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ABSTRACT: 
 
 
In order to accomplish the automatic mobile mapping task in a small area of interest, a low cost UAV system is proposed in this paper. 
Multiple sensors including a global shutter camera and an inertial measurement unit are calibrated and synchronized to collect data 
from the area of interest. First the images are matched by the chronological order and the SfM is utilized. Then the origin SfM result 
is integrated with the IMU data by adding the IMU constraints into the bundle adjustment. At last the photogrammetry point clouds are 
generated using PMVS according to the extrinsic parameters. Experiments are undertaken in a typical scene with photogrammetry 
point clouds generated. The trajectory estimated by the proposed integration method are compared with the method that relies on image 
only, showing that the proposed method has better performance. 
 
 

1. INTRODUCTION 

Using point clouds of a cultural domain or urban building has 
become the focus for different purposes, such as cultural relic 
protection, emergency & disaster relief and building of smart 
city (Adams and Friedland, 2011; Reiss et al., 2016; Yang et al., 
2015). It is a common technique to capture images using an 
Unmanned Aerial Vehicles (UAV) system and generate point 
clouds for the region of interest. The price of a set of mobile 
mapping system based on a UAV is usually more than 500,000 
dollars, which is expensive for the civilian users. In particular, 
for some private sectors and local government agencies, they 
have a strong demand for a mobile mapping system based on a 
UAV that has low cost, miniaturization and medium 
performance for collecting data from a small area of interest. 
Although the common commercial mobile mapping systems 
mounted on a UAV is powerful, but they can hardly meet these 
demands. As a result, the low-cost and small mobile mapping 
systems mounted on a UAV with medium performance attract a 
large number of researchers(Wallace et al., 2012; Yang and Chen, 
2015). 
 
Usually the mobile mapping systems are equipped with the 
integrated navigation system including a GNSS receivers (GPS) 
and an Inertial Measurement Unit (IMU), so their state (location, 
orientation, speed, etc.) can be estimated by fusing the GPS and 
the IMU data directly. However, a differential GPS system also 
increases the cost of the mobile mapping system and the 

difficulties in operation. Furthermore, in many scenarios, it 
would be difficult to ensure that the received GPS signals are 
reliable and accurate. For example, the GPS signals would be 
poor when the UAV system is operating between tall buildings. 
Therefore, it is essential to develop a solution that does not rely 
on the GPS information for the mobile mapping system, it would 
increase the application scope and reduce the cost efficiently.  
 
In this paper, a strategy for the low-cost UAV based mobile 
mapping is developed by integration of imagery and IMU data. 
Image based matching and loop-closure detection can limit the 
error accumulation of the system effectively, while the accuracy 
of pose estimated by Structure from Motion (SfM) depends on 
the 3D feature points. Only when the baseline length is greater 
than a certain range, the 3D feature points can be obtained 
through triangulation accurately. Therefore, images are not 
suitable for the estimation of the extrinsic parameters in short 
time duration. Moreover, the absolute scale cannot be derived 
from the imagery data. In a short time duration, precise poses as 
well as absolute scale can be derived from IMU data efficiently, 
while the errors accumulate seriously after long time. So the 
imagery and IMU data are effectively complementary. 
 
The remainder of this paper is organized as follows. The system 
description is detailed in Section 2. The proposed data 
integration method is elaborated in Section 3. In Section 4, the 
experimental studies are undertaken to evaluate the proposed 
method, after which conclusions are drawn at the end. 
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Figure 1. System description. (a)The green line represents the data stream. The black line is the ground wire. The red and orange 
wires represent the synchronization signals. (b) Our UAV platform. 

 
2. SYSTEM DESCRIPTION 

2.1 Sensors and UAV platform 

Our system is consisting of two kind of measurement 
instruments including an IMU and a global shutter camera. The 
modularity of the system shows that new sensors can be easily 
added to the system. A typical configuration, including the 
synchronization signals is shown in Fig.1 (a).The black lines are 
the ground lines. The red line represents the synchronization 
signal send from arm board to the global shutter camera to 
trigger the camera. The orange wire represents the 
synchronization signal send from IMU to the arm board so the 
arm board can record the accurate time stamp once the IMU 
message comes. Table.1 is sensor specifications. 
 
The IMU used in the system is Xsens MTI-300, which provides 
the measurements of the acceleration and the angular velocity. 
The noise density of the gyroscopes is 0.01 º/s/√Hz, and the in-
run bias stability of the gyroscopes is 10 º/h. The noise density 
of the accelerometers is 60ug/√Hz, and the in-run bias stability 
of the accelerometers is 15ug. This IMU is a low-cost MEMS-
IMU products can meet our needs. 
 
The global shutter camera used in the system is Pointgrey Flea3. 
It has a 1280 × 1024 pixel sensor with the pixel size of 5.3 µm. 
It can collect at most 40 images per second and has no rolling 
shutter effect so it can be used to estimate motion of system. The 
wider the view of the camera is, the more reliable features can 
be detected in the image in the SfM algorithm. So the lens used 
in the system is a wide-angle lens (3.5mm/F1.4) made by Kowa. 
 
The arm-board control unit contains a Cortex-A9 multi-core 
processor and 2 GB memory, which is the processing instrument 
of the system. The weight and power consumption of the 
instruments are severely limited in a UAV system. The arm-
board is suitable for the UAV platform because it can work in the 
absence of a radiator and its power consumption is very low. 
 
The UAV platform used in the system is the DJI m600 as shown 
in Fig.1 (b) with max takeoff weight of 15.1kg and self- weight 
9.1kg which is enough to bring up all the sensors and the arm-
board. With no payload, the hovering time of DJI m600 is about 
35 min. With 6 kg payload, the hovering time of DJI m600 is 
about 16 min. So the DJI m600 is suitable for mobile mapping 
in a small area of interest. 

Table 1. Sensor specifications. 

Sensor Description 
IMU Xsens MTI-300 

Global shutter camera Pointgrey Flea3 
Lens Kowa wide-angle lens 

(3.5mm/F1.4) 
Onboard control unit Cortex-A9 multi-core processor 

UAV platform DJI m600 
 
2.2 Synchronization and calibration  

The synchronization of the different sensors is fulfilled 
electronically. The two signals used for synchronization are the 
200Hz signal from IMU and 40 Hz signal generated by arm-
board. These signals were selected because the IMU cannot be 
synchronized accurately with an external signal while the 
camera can be triggered by an external signal easily. Whenever 
the IMU collects a data, it sends a pulse signal to the arm board. 
Then the arm board generate a timestamp when it receive the 
pulse signal. It can be assumed that there is no time delay during 
the pulse signal transmission. The arm-board will send a signal 
to the camera after receiving 5 signals from the IMU. When the 
system is collecting data, the arm board save all the data in the 
SATA disk. When post-processing, the data from different 
sensors is combined using the timestamp information recorded 
by the arm-board. 
 
The intrinsic parameters of the global shutter camera are 
calibrated using the Matlab calibration toolbox(Bouguet, 2008). 
The calibration tool for Xsens IMU is offered by the MT-
manager program. The bore-sight calibration of system is carried 
out using the method proposed by Furgale et al. (2013). Before 
collecting data, the intrinsic parameters of the global shutter 
camera, intrinsic parameters of the IMU and the bore-sight 
between IMU and camera are calibrated manually. 
 

3. INTEGRATION OF IMAGERY AND INERTIAL 
DATA 

We follow the notation introduced by (Barfoot, 2016) through 
this work. The definition of coordinate frames of the system is 
shown in Fig.2.	F௪ሬሬሬሬሬറ represents the world frame; F௦ሬሬሬറ represents 
the inertial frame;	F௖ሬሬሬሬറ represents the image frame.  
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The variables to be estimated are the states ሼܠ௦௞|݇ ൌ 1,2…ܰሽ 
at each time the kth image is captured and the feature points 

ሼܠ௙
௝ |݆ ൌ   :ሽ. The state x௦௞ is written asܯ…1,2

 

௦௞ܠ ൌ ቂ࢘௪
௪௦ೖ், ௪௞࢜

்
, ௪௦ೖࢗ

் , ௔௞࢈
்
, ௚௞࢈

்
ቃ
்
 

∈ R଺ ൈ SOଷ ൈ R଺    (1) 
 

where SOଷ  is the special orthogonal group. ࢘௪
௪௦ೖ  and ࢗ௪௦ೖ  

are the position and the orientation at time of index k, which are 
represented in world frame.	࢜௪௞  is the velocity represented in 
world frame.	࢈௔௞  and ࢈௚௞ are the biases of accelerometers and 
gyroscopes.  

All the variables will be estimated and optimized as one joint 
optimization through a cost function ࡶሺ࢞ሻ including back-
projection error ܍௥ and IMU error term ܍௦: 

ሻ࢞ሺࡶ ≔ ෍ ෍ ௥܍
௞,௝்܅௥

௞,௝܍௥
௞,௝

௝∈ࣤሺ௞ሻ

ே

௞ୀଵ

൅ 

∑ ௦௞܍
்
௦܅

௞܍௦௞
ேିଵ
௞ୀଵ     (2) 

where ࣤሺ݇ሻ is the visibility set of the kth image.	܅௥
௞,௝ and ܅௦

௞ 
are the information matrices. This non-linear optimization 
problem is optimized by the open source graph based 
optimization library G2O(Grisetti et al., 2011). The information 
matrices and error definitions are detailed as follow. 

 

 

Figure 2. Coordinate frames involved in the system. Image data is acquired in F௖ሬሬሬሬറ, and IMU data is acquired in F௦ሬሬሬറ. The poses and 
feature points need to be estimated are represented in F௪ሬሬሬሬሬറ 

 
The adjacent images are matched by the chronological order and 
the key frames are selected according to the parallax of the 
adjacent images, thereby increasing efficiency of bundle 
adjustment. Loop closures are detected by utilizing Bag of 
Words (BoWs)(Philbin et al., 2007) for suppressing cumulative 
error. The incremental SfM proposed by Schonberger and Frahm 
(2016) are to estimate the initial value of the scale free 
coordinates of feature points, meanwhile the false-matches are 
removed too. 
 
Back-projection error is defined as follow: 
 

௥܍
௞,௝ ൌ ௥௞ࢠ െ 

௪௦ೖ࡯௖௦൫࡯൫ࡷߣ
௙ܠ்

௝ െ ௪௦ೖ࡯
௪்࢘

௪௦ೖ൯ ൅  ௖௖௦൯      (3)࢘
 

where ࢠ௥௞ is the measurement of feature point whose distortions 
are removed by using the calibrated camera distortion 
parameters.	ࡷ is the calibrated projection matrix of the camera. 
 ௖௖௦ are the calibrated relative position and orientation࢘ ௖௦ and࡯

between camera and IMU. information matrix 	܅௥
௞,௝  can be 

obtained as follow: 
 

௥܅
௞,௝ ൌ ቎

ଵ

ఋ௫మ
0

0
ଵ

ఋ௬మ

቏                 (4) 

 
where ݔߜ  and ݕߜ  are the error of feature points in image 
coordinates. In our experience, the error of feature points in 
image can be set to 2 pixels in each direction.  

 
The IMU kinematics model used is the simplified model for 
low-cost MEMS-IMUs proposed by Shin and El-Sheimy 
(2004): 
 

ሶ࢘ ௪௪௦ ൌ  ௪               (5)࢜
 

ሶ࢜ ௪ ൌ ௠ࢇ௪௦ሺ࡯ െ ௔࢈ െ ௡ሻࢇ ൅  (6)      ࢍ
 

ሶࢗ ௪௦ ൌ
ଵ

ଶ
௪௦⨂ሺ࣓௠ࢗ െ ௚࢈ െ ࣓௡ሻ     (7) 

 
ሶ࢈ ௔ ൌ  ௔௡               (8)࢈

 
ሶ࢈ ௚ ൌ  ௚௡               (9)࢈

 
where ࢇ௠  and ࣓௠  are the measurements from 
accelerometers and gyroscopes with White Gaussian Noise 
(WGN) ࢇ௡  and ࣓௡  is the gravity vector. The biases are ࢍ .
modeled as random walk process with WGN ࢈௔௡  and ࢈௚௡ . 
Therefore the error term of IMU can be find: 
 

,ො௦௞ܠ௦௞ሺ܍ ,௦௞ାଵܠ ௦௞ሻࢠ ൌ

ۏ
ێ
ێ
ێ
ۍ ො௪࢘

௪௦ೖశభ െ ௪࢘
௪௦ೖశభ

2ሾࢗෝ௪௦ೖశభ⨂ࢗ௪௦ೖశభ
ିଵ ሿଵ:ଷ

෡௔௞ାଵ࢈ െ ௔௞ାଵ࢈

෡௚௞ାଵ࢈ െ ௚௞ାଵ࢈ ے
ۑ
ۑ
ۑ
ې

    (10) 

 
where ࢠ௦௞ is the IMU measurement.  
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The error state kinematics can be obtained as follow: 
 

δܠ௦ሶ ൌ ௦ܠො௦ሻδܠሺ࢙ࡲ ൅  (11)                                  ࢔ො௦ሻܠሺ࢔ࡲ
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The information matrix ܅௦

௞  of the IMU error term can be 
propagated according to the error state kinematics directly as 
follow: 

௦܅
௞ ൌ ሺ

ப܍౩ౡ

பܠ౩
ౡశభ ሺ܅௦

௞ିଵሻିଵሺ
ப܍౩ౡ

பܠ౩
ౡశభሻ்ሻିଵ      (15) 
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The extrinsic parameters and sparse landmarks can be obtained 
after solving the above optimization problem, then we use the 
PMVS proposed by Furukawa and Ponce (2010) to generate 
dense photogrammetry point clouds. 

 
4. EXPERIMENTS AND ANALYSIS 

In order to verify the effectiveness of the platform, we conducted 
experiments in Wuhan University. We calibrate the intrinsic 
parameters of the global shutter camera, IMU and bore-sight 
between the IMU and camera first. Then it took about ten 
minutes to collect data for a teaching building using the 
integrated UAV system. As shown in Fig.3, we are operating our 
low-cost UAV system.  
 
The state variables and extrinsic parameters are estimated by 
utilizing the proposed method, then the dense photogrammetry 
point clouds are generated by utilizing the PMVS algorithm as 
shown in Fig.4. In Fig.4, the yellow line is the estimated 
trajectory of the UAV system and the color point clouds are the 
dense photogrammetry point clouds.  
 
To compare the proposed integration with SfM only using 
imagery data, results of the proposed method and results of the 
SfM only using imagery data are shown in Fig.5. The two 
trajectories are registered manually using the open source 
software CloudCompare (Girardeau-Montaut, 2015). The 
yellow line is the trajectory estimated by the proposed method 

and the red line is estimated by imagery data only. From the 
white box in Fig.5, we can find that the estimated trajectory only 
using imagery data has more noise than the proposed method. 
Because the extrinsic parameters estimated only using images 
are not reliable in short time duration caused by short baseline. 
While the propose integration method has higher robustness. 
 

 
Figure 3. The proposed low-cost mobile mapping system is 

operating under control. 
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(a) (b)

(c)

 
Figure 4. Result of the proposed method for mapping of our teaching building in Wuhan University. The yellow line is the estimated 
trajectory of the UAV system. (a) and (b) show the top and the side view of result. (c) shows the details of the generated point cloud. 

 

Integration of imagery 
and inertial data

Imagery data only

 
Figure 5. Comparison of the proposed method and SfM only using imagery data. Yellow line is the trajectory estimated by the 

proposed method and red line is estimated by imagery data only. The two trajectories are registered manually. 

 
5. CONCLUSION 

For the purpose of mobile mapping using low-cost UAV system, 
a low-cost UAV system integrating two kind of sensors are 
investigated in this paper. To estimate accurate extrinsic 
parameters, an integration method fusing the imagery data and 
the IMU is proposed in this paper. First the images are matched 
by the chronological order and the SfM is utilized. Then the 
origin SfM result is integrated with the IMU data by adding the 
IMU constraints into the bundle adjustment. The experimental 
results show that the designed low-cost UAV system can be used 
for mapping small area of interest by integrating imagery and 
inertial data effectively. Moreover, imagery and IMU data are 
complementary, so compared with SfM only using imagery data, 

more reliable extrinsic parameters and the 3D landmarks can be 
estimated by integrating IMU and imagery data. 
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