008; Pardo-Igúzquiza et al., 

2006; Rodriguez-Galiano et al., 2012), kriging with external 

drift (KED) (Sales et al., 2013), and area-to-point regression 

kriging (ATPRK) (Wang et al., 2015, 2016a,b), were applied 

for downscaling LST retrieved from Landsat 7 ETM+ TIR band, 

with the aid of the finer spatial resolution Normalized 

Difference Vegetation Index (NDVI) image derived from the 

corresponding multispectral bands. Note that RK and DSCK 

were already applied for downscaling LST in earlier studies 

(Mukherjee et al., 2015, Rodriguez-Galiano et al., 2012). It is 

the first time to adopt KED and ATPRK for the issue in this 

paper. 

 

2. METHODS 

In this paper, the LST image was derived from the TIR band 

based on the radiative transfer equation method (Rodriguez-

Galiano et al., 2012). Let ( )C iZ x  be the LST value of pixel C 

centered at ix  (i=1,…,M, where E is the number of pixels) in 

the LST image, and ( )F jY x  be the NDVI value of pixel F 

centered at jx  (j=1,…, 2EG , where G is the spatial resolution 

(zoom) ratio between the LST and NDVI images) in the NDVI 

image. The notations F and C denote the fine and coarse pixels, 

respectively. The objective of downscaling is to predict target 

variables ( )FZ x  for all fine pixels. The principles of the four 

geostatistical solutions are described below. 

 

2.1 ATPRK 

The ATPRK method consists of two steps: regression modelling 

(for overall trend estimation) and area-to-point kriging (ATPK) 

(for downscaling residual remaining after removal of the trend). 

Suppose ˆ ( )F RZ  x  and ˆ ( )F ATPKZ  x  are predictions of the 

regression and ATPK parts, the ATPRK prediction is 

  

 ˆ ˆ ˆ( ) ( ) ( )F ATPRK F R F ATPKZ Z Z   x x x .  (1) 

 

For regression prediction, it makes full use of the fine spatial 

resolution information in the NDVI image, and is calculated as 

a linear combination of the NDVI image 

  

 ˆ ( ) ( )F R FZ aY b  x x                       (2) 

 

where a  and b  are two coefficients. They are estimated from 

the regression model constructed between the coarse LST image 

( )CZ x and the NDVI image upscaled to the coarse spatial 

resolution, ( )CY x , as shown in (3) 
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 ( ) ( ) ( )C CZ aY b R  x x x           (3) 

 

where ( )R x  is the residual term in the regression model. The 

two coefficients can be estimated by ordinary least squares. 

 

For ATPK prediction, it is calculated as a liner combination of 

the N coarse residuals surrounding the fine pixel 

 

 
1 1

ˆ ( ) ( ), s.t. 1
N N

F ATPK i i i

i i

Z R 

 

    x x     ( 4 ) 

 

where 
i  is the kriging weight for the ith neighboring coarse 

pixel. The N weights are calculated by the matrix below 
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In (5), ( , )CC i j x x  is the coarse-to-coarse residual 

semivariogram between coarse pixels centered at ix  and jx , 

( , )FC j x x  is the fine-to-coarse residual semivariogram 

between fine and coarse pixels centered at x and jx , and   is 

the Lagrange multiplier.  

 

Suppose s is the Euclidean distance between the centroids of 

any two pixels. The semivariograms in (5) are calculated by 

convolving the fine-to-fine residual semivariogram ( )FF s  with 

the point spread function (PSF) ( )Ch s  

 

 ( ) ( )* ( )FC FF Ch s s s                        (6) 

 ( ) ( )* ( )* ( )CC FF C Ch h  s s s s .              (7) 

 

The fine-to-fine residual semivariogram ( )FF s  is derived by 

deconvolution of the coarse residual semivariogram of the 

coarse residual image ( )R x . Details on deconvolution can be 

found in Wang et al. (2016a). 

 

2.2 KED 

In KED, for each fine pixel, the prediction is calculated as a 

linear combination of the N surrounding coarse LST pixels 

 
1 1

ˆ ( ) ( ), s.t. 1
N N

F KED i C i i

i i

Z Z 

 

    x x .    ( 8 ) 

 

The kriging weight 
i  is estimated by the kriging matrix below 
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(9) 

 

where ( , )CC i j x x and ( , )FC j x x  have the same meanings as 

those in (5). ( )C iY x  is the NDVI for coarse pixel centered at ix . 

The kriging weights need to be calculated for each fine pixel. 

 

2.3 DSCK 

In DSCK, the coarse LSTand fine NDVI are considered jointly. 

The prediction is a linear combination of the N neighboring 

coarse LST pixels and M neighboring fine NDVI pixels. 
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.         (10) 

 

The kriging weights i  and j  are estimated by the kriging 

matrix in (11), where ( , )ZZ

CC i j x x  and ( , )YY

FF i j x x are coarse 

and fine auto-semivariograms estimated from the original coarse 

LST pixels and fine NDVI pixels, respectively. ( , )ZY

CF i j x x is 

the cross-semivariograms between coarse LST and fine NDVI 

pixels. ( , )ZY

FF j x x  is the cross-semivariogram between fine LST 

and fine NDVI images, and ( , )ZZ

FC j x x  is the fine-to-coarse 

semivariogram between fine and coarse LST pixels. ( , )ZY

FF j x x  

and ( , )ZZ

FC j x x  need to be estimated by deconvolution and 

convolution processes. 

1 1 1 1 1 1( , ) ... ( , ) ( , ) ... ( , )

. . . . . . . .

. .

ZZ ZZ ZY ZY

CC CC N CF CF M        

       
 

x x x x x x x x

1

. . . . . .
. . . . . .

( , ) .ZZ

CC N

     
     

x x 1

1 1 1 1 1 1

.. ( , ) ( , ) ... ( , )

( , ) ... ( , ) ( , ) ... ( , )

. . . .

ZZ ZY ZY

CC N N CF N CF N M

YZ YZ YY YY

FC FC N FF FF M

  

   

    

     

    

x x x x x x

x x x x x x x x

. . . .
. . . . . . . .

. .

   
       
  

1 1

. . . .

( , ) ... ( , ) ( , ) ... ( , )

... ...

YZ YZ YY YY

FC M FC M N FF M FF M M   

   

     

  

x x x x x x x x

1

1

1

2

(

.

.

.

.

.

.

... ...

ZZ

FC

N

M













   
   

   
      

   
   
       
   
   
   
   
   

   
        

1

1

, )

.

.

.

( , )

( , )

.

.

.

( , )

1

0

ZZ

FC N

ZY

FF

ZY

FF M







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

x x

x x

x x

x x

                              (11) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-913-2017 | © Authors 2017. CC BY 4.0 License.

 
914



 

2.4 RK 

RK is a method different to ATPRK, where the coarse residuals 

from the regression model in (3) are downscaled to the fine 

spatial resolution by ordinary kriging 
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where 
i  is the kriging weight for the ith neighboring coarse 

pixel, and the weights are calculated by the matrix in (13) 
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In (13), ( , )i j x x  and ( , )j x x  are estimated from the coarse 

residuals directly, where the coarse or fine pixel is treated as a 

centroid. The RK prediction is a combination of the regression 

prediction in (2) and the kriging prediction in (12) 
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2.5 Differences between the geostatistical solutions 

The centroid-based RK method treats each coarse or fine pixel 

as a centroid and ignores the spatial support of pixels, and thus, 

its implementation is simple. Different from RK, the other three 

methods (DSCK, KED and ATPRK) take into account 

explicitly the size of support and predict variables from areal 

supports to points via semivariogram deconvolution to 

parameterize kriging for prediction (see the semivariograms in 

(5), (9) and (11)). 

 

The differences between DSCK, KED and ATPRK lie mainly in 

model complexity and computational cost. Specifically, DSCK 

is a one-stage method which considers the coarse LST and fine 

NDVI simultaneously, by including both auto-semivariograms 

and cross-semivariogram in the single kriging matrix. The 

kriging weights need to be calculated only once. However, both 

the auto-semivariogram ( , )ZY

FF j x x  and cross-semivariogram 

( , )ZZ

FC j x x  in (11) involve complex deconvolution and 

convolution, which would sometimes require manual 

intervention. 

 

KED does not need the cross-semivariogram that relates coarse 

LST with fine NDVI in DSCK. Alternatively, it includes the 

fine NDVI in the kriging matrix. The extension of the matrix 

can result in unstable matrix (also the case for DSCK), 

especially when the covariate (i.e., fine NDVI) does not vary 

smoothly in space (Goovaerts, 1997). Furthermore, the KED 

kriging weights are calculated locally for each fine pixel, which 

greatly increases the computational cost, especially for large 

areas. 

 

As a recently developed solution, ATPRK noticeably simplifies 

the model complexity and reduces the computational cost. The 

utility of the cross-semivariogram in DSCK (i.e., accounting for 

the cross-correlation between coarse LST and fine NDVI) is 

achieved by the simple regression model in ATPRK instead (see 

(2) and (3)). ATPRK requires only auto-semivariogram 

modelling in downscaling residuals. The size of the kriging 

matrix in ATPRK in (5) is much smaller than that in DSCK in 

(11). Thus, ATPRK is much easier to automate and more user-

friendly than DSCK. Compared to KED, the kriging weights 

need to be calculated only once for the entire study area. This is 

because ATPRK explicitly separates trend estimation (i.e., 

regression modelling) from ATPK-based spatial prediction of 

residuals. This makes ATPRK a fast image downscaling 

approach and free of the risk of instability in the kriging weights 

calculation. 

 

With respect to the existing TsHARP method, it is also a two-

step approach. The first step also involves regression modelling 

(as in ATPRK and RK). In the second step of TsHARP, 

however, the coarse residuals are added back to fine regression 

predictions straightforwardly. The inconsistency in spatial 

resolutions between the regression prediction and residual can 

result in blocky artifacts in TsHARP predictions. 

 

3. EXPERIMENTS 

The four geostatistical methods and the TsHARP method were 

tested using a data covering a 15 km by 15 km region in 

Granada, Spain. The data were acquired on 20 July, 2002. For 

objective evaluation, the 60 m LST and 30 m NDVI images 

were degraded to 120 m and 60 m, respectively. The task was to 

fuse the 120 m LST with the 60 m NDVI images to produce the 

60 m LST image. The available 60 m LST image was used to 

evaluate the accuracy. 

 

Fig. 1 shows the results of the five methods, and Fig. 2 shows 

the results of a sub-area for convenience of visual comparison. 

From the results, we can observe that there are noticeable 

blocky artifacts in the TsHARP result. Due to the unstable 

kriging matrix, there are also blocky artifacts in the KED result. 

Compared to RK, DSCK and ATPRK can reproduce more 

spatial variations (see the restoration of the red pixels). 

 

The quantitative assessment is in Table 1, where five indices are 

used, including the root mean square error (RMSE), correlation 

coefficient (CC), universal image quality index (UIQI) (Wang 

and Bovik, 2012), relative global-dimensional synthesis error 

(ERGAS), and coherence. Coherence (quantified by the CC) is 

an index measuring the relation between the coarse LST and the 

coarse LST obtained by upscaling the LST downscaling 

predictions. As seen from Table 1, ATPRK can produce more 

accurate results than the other methods, and can perfectly 

preserve the original coarse LST data. Although the TsHARP 

prediction has perfect coherence with the coarse LST, the 

RMSE and ERGAS are larger, and the CC and UIQI are smaller 

than that of DSCK, KED and ATRPK. Failing to account for 

the size of supports, RK leads to the smallest coherence. 

 

4. CONCLUSION 

This paper studies the use of the four geostatistical solutions 

(RK, DSCK, KED and ATPRK) for downscaling LST and 

compares their performances based on a case study for the 

Landsat 7 ETM+ dataset. RK fails to account for the change of 

support in downscaling and produces less accurate result than 

the other three geostatistical solutions. Their accuracies are 

generally greater than the classical TsHARP method. Amongst 

all methods, ATPRK can produce the most accurate result, and 

can perfectly preserve the original coarse LST data. 
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Figure 1. 60 m downscaling results of LST. (a) 60 m reference. (b) TsHARP. (c) RK. (d) DSCK. (e) KED. (f) ATPRK. 

 

   
(a1)                                            (b1)                                            (c1) 

   
(d1)                                            (e1)                                            (f1) 

   
(a2)                                            (b2)                                            (c2) 
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(d2)                                            (e2)                                            (f2) 

Figure 2. Results of two zoom areas in Fig. 1. (a) 60 m reference. (b) TsHARP. (c) RK. (d) DSCK. (e) KED. (f) ATPRK. 

 

Table 1. Quantitative assessment on the methods for the entire study area 

 RMSE CC ERGAS UIQI Coherence 

Ideal 0 1 0 1 1 

TsHARP 0.9480 0.9763 0.1505 0.9763 1 

RK 1.0925 0.9681 0.1735 0.9680 0.9883 

DSCK 0.9046 0.9785 0.1436 0.9785 0.9996 

KED 0.9142 0.9778 0.1452 0.9778 0.9951 

ATPRK 0.8468 0.9811 0.1345 0.9811 1 
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