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ABSTRACT:

We develop a new variant of LSD-SLAM, called C-LSD-SLAM, which is capable of performing monocular tracking and mapping in
high-speed low-framerate situations such as those of the KITTI datasets. The methods used here are robust against the influence of
erronously triangulated points near the epipolar direction, which otherwise causes tracking divergence.

1. INTRODUCTION

Our work is motivated by automotive Augmented Reality appli-
cations, in particular by aiming to augment a live camera feed of
a forward-looking vehicle-mounted camera. Augmented Reality
applications typically need to solve two major problems: The first
problem is to provide localization within the real world in order to
correctly place virtual content, which often comes from an exter-
nal source (e.g. a digital map or a content provider). The second
problem is to obtain a notion of the surrounding real world in or-
der to facilitate integration of the virtual content with real objects.
A cost-effective solution to the second problem for video-based
Augmented Reality applications is to triangulate the objects of
the real world from the (monocular) camera images. This omits
both the cost of an additional sensor such as LIDAR or the second
camera necessary for a stereo setup and the complexity of having
to calibrate the various sensor relative to each other, which is a
significant factor for mass-produced systems. Since one needs to
know the camera movement to perform object triangulation, one
quickly arrives at visual odometry as well as visual SLAM, the
latter of which actually solves both of the above problems at the
same time. In our case, we use a modified version of LSD-SLAM
(Engel et al., 2014), which is a semi-dense visual SLAM method,
to obtain depth information for each frame of the camera image
sequence.

Since there are highly specialized methods for localization rela-
tive to a global map, we will mostly ignore the global mapping
and tracking capabilities of LSD-SLAM (in fact, we removed the
global mapping portions of LSD-SLAM in our variant to sim-
plify development). Instead, we will focus on the frame-to-frame
tracking, which is necessary for obtaining good disparity maps,
as well as the disparity maps themselves.

In the sequel, we give a short overview of the related work. In
the literature, two main branches of approachs to visual odome-
try have evolved (cf. e.g. (Fuentes-Pacheco et al., 2015, Younes
et al., 2016)): Methods following the filter-based approach are
applied in some of the oldest works on visual odometry. The
general concept of these methods is to use the depth estimates of
the scene points as the state vector of a Kalman filter or similar.
A main challange of filter-based methods is the fact that the size
of the covariance matrix of the Kalman filter is quadratic in the
number of scene points, which makes scaling filter-based meth-
ods to large numbers of scene points computationally expensive

(Fuentes-Pacheco et al., 2015). Due to this obstacle and in par-
ticular after an influental analysis in 2010 (Strasdat et al., 2010),
the local bundle adjustment approach has been established in var-
ious methods cf. e.g. (Younes et al., 2016). Here, batches of
several consecutive frames are processed at once via bundle ad-
justment (often keyframes are inserted at the boundaries of such
batches). Thus, incremental processing is combined with bun-
dle adjustment, which is by itself a well-established and highly
efficient approach (Triggs et al., 1999).

The rest of the article is structured as follows. In section 2, we
give an introduction to our method, C-LSD-SLAM, and how it
originated from its precedessor LSD-SLAM. In section 3, we de-
scribe a stabilization method for C-LSD-SLAM for high-speed
forward movement. Section 4 describes the parallelization method
used in C-LSD-SLAM and why it differs from the well-established
parallel and tracking paradigm (Klein and Murray, 2007). Section
5 gives some qualitative and quantitative evaluation.

2. C-LSD-SLAM

LSD-SLAM is a method for performing visual SLAM on a monoc-
ular image sequence. It is a direct method thus tracking and map-
ping operate directly on the image intensities instead extracting
features as in feature-based methods. LSD-SLAM is a keyframe-
based method, so it distinguishes keyframes from "normal" im-
age frames in the sense that "normal" frames have an pose esti-
mate, whereas keyframes additionally feature an estimated depth
map and can thus serve as a reference for tracking frames. LSD-
SLAM natively uses several different threads for different func-
tions:

• tracking

• depth estimation (keyframe updating) and generation of new
keyframes

• global map optimization, loop closure

Tracking is performed for each new frame, using the newest keyframe
with its estimated depth map as tracking reference. If the tracked
frame’s pose differs more than a certain threshold from the keyframe’s
pose, the depth estimation thread will generate a new keyframe in
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its next iteration, which is performed by propagating (i.e. repro-
jecting) the depth map from the currently used keyframe to the
new keyframe. Thus LSD-SLAM generates a new keyframe ev-
ery several frames.

While this works well in situations where the content changes
only gradually between frames (slow movement, high framerate),
it causes problems if there is a large change of perspective in com-
paratively few frames. E.g. in the KITTI datasets (Geiger et al.,
2013), there frequently are 90◦-turns in only 20-30 frames and
the camera moves past a large amount of occluding objects such
as parking cars. These situations need a large number of inter-
mediate steps (i.e. frames suitable as tracking reference, which
are keyframes in our case) to properly establish a connection be-
tween these different perspectives. If the keyframes are far apart,
the depth map of a new keyframe is usually much less complete
than the depth map of the preceding keyframe. Also, significant
areas of the frames between two keyframes do not overlap with
the older keyframe, preventing these image parts from being used
in depth estimation. Overall, the algorithm is forced to discard the
information of certain parts of the camera images due to insuffi-
cient overlap of the selected frames. If the keyframes are too far
apart, this can cause the algoritm to loose more information to
keyframe reprojection than gaining from depth estimation, with
the result ultimately being tracking failure.

In our variant of LSD-SLAM, which we call continuous LSD-
SLAM or C-LSD-SLAM, we solve this problem by using each
frame as keyframe. While we have also obtained good results by
using e.g. every second frame as keyframe, this yields the best
results with the large changes of perspective mentioned above.
Additionally, this format is directly suitable for Augmented Re-
ality use-cases which require depth information for each camera
frame, e.g. occlusion computation between real and virtual ob-
jects.

Instead of the multithreaded approach used by LSD-SLAM, C-
LSD-SLAM uses a sequential approach for tracking and depth
estimation (instead each step is parallelized, cf. section 4): At the
beginning of a frame cycle, the most recent frame is a keyframe,
i.e. it has a depth map. Let us call this the "old" keyframe. At the
arrival of a new frame, the following steps are performed:

1. Preprocessing of the new frame (format conversion, rectifi-
cation etc.)

2. Tracking of the new frame relative to the old keyframe.

3. Updating the depth map of the old keyframe by triangulation
between the old keyframe and the new frame

4. Regularization of the depth map of the old keyframe

5. Reprojection of the depth map of the old keyframe to the
new frame. This way, the new frame becomes the next
keyframe.

6. Regularization of the depth map of the new frame and hole
filling

C-LSD-SLAM is robustified againgst the system instability caused
driving towards erroneous distance estimates near the epipolar
line (cf. fig. 2) as described in the following section 3. This
feature is crucial for stable system operation in situations with
high-speed forward motion.

Figure 1. Tracking result for sequence 08 of the KITTI odometry 
challange (Geiger et al., 2012). Upper plot: full resolution input 
(1226 × 370). Lower plot: half resolution input (584 × 184). 
The trajectories are aligned at the middle of the sequence. We 
use a simple variant of ground plane estimation (cf. e.g. (Song 

and Chandraker, 2014)) to determine the absolute scale.

Figure 2. Instablitiy of non-robustified C-LSD-SLAM on se-
quence 06 of the KITTI odometry challange. Distance estimates 
of the depth maps are colored from blue (far) over green to red 
(near). The upper image shows invalid distance estimates ap-
pearing near the epipolar direction, which then propagate mainly 
to the left. The lower image shows the situation several frames 
later. Here, invalid distance estimates have overtaken a large part 

of the image, causing tracking divergence several frames later.
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3. C-LSD-SLAM AS A FILTER-BASED VISUAL
ODOMETRY METHOD, PREVENTING TRACKING

INSTABILITY IN FORWARD MOTION

Note that C-LSD-SLAM only maintains the state of the last frame
for processing the succeeding frame, so it is effectively a filter-
based visual odometry method.

The original LSD-SLAM follows the local bundle-adjustment /
keyframe approach. The return to the filter-based approach was
originally a side-effect of the demands given by the high speeds
of vehicle-mounted cameras and by the necessity of obtaining a
depth map for each frame for usage in Augmented-Reality ap-
plications. Note however, that C-LSD-SLAM (as LSD-SLAM)
maintaints confidence estimates of the depth estimates per pixel
instead of using a (full) coveriance matrix as in traditional filter-
based approachs. That is C-LSD-SLAM effectively ignores the
cross-correlation between different pixel estimates. Hence, the
computational cost of maintaining uncertainities is linear in the
number of pixel for C-LSD-SLAM instead of quadratic for tra-
ditional filter-based approachs. This way, C-LSD-SLAM can be
easily scaled up to large image resolutions. Furthermore, this way
of maintaining uncertainities can be motivated by the fact that
if the camera movement is well known, the positions estimates
of the scene points are approximatively uncorrelated, and if the
scene points are well known, the camera movement can be deter-
mined well. The challenge, however, is to manage the feedback
between the depth estimation stage and the camera pose estima-
tion stage in order to prevent errors in each stage from boosting
each other in a runaway fashion. In the following, we investigate
and mitigate a particular instability mode of C-LSD-SLAM, al-
though we do not know how much of it is caused by the above
simplification of the covariance matrix and how much is caused
by the general high nonlinearity of fast forward motion.

For sufficiently fast forward motion, C-LSD-SLAM suffers from
a type of instability where erroneous depth estimates propagate
over the image, eventually causing tracking divergence or fail-
ure (cf. fig. 2): Near the epipolar direction, distance estimation
is difficult due to small relative object movement as well as the
epipolar direction itself being subject to estimation errors. Due to
the fact that the camera moves in the epipolar direction, these er-
roneous estimates have a tendency to cover larger and larger parts
of the image, which can cause tracking divergence.

The concept underlying our method for preventing this behaviour
is to prevent the noisy distance estimates near the epipolar di-
rection from gaining influence in larger image parts by suitable
weighting and depth estimation strategies.

Erroneous distance estimates near the epipolar direction can be
seperated into two classes, distinguished by whether they are fur-
ther away or closer than the real distance. The estimates which
are too far away tend to stay close to the epipolar direction, i.e.
they stay within the region of high uncertainity surrounding the
epipolar direction. Our only measure targeting these estimates is
disabling the usage of negative inverse depth results in the depth
estimation component, since negative inverse depth estimates can
be caused by incorrect estimation of the epipolar direction.

On the other hand, distance estimates which are too close tend
to move rapidly away from the epipolar direction, i.e. to a region
where depth estimation uncertainities are much lower than near
the epipolar direction. If it happens to be that the bogous esti-
mate is confirmed in the depth estimation step (by a mismatch),
we have an incorrect depth estimate on which the system places
high confidence. Due to their closeness and high confidences, in-
correct depth estimates of this type have the capability of strongly

affecting the tracking component, in particular the estimation of
the epipolar direction. Misestimation of the epipolar direction in
turn cases systematic underestimation of pixel distances on one
side of the epipolar direction (on the other side, distances are
overestimated), which can cause error runaway.
To prevent this, we penalize all approaching pixels when repro-
jecting them from a keyframe to a new keyframe. In particular,
we multiply the variance estimate for their inverse depth by the
factor

F (distold, distnew) :=

(
distold
distnew

)c

,

where the exponent c is a positive number. For distance estimates
which are too small, the fraction

(
distold
distnew

)
is larger than the

"true" value, so these estimates are penalized more heavily than
correct estimates or estimates which are too large.

Experimentally, we have found values from c = 8 up to c = 13
to give good results. We use c = 13 for evaluation. Higher
values for c tend to make the whole system more stable when
faced with high movement speeds or scenes with moving objects
near the epipolar direction. However, it should also be noted that
decreasing depth estimate confidences means increasing the con-
fidence region of the depth estimate. This causes the depth esti-
mation module to perform stereo matching for longer intervals of
the epipolar line, thereby increasing the required computational
effort.

4. PARALLELIZATION

Many visual odometry methods follow the parallel tracking and
mapping paradigm for parallelization (e.g. (Forster et al., 2014,
Engel et al., 2014, Mur-Artal et al., 2015)), which was popular-
ized by the method aptly called parallel trackand mapping (PTAM)
(Klein and Murray, 2007) in 2007. A major reason given for
this is the ability to decouple tracking and mapping in the con-
text of real-time processing. In particular, this allows different
timing constraints for tracking and mapping. E.g. while track-
ing usually runs in a real-time fashion, the mapping component
can perform more complex processing on select keyframes or
can process batches of consecutive frames in the manner of lo-
cal bundle adjustment. Running tracking and mapping in seper-
ate threads which can run concurrently firstly allows the track-
ing thread to preempt other computations, which may be used
to meet real-time constraints, and secondly improves usage of
available ressources in multi-core systems. We argue that the
efficient usage of multi-core systems alone does not justify the
high amount of complexity required by this style of concurrent
processing any more. Indeed, since typically tracking uses a map
as reference and mapping uses tracking results for generating and
updating maps, tracking and mapping operate on and modify the
very same data, which requires fairly complex synchronization
methods to prevent race conditions without overly harming effi-
ciency. On the other hand, processing units with multiple cores,
each featuring simultaneous multithreading and/or SIMD vector-
ization, have as of 2017 become ubiquitous. E.g. in the desktop
segment, current high-end systems have dozens of logical cores
and the newest SIMD variant of the x86 architecture (AVX-512)
features 512-bit vector registers. Multi-core systems are standard
in mobile phones, with SIMD provided e.g. by ARM’s NEON
instruction set. GPUs have been using massively parallel pro-
cessing for decades, with GPUs featuring high numbers of wide
and highly multithreaded SIMD units.

Thus, in order to effectively make use of these kind of paral-
lelized computing units, each significant processing step of a vi-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017 
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W8-243-2017 | © Authors 2017. CC BY 4.0 License.

 
245



Figure 3. Tracking result for sequences 02 (upper plot) and 05 
(lower plot) of the KITTI odometry challange.

sual odometry method should be fully parallelized and vector-
ized, otherwise that processing step will become a bottleneck.
This way, each processing step can make usage of all of the avail-
able processing power. The choice whether different processing
steps run concurrently or sequentially is then mainly a choice
of latency and of thread synchronization complexity, not of to-
tal processing time.

Parallelization is a major part where C-LSD-SLAM has been
streamlined over LSD-SLAM. Parallelization is facilitated by the
fact that most processing steps consist of "do x for all pixels in-
dependently, possibly followed by a parallel reduction step". All
processing steps of C-LSD-SLAM can employ an arbitrary num-
ber of threads and most are vectorized. This way, the different
processing steps can be performed sequentially without perfor-
mance penalty, which greatly reduces the thread synchronization
complexity compared to LSD-SLAM.

5. EVALUATION

We use the sequences of the KITTI odometry benchmark(Geiger
et al., 2012) for evaluation. The main reason for this choice is that
these datasets feature very long sequences, hence the stability of
C-LSD-SLAM can be investigated which was a major issue in the
development of C-LSD-SLAM.

5.1 Initialization

For visual odometry systems, initialization is a delicate step as
misestimation of the initial state may cause the system to diverge

Figure 4. Tracking result for the sequence 08 of the KITTI odom-
etry challange, with absolute scale estimation enabled only at the 
beginning of the sequence. The scale drifts towards larger scales.

due to the nonlinearity of the problem. For initialization, LSD-
SLAM initializes the depth map of the first frame randomly. C-
LSD-SLAM basically follows the same approach, but chooses
a different distribution for the initial candidates. In particular,
LSD-SLAM chooses the candidates for the inverse depths uni-
formly between a positive minimum value (maximum distance)
and a maximum value (minimum distance). C-LSD-SLAM sets
the minimum inverse depth to zero (i.e. infinite distance). This
way, candidates for all distances are provided by the initialization
(the minimum distance has no practical meaning since the scale
factor is chosen arbitrarily by the system) and thus the initial state
fits a much wider range of scenes. Notably for vehicle mounted
cameras facing forwards, the region the camera is moving to-
wards is the road in front of the vehicle, so it typically features
large distances. The LSD-SLAM variant does not have viable
candidate depths for this region, so the system needs to first reject
all of these candidates before it can create valid depth estimates
in this region, which is a process that often takes many frames. In
the C-LSD-SLAM variant, convergence is much quicker, which
also reduces the likelihood of the system diverging at initializa-
tion.

C-LSD-SLAM additionally features an initialization technique
specifically targeted at car-mounted cameras: A car cannot turn
without driving a curve, so a car-mounted camera (approxima-
tively) does not rotate while moving in a straight line. Moving
in straight line is the most difficult situation for initialization. C-
LSD-SLAM assumes that the camera orientation does not change
in the first few frames. If the camera orientation indeed stays ap-
proximatively the same (i.e. the vehicle is driving in a straight
line), this greatly helps the initialization process. If the camera
turns, the vehicle does not drive in a straight line, which is a much
easier initial situation where the system can usually initialize suc-
cessfully despite having made incorrect assumptions.

5.2 Tracking stability

The tracking of a new frame relative to the last frame proceeds
by direct image alignment via hierarchical optimization. In par-
ticular for scenes with repetitive structures, the success of this
optimization scheme depends on availability of a reasonable ini-
tial guess. To improve the performance in situations with high
turnrates, C-LSD-SLAM uses the pose change between the last
frame and its predecessor as the initial guess for the pose change
between the last frame and the new frame.
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Generally, C-LSD-SLAM is highly stable. We tested C-LSD-
SLAM on all 21 sequences of the KITTI odometry challange.
There are three sequences (01, 12 and 21) on which C-LSD-
SLAM shows signs of instablity, that is significant areas near the
epipolar direction with incorrect depth estimates. All of these
are on highway scenes, with regions of instability typically initi-
ating near moving vehicles near the epipolar direction. Only in
sequence 21, the system becomes actually unstable. In sequence
21, the system switches several times between periods of cor-
rect operation and divergent behaviour. This behaviour may be
attributed to the fact that highway scenes have very low scene
structure, hence it is difficult for the system to eliminate the in-
fluence of moving objects. C-LSD-SLAM performs very well
in urban scenes. In particular situations where the vehicle turns
around corners, which are difficult for the original LSD-SLAM
due to the fast change of perpective, are handled easily by C-
LSD-SLAM. In fact, during turns C-LSD-SLAM reliably recov-
ers even from a completely diverged tracking state (e.g. due to
initialization failure).

5.3 Accuracy

Without a method to determine the absolute scale, C-LSD-SLAM
shows a consistent scale drift towards increasing scales (cf. fig.
4). In order to make reasonable comparisons with ground truth
trajectories, we use a simple variant of ground plane estimation
(cf. e.g. (Song and Chandraker, 2014)) to determine the absolute
scale. It is performed by fitting a plane to the depth estimates in
a small image area corresponding to the road patch in front of
the vehicle and then using this plane to estimate the height above
the ground. This method works only if the the road in front of the
vehicle has sufficient texture to allow depth estimates, which fails
e.g. for very smooth road surfaces or high speeds (motion blur).

In figures 1 and 3, we compare tracking results with the ground
truth data provided by KITTI. The rotational errors are typically
around 0.004deg/m in the training datasets of the KITTI odom-
etry benchmark at full image resolution, which is neither partic-
ularly good nor particularly bad for a monocular slam method.
Translational errors can be quite high, which is caused by the fact
that there are situations for which the basic absolute scale estima-
tion described above simply does not work.

A reason for the low accuracy is probably that while C-LSD-
SLAM is capable of extracting almost all information from the
images due to processing each frame in a direct fashion, the sta-
bilization method described above discards much information,
which decreases the filter gain and the achievable accuracy.

5.4 Performance

At full resolution (ca. 1200×370px) of the KITTI datasets, C-
LSD-SLAM runs at about 7fps on a (rather old) Intel Core i5
M540 (dual core, 2.53GHz) and at about 30 fps at half resolution
(ca. 600×180px). On a more recent Intel Core i7-6820HQ (quad
core, 2.7GHz), we obtain about 20fps at full resolution.

6. CONCLUSION

We have modified the keyframe based LSD-SLAM into a filter
based monocular visual odometry method which is capable of
functioning in situations with high forward motion and low fram-
erates. For preventing instability in forward motion, we have de-
veloped a method for modifying depth confidences in such a way
that invalid depth estimates are prevented from gaining too much
influence. The method performs well in urban scenes and can
specifically deal very well with fast changes in perspective, but
struggles with scenes with little structure, in particular if there
are moving objects present.
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