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ABSTRACT: 

 

To solve the problems of existing method of change detection using fully polarimetric SAR which not takes full advantage of 

polarimetric information and the result of false alarm rate of which is high, a method is proposed based on test statistic and Gaussian 

mixture model in this paper. In the case of the flood disaster in Wuhan city in 2016, difference image is obtained by the likelihood-

ratio parameter which is built using coherency matrix C3 or covariance matrix T3 of fully polarimetric SAR based on test statistic, 

and it becomes a reality that the change information is automatic extracted by the parameter of Gaussian mixture model (GMM) of 

difference image based on the expectation maximization (EM) iterative algorithm. The experimental results show that the overall 

accuracy of change detection results can be improved and false alarm rate can be reduced using this method by comparison with 

traditional constant false alarm rate (CFAR) method. Thus the validity and feasibility of the method is demonstrated. 
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1. INTRODUCTION 

Accurate and timely change detection of Earth’s surface features 

is extremely important for understanding relationships and 

interactions between people and natural phenomena. It has been 

widely recognized in the scientific community as a key element 

in a variety of applications, such as environmental impact 

assessment (Almeida, 2007; Chavez, 1994; Engeset,2002), 

ecological monitoring (Cihlar, 1992; Zhu, 2006), global change 

monitoring (Bruzzone , 1997), state and local planning (Hame , 

1998; Lu, Sader , 2001), and regulatory policy development 

(Ridd, 1998;  Zhang, 2001). Due to its all-weather mapping 

capability independently of, for instance, cloud cover, change 

detection of polarimetric synthetic aperture radar (PolSAR) 

plays an important role in many application domains (Grover, 

1999; Rignot, 1993; Stramondo, 2006). Meanwhile, 

unsupervised change detection techniques do not need to 

explicitly identify the types of land cover or land use transitions 

that have taken place in the region of concern (Qiu, 2003). 

Hence, these techniques are suitable for many applications. 

 

However, existing method of unsupervised change detection 

using fully polarimetric SAR which not takes full advantage of 

polarimetric information and the result of false alarm rate of 

which is high (Bovolo, 2006). To solve the problems of existing 

method of change detection using fully polarimetric SAR which 

not takes full advantage of polarimetric information and the 

result of false alarm rate of which is high, a method is proposed 

based on test statistic and Gaussian mixture model in this paper.  

 

In section 2, the proposed change-detection methodology is 

derived, and the method of similarity measure and Gaussian 

mixture model are introduced. Section 3 reports the results of 

the proposed approach on the multi-temporal SAR data over 

WuHan. Finally, conclusions are drawn in section 4.  

 

2. METHODOLOGY 

Let us consider two full PolSAR images both follow a complex 

Wishart distribution (Gong, 2014), 

i.e. ( , , )xX W q n  ( , , )yY W q m   

 

According to a test statistic theory (Stramondo, 2006), we make 

the hypothesis as follows, Null hypothes is H0 (two data have no 

change), the alternative hypothes is H1 (two data have change) 

(Bruzzone, 1997).  

 

If the null hypothesis is true, the likelihood ratio parameter of 

fully polarimetric SAR is 
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Its range is [0,1].Where, 
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If m=n, Eq.(1) is changed as below. 

 
(2 2 )InQ n qIn In X In Y In X Y      (4) 

  

where lnQ describes the similarity of corresponding features 

and its range is (-∞,0], the more lnQ close to 0, the more similar 

of the corresponding features, which means less likely it is to 

change and vice versa. Hence, similarity parameter lnQ 

criticizes the similarity of two covariance matrixes and judges 

that change happens or not (Seto, 2003). We selected                   
2 InQ as best threshold and obtained difference image, 

where, 
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Meanwhile, The data distribution P(xd) of feature vectors can be 

modeled as a weighted sum of two distributions representing the 

‘‘changed’’ class and ‘‘unchanged’’ class data distributions 

(Celik , 2011), i.e., 

 

d u d c d(x ) p(w )p(x ) p(w )p(x )u cp w w 
 

(6) 

  

Where d u(x w )p  and d(x w )cp  are a posterior 

probability density functions, and P(wu) and P(wc) are a priori 

probabilities of the classes wu and wc, respectively. The data 

distribution d(x )p can also be modelled using N component 

GMM (Goodman, 1963), i.e., 
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Where P(n) is the prior probability of the data point having 

been generated from the component n of the mixture, and 

d(x )p n  is the nth component density modeled with Gaussian 

density function. 

 

The data distribution modeled with Eq. (7) can be separated 

into two distributions representing the data distributions of 

‘‘changed’’ and ‘‘unchanged’’ classes. Each pixel at the 

coordinate (i, j) with feature vector Xd(i, j) is going to be 

labeled with one of the two classes, wc or wu, according to 
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The optimum combination with index m0 is obtained by finding 

an intermediate change detection mask CM m0 for which the 

sum of the mean square error (Em0) of ‘‘changed’’ and 

‘‘unchanged’’ pixel values of the difference image is the 

minimum (Zhao, 2016), i.e., 
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It is worth to note that the EM-based algorithm (Sader, 2001) is 

a special case of GMM algorithm when feature vector for each 

pixel is constructed with no contextual information, i.e. w = 1, 

and two components (N = 2) are used for GMM representation 

(Lu, 2005). Figure 1 shows the study procedure of the Gaussian 

mixture model. 
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Figure 1. The procedure of this study 

 

The basic processing flow of the proposed method (Figure 1) 

consists of data preprocessing, likelihood-ratio parameter 

construction, change information automatic extraction with 

Gaussian mixture model algorithm and precision evaluation. 

First, speckle noise is removed by Refined_Lee filtering for the 

two registered fully polarimetric SAR images. As the coherency 

matrix C3 or covariance matrix T3 of fully polarimetric SAR 

data follows a complex Wishart distribution. The likelihood-

ratio parameter is built by a test statistic based on Wishart 

distribution to represent change features and the difference 

image also is obtained. Then the data distribution of the 

difference image computed from satellite images of the same 

scene acquired at different time instances is modeled by using 

the expectation maximization (EM) iterative algorithm and 

Gaussian mixture model algorithm and it also becomes a reality 

that the change information is automatic extracted. Finally, the 

precision of change detection result is evaluated. 

 

3.  RESULT AND ANALYSES 

3.1 Description of the image datasets 

In order to assess the effectiveness of the change detection 

algorithms for the analysis of the difference image, bi-temporal 

Radarsat-2 data of the flood disaster in Wuhan city in 2016 are 

considered in this paper. The SAR image dataset is composed of 

two images of size 5752×3788 pixels which are regions from 

two SAR images acquired by the Radarsat-2 over an area near 

the city of Wuhan, China. on June 25, 2015 and July 6, 2016, 

respectively. The SAR images are shown in Figure 2. 
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(a) The Pauil-RGB images of June 25, 2015 

 
(b) The Pauil-RGB images of July 6, 2016 

Figure 2. The Pauil-RGB images of datasets used in 

experiments: (a) Radarsat-2 SAR image acquired on June 

25, 2015; (b) Radarsat-2 SAR image acquired on July 6, 

2016. 

The two red boxes labeled regions are used to give a detailed 

assessment in Figure 2 (b). All those regions have a common 

characteristic that are regions of water. Region 1 is YanDong 

Lake (Figure 3), and region 2 is LiangZi Lake (Figure 4).  

 

 
(a) June 25, 2015 

 
(b) Jul.6, 2016 

 
(c) ground truth 

Figure 3. The Pauil-RGB images of YanDong Lake on (a) 

Jun.25, 2015; (b) Jul.6, 2016; (c) ground truth 

The bi-temporal PolSAR images shown in Figure 3 (a) (b) were 

acquired on Jun.25, 2015, and Jul.6, 2016, respectively. The 

image size is 400*400 pixels. The detailed assessments of area 

is located in YanDong Lake of Wuhan include some grassland, 

city and water bodies. The main changes occurred in the water 

area, because of continuing rain. 

 

 
(a) June 25, 2015 
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(b) July 6, 2016 

 
(c) ground truth 

Figure 4. The Pauil-RGB images of Liangzi Lake on (a) 

Jun.25, 2015; (b) Jul.6, 2016; (c) ground truth 

The bi-temporal PolSAR images shown in Figure 4 (a) (b) 

were acquired on Jun.25, 2015, and Jul.6, 2016, respectively. 

The image size is 300*500 pixels. The detailed assessments of 

area is located in LiangZi Lake of Wuhan include some 

grassland, city and water bodies. The main changes occurred in 

the water area, because of continuing rain. 

 

3.2 Implementation of change detection algorithms 

Change detection algorithms which are based on statistical data 

modeling are utilized to test the performance of GMM 

algorithm and EM-based algorithm (Ridd, 1998).In the 

implementation of test statistic and GMM algorithm, the initial 

estimate of the number of components (N) for the GMM is set 

as N = 10 which is automatically adjusted by annihilating 

components that are not supported by the data. Furthermore, in 

order to make fair comparisons with EM-based algorithm, the 

parameter w = 1 is used to consider only single pixel 

information. However, the effect of parameter w on GMM 

algorithm is separately investigated. 

 

3.3 Experiments and Results 

The intersection of the two Gaussian distributions representing 

‘‘changed’’ and ‘‘unchanged’’ class data distributions separates 

the difference image data into two clusters. The intersection 

point determines a threshold value that segments the difference 

image data into two regions representing ‘‘changed’’ and 

‘‘unchanged’’ classes. As shown in Fig. 3, GMM algorithm 

performs better in fitting model to difference image data and in 

estimating data distributions of ‘‘changed’’ and ‘‘unchanged’’ 

classes than constant false alarm rate(CFAR) algorithm. 

Because of better data modeling, it can separate ‘‘changed’’ and 

‘‘unchanged’’ classes more efficiently. 

 

 
(a) Our method 

 
(b) CFAR 

Figure 5.  Change detection results of Our method on 

SAR image dataset with different regions 

 

Method Overall 

Accuracy 

False Alarm 

Rate 

CFAR 89.02% 6.29% 

Our method 91.84% 2.03% 
 

Table 1.  Performance Evaluation of change detection 

Over YanDong Lake 
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(a) Our method 

 
(b)CFAR 

Figure 6. Change detection results of Our method on 

SAR image dataset with different regions 

 

Method Overall 

Accuracy 

False Alarm Rate 

CFAR 88.61% 8.56% 

Our method 92.24% 1.13% 

Table 2. Performance Evaluation of change detection Over 

LiangZi Lake 

The experimental results (as shown in Figure 5, Table 1 and 

Figure 6, Table 2) show that the overall accuracy of change 

detection results can be improved and false alarm rate can be 

reduced using this method by comparison with some traditional 

methods, such as constant false alarm rate (CFAR) method.  

 

4. CONCLUSIONS 

Unsupervised change detection based on test statistic and 

Gaussian mixture model algorithm for multi-temporal PolSAR 

images is proposed. As GMM algorithm can also adequately 

handle different types of spatial sampling. The data distribution 

of the difference image computed from satellite images of the 

same scene acquired at different time instances is modeled by 

using GMM algorithm. Consequently, the results show clearly 

that the test statistic and Gaussian mixture model improved 

change detection capability for fully polarimetric SAR data. 

Furthermore, the increase in the initial value of the number of 

mixture components N will also increase the computational 

complexity of GMM algorithm. 
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