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ABSTRACT: 
 
 
In this paper, a labelling method for the semantic analysis of ultra-high point density MLS data (up to 4000 points/m2) in urban road 
corridors is developed based on combining a conditional random field (CRF) for the context-based classification of 3D point clouds 
with shape priors. The CRF uses a Random Forest (RF) for generating the unary potentials of nodes and a variant of the contrast-
sensitive Potts model for the pair-wise potentials of node edges. The foundations of the classification are various geometric features 
derived by means of co-variance matrices and local accumulation map of spatial coordinates based on local neighbourhoods. 
Meanwhile, in order to cope with the ultra-high point density, a plane-based region growing method combined with a rule-based 
classifier is applied to first fix semantic labels for man-made objects. Once such kind of points that usually account for majority of 
entire data amount are pre-labeled; the CRF classifier can be solved by optimizing the discriminative probability for nodes within a 
subgraph structure excluded from pre-labeled nodes. The process can be viewed as an evidence fusion step inferring a degree of belief 
for point labelling from different sources. The MLS data used for this study were acquired by vehicle-borne Z+F phase-based laser 
scanner measurement, which permits the generation of a point cloud with an ultra-high sampling rate and accuracy. The test sites are 
parts of Munich City which is assumed to consist of seven object classes including impervious surfaces, tree, building roof/facade, low 
vegetation, vehicle and pole. The competitive classification performance can be explained by the diverse factors: e.g. the above ground 
height highlights the vertical dimension of houses, trees even cars, but also attributed to decision-level fusion of graph-based contextual 
classification approach with shape priors. The use of context-based classification methods mainly contributed to smoothing of labelling 
by removing outliers and the improvement in underrepresented object classes. In addition, the routine operation of a context-based 
classification for such high density MLS data becomes much more efficient being comparable to non-contextual classification schemes.  
 
 

1. INTRODUCTION 

Object semantic labeling is a very important issue for urban 
remote sensing. The results are appealing for a wide range of 
applications such as facility mapping, environment assessment 
and road inventory. While digital imaging sensors are frequently 
adopted to characterize the urban landscape and land use types, 
mobile laser scanners (MLS) are increasingly used to directly 
acquire dense 3D geo-data about urban facility along the road 
corridor (Babahajiani et al., 2016;Yu et al., 2015). MLS is 
generally used for small-scale area applications, such as road 
inventory in individual sections, and provide accurate and dense 
3D data of the object surfaces. However, the point density is 
dependent on the distance of the scanner to the individual objects, 
resulting in an inhomogeneous 3D point cloud. The main 
application area for MLS is the inclusion of road peripheral 
environments, such as parts of urban or rural areas with focus on 
road facility but usually very high point densities. 
 
Nowadays, due to the availability of large amounts of labeled 
data and powerful computers, the success of machine learning 
methods in classifying point clouds is already confirmed on 
diverse applications. The automatic interpretation of 3D point 
clouds is a highly current topic and is becoming increasingly 
important in the field of remote sensing, computer vision and 
robotics. Reasons for this include the development of MLS, the 
further increased adoption of Unmanned Aerial Systems for data 
acquisition. Several researchers have successfully applied the 
semantic annotation scheme to point cloud data. Early days 
started with predicting discrete class label for each point by using 
feature vector. Over recent years, with high resolution data there 
is an opportunity for fine-grained classification such as roads, 
building facades/roofs, trees, power lines, poles/tree stems and 

cars using sophisticated features and machine learning 
algorithms(Wang et al., 2015; Yao et al., 2016). Especially in 
urban areas, there are many application areas that are based on 
3D point clouds. These include, for example, the generation of 
3D city models for the planning of infrastructure and urban 
development or the use of vehicle navigation. A basic step for 
most of the above applications is to perform a classification of 
the 3D point clouds in order to assign a semantic object class 
(e.g., car, building, vegetation or road) to each individual 3D 
point. 
 
Former studies are frequently focused on individual object 
classes such as buildings, vegetation, or street lights/traffic signs 
(Steinsick et al., 2017; Yu et al., 2015). Weinmann et al. (2015) 
used Conditional Random Fields (CRF) for point-by-point 
classification of several objects in urban ALS or MLS data. The 
use of CRF shows a clear improvement in the classification 
results compared to conventional methods such as Random 
Forest (RF) and Support Vector Machines (SVM). However, the 
complex model of the CRF increases the calculation effort, which 
is becoming impossible for MLS data with such density. 
Moreover, for semantic labelling in point clouds, Lindenbergh et 
al. (2015) used super-voxel features of dense MLS data and 
classification-based segmentation scheme for tree detection and 
parameter extraction. However, up to 97% of point cloud data 
were reduced via voxelization which could lead to 
undersegmentation effect. Hackel et al. (2016) presented an 
efficient classification method for dense 3D points by 
constructing approximate multi-scale neighborhoods for 
extracting a rich feature representation in very little time. But in 
this work topological relations among the point clouds were 
unfortunately not considered. 
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The most common difficulties concerning the classification of 
MLS point clouds are mainly due to the large amount of data, 
variations in point density, incomplete structures due to 
occlusions, or due to differences between objects within the same 
class. Due to very complex structures and many different 
neighboring object classes, 3D scenes in urban areas are 
particularly challenging. The aim of this work is to develop a 
method for the dense semantic labeling of 3D point clouds in 
urban areas, which is applicable for ultra-high point density MLS 
data. The analysis includes all the necessary steps to assign an 
object class to each 3D point: (i) the selection of a suitable local 
point neighborhood for the (ii) extraction of distinctive features; 
and (iii) performing the context-based point -wise classification 
using an evidence fusion method. 
 
The goal of this work is to develop a workflow for dense semantic 
labelling in city road corridors using very high fidelity MLS data, 
which is based on combining a shape-based categorization 
scheme with point-wise CRF classification using spatial-locality 
features. We propose an effective strategy to address time-
consuming contextual classification task for urban scenes based 
on point labeling.  
 

2. METHOD 

In this section, we present the framework for automated point 
classification in ultra-dense MLS point clouds. We first introduce 
locality-based spatial features with optimized neighborhood size. 
We then introduce the plane-based region growing operation 
adopted for shape prior extraction and fixing their labels using 
rule-based classifier. Finally, we use the concept of evidence 
fusion to refine initial labeling results by a constrained CRF 
method for subsets of graph nodes. An overview of the proposed 
semantic labeling framework is illustrated in Fig. 1. 
 
The goal of the classification of point clouds is to assign each 3D 
point ܲ ݅ one object class label. In these procedures, each 3D point 
is classified independently of its neighborhood. Recently, 
however, mainly context-based classification methods were 
presented, in which the object classes of the points in the 
neighborhood are included in the assignment process of the 
labels. As a result, all points are classified simultaneously. In this 
work a context-aware classification scheme is applied based on 
combining a constrained CRF and RF classifier (Fig 1). 
 
2.1 Local neighbourhood definition for feature extraction 

At the very beginning, we have to downsample a point cloud 
dataset by reduce the number of points by 5 times using a 
voxelized grid approach. The VoxelGrid operation that we used 
creates a 3D voxel grid (a voxel grid is a set of tiny 3D boxes in 
space) over the input point cloud data. Then, in each voxel, all 
the points present will be approximated with its center. This 
approach is a bit faster than approximating them with the centroid 
of the voxel, and it is supposed to sufficiently represent the 
underlying surface of object classes to be classified. The first step 
is to define a suitable local neighborhood for a point cloud with 
ܰ points ܲ݅ = (ܺ݅, ܻ݅, ܼ݅) ∈ ℝ3 with ݅∈ {1, ..., ܰ}. The definition 
of the neighborhood serves to describe the local 3D structure 
around a given point ܲ݅ and thus forms the basis for the extraction 
of geometric features. In this work two neighborhood definitions 
are considered: Spherical neighborhoods ܰݏ with fixed radius ݏݎ 
and an optimal spherical neighborhood ܰݐ݌݋ with varying radius, 
based on the k ∈ℕ nearest neighbors and Eigen-entropy 
(Weinmann et al., 2015). 

 
Figure 1. Workflow for the proposed labelling framework. 

 
The value ݇ for a point ܲ݅ depends on the local 3D structure and 
the local point density. As a result, some proposed methods for 
automatically determining individual values for ݇ are based on 
the local geometric properties of point clouds. To derive these 
properties, the 3D covariance matrix C ∈ℝ3×3 is calculated for a 
given point and its ݇ nearest neighbors. The three eigenvalues λ1, 
λ2, λ3∈ℝ, with λ1≥λ2≥λ3≥0 represent the extent of a three-
dimensional covariance ellipsoid along its main axes and are thus 
suitable for describing the local 3D structure. The Shannon 
entropy of the normalized eigenvalues ݁1, ݁2, ݁3 serves as a basis 
for the calculation of the Eigen-entropy ܧλ,i. 
 

, 1 1 2 2 3 3ln( ) ln( ) ln( )iE e e e e e e         (1) 

The Eigen-entropy is a measure of the disorder of the 3D points 
within the local neighborhood. The idea of this approach is to 
find the optimum value of k, which minimizes the disorder of the 
3D points within the neighborhood. But the value ݇ is varied with 
an increment of Δ݇ for each point in a set interval of ݇݉݅݊ to ݇݉ܽݔ. 
The value ݇ corresponding to the minimum Shannon entropy is 
assumed to be the optimal value. Once the local point 
neighborhood has been defined for each point ܲ݅, features can be 
derived. In this work, the features described in Weinmann et al. 
(2015) have been used, which are a combination of 2D and 3D 
features. Based on the three eigenvalues of the 3D covariance 
matrix, a total of nine geometric features are determined: 
Linearity ܮλ, planarity ܲλ, and sphericity ܵλ provide information 
on whether it is a linear 1D structure, a planar 2D structure, or a 
volumetric 3D structure. The other eigenvalue-based features are 
the omnivariance ܱλ, anisotropy ܣλ, eigenentropy ܧλ, the sum of 
the eigenvalues Σλ and the change in the curvature ܥλ. As a further 
feature, the verticality is defined as ܸ = 1- | ݊ݖԦ |, which can be 
calculated using the third component ݊ݖԦ of the normal vector. 
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In the case of MLS data with small-scale extension, however, the 
absolute height ݏܾܽܪ is used. Furthermore, the standard deviation 
of the height σܪ and the maximum height difference Δܪ within 
the local neighborhood serve as features. Furthermore, 2D 
features are extracted from an accumulation map of 3D point 
clouds by dividing the projection plane into discrete square bins 
with a side length of s. For each point the following 
characteristics are derived from the bin assigned to it: the number 
of points Nܿܿܣ in the bin, the maximum height difference Δܿܿܣܪ 
and the standard deviation of the height σܪ,Acc 
 
2.2 Pre-classification using plane fitting and heuristic rules 

The goal of this step is to extract planar structures from point 
clouds and assign semantic labels based on a set of heuristic rules. 
The motivation is twofold. First, planar surfaces make up a 
significant portion of the scene, while the semantic interpretation 
of vast horizontal or vertical planes as roads and facades is 
relatively straightforward. On the other hand, by removing large 
planes from the point cloud we are potentially simplifying the 
subsequent CRF based classification problem, because a 
decomposition of the entire scene into unconnected parts may be 
achieved. Each part may then be optimized independently. 
 
For initial class probability calculation the application of random 
forest to the data is conducted in order to generate class-specific 
probabilities for each point. The plane extraction procedure is 
based on the region growing principle with a smoothness 
constraint due to Rabbani et al (2006). First, normal vector and 
curvature estimates are obtained for each point. Then, seed points 
are iteratively selected and their corresponding regions are 
expanded with neighboring points based on two criteria: 
maximum neighbor spatial distance d3d and maximum normal 
vector angular deviation dn compared to the seed point’s normal. 
Each recovered region with a point count above a predefined 
threshold is considered as a plane candidate and processed using 
a RANSAC plane fitting procedure. Finally, each plane is 
classified into one of 5 categories: car, roof, façade, ground or 
tree, based on the following simple rules. Let devz, havg, hmax, ptree 
denote, respectively: the plane normal’s angular deviation to the 
Z axis, the average and maximum above-ground height of the 
plane’s supporting points, as well as the average per-point 
probability of the ‘tree’ label obtained from random forest. Then, 
the heuristic rules can be defined as follows: 
 

1. IF ptree > ptree,thr THEN class ← tree 

2. ELSE IF | devz – 90°| < 10° 

2a.  IF hmax > 2 AND | devz – 90°| < 5° THEN 

class ← façade  

2b.  ELSE class ← car 

3. ELSE 

3a.  IF havg < 0.15 THEN class ← ground 

3b.  ELSE IF havg > 3 THEN class ← roof 

3c.  ELSE class ← car 

 
Figure 2. An illustration of rule-based planar region growing 

with all the non-planar points assigned to black 
 

2.3 Constrained conditional random field with fixed labels 

Spatial contextual features together with ensemble classifier were 
found as effective means in former study, for discriminating 
classes in semantical labeling for urban areas. Covariance matrix 
based features were extracted in a local neighborhood, which can 
be implemented using different classifiers such as random 
forests. Since those features used to generate unary probability 
could be complementary to the pair-wise interaction features 
modeled by the CRF, a separate graph-based optimization is done 
on the features to output class probabilities which are combined 
with those fixed labels imposed by shape priors.  
 
CRFs are graph-based contextual classifiers which allow the 
modeling of dependencies between adjacent points. In contrast to 
standard classification, CRFs directly model the joint probability 
of the entire labeling Y of all objects simultaneously, conditioned 
on their features x (KUMAR & HEBERT 2006): 
 

(ݔ|ܻ)ܲ =
ଵ

௓(௫)
∏൫݌ݔ݁ ,ݔ)߶ ௜)௜∈௡ݕ ∏ ∏ ,ݔ)߰ ௜ݕ , ௝)௝∈ே೔௜∈௡ݕ ൯   (2) 

 
 corresponds to normalization constant referred to as a (ݔ) ܼ
partition function. The equation consists of two functions: the 
association potential φ(݅ݕ ,ݔ) and the interaction potential ψ(ݔ, 
 (݁ ,݊) = ܩ The CRF is represented by an undirected graph .(݆ݕ ,݅ݕ
with a set of nodes and a set of edges. The nodes ݊i∈ ݊ 
correspond to the 3D points; the edges ݁ij∈ ݁ connect two 
neighboring nodes ݊݅ and ݆݊ and model their dependencies. The 
point cloud has an irregular arrangement in three-dimensional 
space. In view of the high number of MLS points, the size of the 
local neighborhood within the graph is limited by a threshold for 
reasons of computing capacities. The vector ܻ contains the class 
labels ݅ݕ for each 3D point, whereas x represents the independent 
variables. The aim of the classification is to find the optimal 
configuration Y, for which ܲ (ܻ|ݔ) becomes maximal. 
 
Introducing fixed labels 
 
Solving the optimization problem (2) for the set of all points may 
be computationally prohibitively expensive, especially for the 
case of high-density MLS point clouds. Therefore, it is desirable 
to decompose the problem into independent subproblems using 
the planar structures recovered in Sec. 2.2. For this purpose, 
consider a subset of labeled points PL of the entire point cloud, 
with index set L, i.e. ௅ܲ = ሼ ௜ܲ: ݅ ∈  ሽ. The labels of points fromܮ
L correspond to the planar structure labels assigned in the 
previous step. Then, we can express the log-likelihood of labeling 
Y from (2) in the following manner: 
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ℓ(ܻ) = ∑ (௜ݕ)݂ +௜∉௅ ∑ (௜ݕ)݂ + ∑ ݃൫ݕ௜, ௝൯ݕ +௜∉௅,௝∉௅௜∈௅

∑ ݃൫ݕ௜ , ௝൯ݕ +௜∉௅,௝∈௅ ∑ ݃൫ݕ௜ , ௝൯ݕ + ௜∈௅,௝∈௅ܥ     (3) 
 
In the above, ݂(ݕ௜) = ln ߶൫ݔ, ,൯݅ݕ ݃൫ݕ௜ , ௝൯ݕ = ln ,ݔ)߰ ,݅ݕ  (݆ݕ

and C is a constant. Since the labels of points from L are fixed, 
the terms in the energy function defined only over L are constant 
and do not influence the optimization. Moreover, the mixed 
pairwise term where each edge connects a fixed and a non-fixed 
node is transformed into a new unary potential ݃′:⋀ ݃ᇱ(ݕ௜) =௜∉௅
∑ ௜ݕ)݃ , ௝)௝∈௅,௜~௝ݕ , where ~ refers to the graph’s adjacency 
relation. Therefore, a new optimization problem over a reduced 
set of labels ܻ′ can be defined associated only with points having 
non-fixed labels.  
 
Definition of potentials 
 
The association potential φ(݅ݕ ,ݔ) connects the data ݔ and the 
corresponding class labels. For this potential, the result of any 
discriminative classifier can be used. The classifier must be able 
to provide a probability distribution over the possible values of 
the class label. A feature vector ݂i(ݔ) is created for each node 
based on the characteristics described in section 2.1. The 
association potential can be defined as the a posteriori probability 
of a local discriminative classifier based on ݂i(ݔ): φ(݅ݕ ,ݔ) = log(݌ 
 .(((ݔ)݂݅|݅ݕ)
 
A RF is used for the association potential φ (݅ݕ ,ݔ). For RF, an 
ensemble of ܰܶ independent decision trees is created which are 
trained on random samples of the data, based on the bagging 
principle. The subsequent classification is done by means of a 
majority decision in which each tree votes for a class. The 
interaction potential ψ (݆ݕ ,݅ݕ ,ݔ) describes the local context by 
characterizing the interaction between the labels of two adjacent 
nodes ൫ݕ௜ ,  ௝൯ and features x. In this work a variant of the oftenݕ
used contrast-sensitive Potts model (BOYKOV & JOLLY 2001) 
is applied: 
 

݃݋݈ ቀ߰൫ݔ, ௜ݕ , ௝൯ቁݕ = ௬೔௬ೕߜ
∙ ଵݓ ∙

ேೌ

ேೖ೔

ቂݓଶ + (1 − (ଶݓ ∙

݌ݔ݁ ቀ−
ௗ೔ೕ(௫)²

ଶఙ²
ቁቃ      (4) 

 
Here, δ݆ݕ݅ݕ corresponds to the Kronecker delta, which has the 
value one if ݆ݕ= ݅ݕ and otherwise assumes zero. ݀݅j(ݔ) is the 
Euclidean distance between the two feature vectors ݂݅(ݔ) of the 
node ݅ and ݂݆(ݔ) of the node ݆ connected by a common edge. The 
value ܰܽ is the average number of edges to which a node is 
connected in the graph, and ܰ݇݅ the number of nodes in the local 
neighborhood of node i. The parameter σ is the average distance 
between the feature vectors of adjacent points. The two 
parameters 1ݓ and 2ݓ are weight parameters. The first weight 
determines the influence of the interaction potential on the 
classification and can assume any nonnegative, real value. The 
second weight [1 ;0]∋2ݓ influences the degree of smoothing 
depending on the data. 
 
Training and inference 
 
Firstly, the corresponding parameters and weights of the different 
classifiers must be determined in a training process. For the RF, 
the ܰܶ decision trees must be learned. A training set ܶ is 
generated with ܰݎݐ randomly selected 3D points per class. By 
balancing the classes, decision trees that are trained with very few 
or no examples of an underrepresented class are avoided. For the 
determination of the two weights 1ݓ and 2ݓ a method such as 
cross-validation can be used. For the classification by means of 

CRF, the optimal assignment of the labels ܻ is determined which 
maximizes criterion (5). For graphs with cycles, the exact 
inference cannot be solved in a practical time, which is why 
generally only approximate solutions are used. In this work the 
Quadratic Pseudo-Boolean Optimization (BOROS & HAMMER 
2002) is applied. 
 
The point-based RF classifiers and shape priors provide us with 
evidences for semantical class labels from two different sources. 
The idea of the class labelling technique in this work is to apply 
the fusion of two independent outcomes of inference schemes, 
which amounts to combining local shape priors with spatial co-
variance features to further boost the CRF classification accuracy 
and efficiency. 
 

3. EXPERIMENTS 

3.1 Dataset  

In this study, the proposed method was applied to the MLS 
dataset, which were acquired by vehicle-borne Z+F phase-based 
laser scanner measurement, permitting the generation of a point 
cloud of urban road environment with an ultra-high sampling rate 
and accuracy. The MLS data contains several object classes: roof 
(4.6%), pole/mast/tree stem (10%), façade (8.4%), ground 
(50.5%), vehicle (1.2%), tree (20%) and low vegetation (5.3%). 
The data set was recorded in the vicinity of the downtown area 
of Munich city. The data are divided into a training data record 
with approximately 2.5M points, a validation data set with 25M 
points and test data sets with a total of approximately 28M points 
covering a road length of nearly 250m. Labelled ground truth 
data were not provided for the areas, but is supposed to be made 
up of 7 categories above. Therefore, the evaluation of results can 
only be made via visual analysis and comparison. DTM was 
calculated as well, where the normalized height of points is 
computed.  
 
3.2 Experimental design and parameter setting 

For the experimental design, we split the point cloud into training 
and validation sets, which are not completely intersected with 
each other. Since we do not have ground truth data, the evaluation 
is based on the visual inspection. The training test data were 
equally subdivided into subsets by re-balancing, each of which 
represents a semantic class to be classified.  
 
The experiments are carried out with the two local 
neighborhoods. For the optimal neighborhood ܰݐ݌݋, the interval 
for ܰݐ݌݋ is defined by ݇݉݅݊ = 10 and ݇݉ܽ100=ݔ with a step size of 
Δ݇ = 1. For the spherical neighborhood Ns, the radius for the 
MLS data set ݏݎ = (0.4m; 0.6m; 0.8m) are investigated. The 
feature extraction is based on the ݇ nearest neighbors, which 
result from the corresponding neighborhood definition. The 
lateral s of the square bins for the features ܰܿܿܣ, Δܿܿܣܪ and σܿܿܣ,ܪ 
was determined empirically and set to 0.25 = ݏ. 
 
For all experiments, a constant training quantity ܶ with ܰݎݐ = 
2000 randomly selected examples per class is generated for the 
RF. With an increase in the value, no significantly better 
classification results could be achieved. The number of decision 
trees was determined empirically and set to ܰܶ=100. The two 
weight parameters 1ݓ and 2ݓ of the Potts model are determined 
by means of a grid search on the entire training data record. For 
this purpose, the two parameters are varied with a certain interval 
each and the CRF is trained with all the resulting combinations. 
On the basis of the training accuracies, the best combination is 
then selected. For MLS data set 0.85=1ݓ and 0.1 =2ݓ. The 
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threshold for the maximum neighborhood size within the graph 
is set to ݇ݐℎ25 = ݎ. Empirical thresholds ptree,thr for rule-based 
planar region growing for pre-fixed labels is set to 0.7. 
 
3.3 Results 

The constrained CRF is applied to combining RF inference 
probabilities, shape priors and pairwise interaction probabilities. 
The quantitative validation accuracy obtained using the base line 
of parameter settings is given in section 3.2. It seems that the 
aesthetic appeal of the labelling is explicitly improved by the 
fusion, although it is still lack of the numeric evidences arguably 
making it worthwhile. The main improvements brought by 
evidence fusion are to alleviate the regions labelling with 
ambiguous or conflicting probabilities, by removing mislabelled 
and fragmented regions 
 
The result of the point-wise RF classifier solely using spatial-
locality features on one test dataset is shown in Fig.3. The 
performance is qualitatively not bad considering the relative 
simplicity of the features and fixed local neighbourhood size. 
Fig.4 also shows a result after the decision fusion method is used 
to label the points. However, shape features show much higher 
representativeness of information content towards different 
object classes. 
 

 
Figure 3. An illustration of result of RF classification 

 

 
Figure 4. An illustration of result of fusion via constrained CRF 

 
However, the training time increased rapidly as well when a 
bigger test site was applied to train the model. All computations 
were performed using an eight core CPU of an Intel Xeon E3-
1245 with 3.40GHz. The validation of the training model on a 
test plot consisting of ca. 25 million MLS points takes one and 
half hour. 
 

3.4 Discussion 

The difference between the two classification methods in the 
overall performance is less than moderate. However, the 
differences in the individual classes are more. In particular, the 
underrepresented classes low vegetation and car show decent 
increases, respectively. In both procedures it is striking that 
especially the classes - low vegetation including shrub and 
Fence/hedge can be separated badly. In Fig. 3 and 4 the two 
classification results can be compared. The influence of the 
context-based classification is particularly visible in the classes: 
trees (green), façade (blue), and roof (yellow). 
 
The good overall performance are strongly influenced by the very 
well-classified object class ground surface, which accounts for 
half of the entire points in the test data set. In both methods, the 
classes of low vegetation and poles/stems are less well 
recognized with only a small number of points. In comparison 
with RF, higher accuracy can be achieved with the aid of the 
CRF, especially for such classes. Overall, the CRF classification 
results look smoother for the MLS data than for RF. This 
smoothing effect is especially visible in the facades (blue) and 
tree (green) classes. 
 
For the MLS dataset, the results of Munoz et al. (2009) showed 
that the context-based classification of point clouds is carried out 
using Functional Max-Margin Markov Networks. The results 
showed only major differences between the classes of high 
voltage line and pole/mast. While with the CRF used in this work, 
the class pole/ mast must have a much higher score, as the power 
line is not existent. Ramiya et al. (2016) used a 3D segmentation 
for the classification of the data set and extract spectral and 
geometric features from the segments. In addition to the 3D point 
cloud, a true orthophoto was used. For classification, multiclass 
machine learning method is applied with a one-vs-one strategy, 
combined with a genetic algorithm for feature selection. 
Radiometric, structural and geometric attributes are used as 
features. Other than the results of this work, the underrepresented 
classes of pole/mast, car and fence/hedge, measured on the basis 
of visual inspection, are less well detected, whereas the classes - 
low vegetation and roof are better recognized. 
 
Meanwhile, in contrast to the traditional CRF approach which is 
usually very computationally time-consuming, constrained CRF 
model with prefixed labels achieved good accuracy but with 
significantly low computational costs. This is not surprising on 
one side, because the input features are explicitly designed to 
discriminate the target classes: the local distribution of normal 
vectors from point clouds highlights low vegetation and trees, 
above ground height highlights the building roof and cars and on 
the other side shape priors identify most of man-made objects 
such as façade, roof and road surface by fixing the class labels 
for CRF in advance. 
 
Constrained CRF worked as a global smoothing filter to combine 
the two independent sources to generate final labels. The 
performed experiments give the rise to the fact that point 
labelling based on CRFs can even generate promising labelling 
results for all classes without inducing extra high time 
complexity.  
 

4. CONCLUSION 

The method proposed in this work provides good results for the 
ultra-dense MLS data. The adjustments with regard to the two 
different methods are only limited to the optimization of the two 
weight parameters. By incorporating context information, the 
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classification result can be improved in all aspects with regard to 
individual classification. Particularly underrepresented classes 
with a few points in the data set benefit mostly from the context-
based classification. The constrained CRF method provides a 
framework for combining the point-wise class labelling results of 
RF and local contexts. The improved classification performance 
is explained by the nature of input data: e.g. the vertical height 
and local variation of normal vectors, and as well as attributed to 
decision-level fusion of context-based classification approach 
with shape priors, which can not only generate more coherent 
labelling probability, but also confine the labeling to local 
constraints. A further development of the presented method could 
address the transferability of the trained classifier to different 
areas and sensors.  
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