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ABSTRACT:

Point cloud segmentation is a crucial step in scene understanding and interpretation. The goal is to decompose the initial data into sets
of workable clusters with similar properties. Additionally, it is a key aspect in the automated procedure from point cloud data to BIM.
Current approaches typically only segment a single type of primitive such as planes or cylinders. Also, current algorithms suffer from
oversegmenting the data and are often sensor or scene dependent.
In this work, a method is presented to automatically segment large unstructured point clouds of buildings. More specifically, the
segmentation is formulated as a graph optimisation problem. First, the data is oversegmented with a greedy octree-based region
growing method. The growing is conditioned on the segmentation of planes as well as smooth surfaces. Next, the candidate clusters
are represented by a Conditional Random Field after which the most likely configuration of candidate clusters is computed given a set
of local and contextual features. The experiments prove that the used method is a fast and reliable framework for unstructured point
cloud segmentation. Processing speeds up to 40,000 points per second are recorded for the region growing. Additionally, the recall and
precision of the graph clustering is approximately 80%. Overall, nearly 22% of oversegmentation is reduced by clustering the data.
These clusters will be classified and used as a basis for the reconstruction of BIM models.

1. INTRODUCTION

Point cloud segmentation is a widely discussed topic in the re-
search community. The objective is to associatively cluster points 
with similar characteristics. Not only does it drastically reduce 
the amount of data, it also allows for better data interpretation. 
For instance, Once the point cloud is segmented, it is processed 
by reasoning frameworks to identify different building elements 
for the purpose of reconstruction Building Information Models 
(BIM’s) (Bassier et al., 2017). Point cloud segmentation is also 
used in fields such as computer vision, remote sensing, robotics 
and other applications that require the partitioning of 3D point 
cloud data (Volk et al., 2014).

Due to the sheer size of the point cloud information, automated
segmentation is becoming increasingly computationally challeng-
ing. For instance, point clouds captured by Terrestrial Laser Scan-
ners (TLS) consist of tens of millions of points per scan. Also,
the scanned objects are often partly occluded, the data is unevenly
distributed due to the range to the sensor and there is noise present
in the data set (Tang et al., 2010). These problems prove challeng-
ing when developing segmentation algorithms (Nguyen and Le,
2013).

The emphasis of this work is on the segmentation of large un-
structured point clouds of buildings. More specifically, we look
to identify building object parts for classification purposes. The
proposed method is able to properly partition the data even in
highly cluttered and noisy environments. Also, our approach is
capable of detecting smooth surface including planes and com-
plex geometry.
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The remainder of this work is structured as follows. The back-
ground is presented in Section 2. In Section 3 the related work is
discussed. In Section 3. the methodology is presented. The test
design and experimental results are proposed in Section 4. The
approach is discussed in Section 5. Finally, the conclusions are
presented in Section 6.

2. BACKGROUND & RELATED WORK

Several methods have been proposed for efficient p oint cloud 
segmentation including region growing, edge detection, model-
based methods, machine learning techniques, graphical models, 
etc. (Nguyen and Le, 2013; Lin et al., 2015; Fan et al., 2017; 
Vosselman et al., 2017). In this research, an effi-cient region 
growing algorithm is implemented for the segmen-tation 
similar to Yau et al. (Yau et al., 2013), Vo et al. (Vo et al., 
2015), Habib et al. (Habib and Lin, 2016) and Lin et al. (Lin et 
al., 2015). They propose algorithms for the segmentation of un-
structured point clouds of small-scale objects and urban environ-
ments. We expand their approach by parallel processing subsets 
of the initial point cloud. By doing so, the number of points can 
be greatly increased. Our method closely aligns with the work of 
Su et al. (Su et al., 2016). They also perform an initial overseg-
mentation after which they use graph theory to cluster the seg-
ment. While they focus on the processing of cylindrical pipes, 
we segment both planes as well as complex geometry.

Both structured and unstructured data sets are processed: The for-
mer directly exploits the data structure of the used sensor while
the latter integrates costly nearest neighbour searches to process
point cloud data. While being very efficient, processing struc-
tured data is often sensor and case specific (Zhou et al., 2014).
For instance, Grant et al. achieve near real-time segmentation
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Figure 1. Overview workflow and intermediate results. Initial point cloud (a), oversegmented clusters with non-valid clusters in black 
(b), graph representation of clusters (c) and the final grouped clusters (d).

of successive laser scans using a Hough-transform implementa-
tion (Grant et al., 2013). Holz D. and Behnke S. rapidly segment 
RGB-D sensor data using region growing (Holz and Behnke, 2012). 
In contrast, processing unstructured data is more general but re-
quires preprocessing of the data. Typically, the data is restruc-
tured into voxel octrees for efficient nearest neighbour searches 
(Vo et al., 2015; Su et al., 2016). We integrate a similar approach 
as the emphasis of this research is on the processing of unstruc-
tured data in order to be sensor independent.

A promising segmentation approach is the use of graph theory.
By representing the inputs as a set of nodes connected by edges,
the segmentation can be treated as a graph optimization prob-
lem. Popular implementations of graphical models are Condi-
tional Random Fields (Wolf et al., 2015; Xiong et al., 2013; Niemeyer
et al., 2012) and Markov Random Fields (Munoz et al., 2009).
These probabilistic models solve the segmentation by modelling
the posteriori probability of the outputs given a set of feature val-
ues. In our approach, we implement a Conditional Random Field
for the purpose of clustering our initial segments to enhance the
segmentation process.

The goal of our research after segmentation is to process the clus-
tered segments by reasoning frameworks to compute class labels
for each cluster. Some researchers consider segmentation and
classification as a single step process (Hackel et al., 2016, Lan-
drieu et al., 2017). However, the features extracted from a single
point and its neighbourhood typically encode only local charac-
teristics. In our work, segmentation and semantic labelling are
treated as individual steps. By reducing the point cloud to a set
of clusters, the number of samples is greatly reduced and more
global and distinct features can be computed from the groups of
points.

3. METHODOLOGY

In this paper, a two-step segmentation algorithm is proposed that
associatively clusters points and computes the properties for each
group. An overview of the general workflow is depicted in Fig. 1.
First, an efficient octree-based region growing method is imple-
mented that rapidly oversegments the data. Next, a clustering
algorithm is used based on graph theory to reduce the number of
segments created. Both steps are discussed in detail in the fol-
lowing paragraphs.

Figure 2. Overview workflow Region Growing. Candidate seg-
ment points C in P (top), Extraction of growing points Q from C 
(mid) and update of Q, M and C during each iteration (bottom).
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Figure 3. Overview workflow Clustering. Graph representation (left), Conditional Random Field representation (mid) and the clustered 
segments (right).

Region growing The oversegmentation of the data is performed
using an iterative growing algorithm based on the normal and
colour information of the point cloud. As input, our algorithm
takes any point cloud in a widely accepted format. The initial
data is restructured as a voxel octree P for efficient neighbour-
hood searches. Also, the data is tiled and parallel processed for
computational efficiency. Each tile is uniformly seeded s ∈ S
after which segments M are iteratively grown. During every it-
eration, candidate points C are considered in a dynamic search
radius d from s (Fig. 2 top):

C = {p ∈ P : ‖p− s‖ < d} (1)

The inliers of M are given by the points in C that meet the fol-
lowing conditions

(2)M =
{
c ∈ C :

(
→
nc ·

→
ns
)
> t ~nc

∧ ‖RGB(c)−RGB(s)‖ < tRGB
}

where t ~nc and tRGB are respectively thresholds for the normal
similarity and the colour similarity of c compared to s. The grow-
ing is performed by considering new points inM as the new seeds
for the segment. To make the algorithm more efficient, only a
subset of C is used for the growing (Fig. 2 mid). A set of candi-
date growing points Q is defined along the border of C that are
conditioned on

(3)Q =
{
c ∈ C : ‖c− s‖ > 0.9d ∧ (

→
nc ·

→
ns) > t ~nq

∧ ‖RGB(c)−RGB(s)‖ < tRGB
}

where d is the distance from c to s and the normal threshold t ~nq
is more strict than t ~nc to ensure good growing candidates. During
the growing stage, the members of Q are iteratively used to seek
new growing points Q′ and candidates C until Q is empty. For
each q ∈ Q the following steps are performed (Fig. 2 bottom)

(4)

C = {p ∈ P \M : ‖p− q‖ < d}

Q′ =
{
c ∈ C : ‖c− q‖ > 0.9d ∧ (

→
nc ·

→
nq) > t ~nq

∧ ‖RGB(c)−RGB(q)‖ < t ~nq
}

M ′ =
{
c ∈ C : (

→
nc ·

→
nq) > t ~nc

∧ ‖RGB(c)−RGB(q)‖ < t ~nc
}

M =M ∪M ′

Q = Q ∪Q′ \ {Q ∈ C}

where ~nq and RGB(q) are respectively the mean normal and
mean colour of the nearby points of c in M . Potential segments
are only accepted when containing sufficient points based on a
threshold. Both the seeds and candidate groups are treated effi-
ciently so no unnecessary neighbourhood searches are performed.
The result is a set of segments M that contain points with similar
properties.

Clustering Once the data is oversegmented, the individual seg-
ments are processed by an associative classification framework
to enhance the clustering. More specifically, the clustering of the
segments is considered a binary graph optimization problem of a
Conditional Random Field (CRF) (Sutton and Mccallum, 2011).
Binary class labels y ∈ ζ = {0, 1} are computed for each ob-
served segment to determine whether or not a segment is willing
to cluster with its neighbours. A graph G = (M,E) is con-
structed whose nodes M are the segments of the initial region
growing and a set of edges E, derived from the adjacency ma-
trix that connects each node to its four nearest neighbours. As
a criterion for adjacent neighbours, the Euclidean distance be-
tween the boundaries of u ∈ Mi and v ∈ Mj is observed. A
set of local features xn = {xn1, xn2, . . . , xnk} is computed for
each node M in G including the surface type and size (Fig. 3
left). Additionally, contextual features xe = {xe1, xe2, . . . , xel}
are extracted based on the edges such as surface type similarity,
coplanarity and the distance between the boundaries of the nodes.
Given the graph and the local and contextual features, the unary
and pairwise potentials are initialised (Fig. 3 mid). The condi-
tional probability p(y|x) of the class labels y ∈ ζ = {0, 1} is
given by (Eq. 5).

p(y|x) = 1

Z

(∑
n

φn(xn, ωn) +
∑
e

φe(xe, ωe)

)
(5)

where Z is the partitioning function that normalises the input pa-
rameters, ω = {ωn, ωe} the pre-trained node and edge weights
and φn, φe the log-linear potentials given the feature vectors. The
final class labels are computed by minimising the negative log-
likelihood in the Conditional Random Field (Eq. 6) given the
feature vectors x and ω. However, exact inference is impossi-
ble in a densely connected CRF. Therefore, we approximate the
log-likelihood using a loopy belief propagation method (Frey and
MacKay, 1998) as implemented by Schmidt (Schmidt, 2010). Af-
ter marginal inference is computed, each cluster is assigned the
label with the highest probability. The result is a set of labelled
3D point clusters.

y = argminy∈ζP (y|x,ω) (6)

Once the class labels are computed, the segments that are la-
belled as potential clustering candidates are grouped together based
on (Fig. 3 right). Iteratively, the most likely connected cluster-
ing candidates are merged given their edge potentials φe(xe, ωe).
The result is a set of clustered segments with similar properties.
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Figure 4. Overview experiments Stanford 2D-3D-Semantics Dataset (2D-3D-S): The top and bottom row respectively depict segmen-
tation and classification results for Area1 and a subset of Area1 for clarification. From left to right can be viewed: Initial point cloud 

(left), oversegmented clusters with non-valid clusters in black (mid) and the final grouped clusters (right).

Table 1. Segmentation results of the Stanford 2D-3D-Semantics 
Dataset (2D-3D-S)

Data set 3D Points Area [m2] Time [s] Segments
Area1 44,026,810 965 1100 2968
Area2 47,294,447 1100 1091 2883
Area3 18,662,173 450 490 1216
Area4 43,682,507 870 1043 2810

4. EXPERIMENTS

The algorithm was trained and tested on different data sets. The
candidate data was not de-noised and a wide variety of objects
was present in the point clouds (Fig. 1 and 4). All the input data
was stored in binary file formats for efficient I/O. In addition to
our own data, the 2D-3D-Semantics (2D-3D-S) benchmark data
of Stanford was evaluated (Armeni et al., 2017) (Fig. 4). Areas
1 to 4 were used for the testing with more than 18-50 million 3D
points each. All data was processed on a laptop with an Intel Core
i7-4900MQ CPU @ 2.8Ghz with 4 cores, 7 active threads and 32
GB RAM. The algorithm was implemented in Matlab 2017 and
uses the parallel computing toolbox, the Computer vision toolbox
and the UGM toolbox (Schmidt, 2010).

Segmentation The segmentation results are shown in table 1
and Fig. 4. By default, the tile size was set to 1 million 3D
points. This fairly small tile size was chosen to avoid idle cores
on the CPU as some tiles take more time to process due to the
complexity of the geometry. The dynamic search radius for the
nearest neighbours was initialised at 0.1m, the angular thresholds
tnc = 45◦ and tnq = 15◦ and the colour threshold tRGB = 20.
Additionally, a minimal point count of 2000 points was defined
for potential segments. The test results show promising results
with an approximate processing speed of 40,000 points/s includ-
ing I/O, normal computation and segmentation. By parallel pro-
cessing multiple tiles, the segmentation speed is multiplied by the
number of available threads which speeds up the process signif-
icantly. On average, 1 cluster is created for every 15,000 points.
Most clusters are properly found as shown in Fig. 4. The surface
types other than the planar segments showed increased overseg-
mentation and misclustering. This is expected given the fact that
these objects suffer greatly from occlusions and noise. Addition-
ally, the data was oversegmented due to feature variance and be-
cause of the data tiling. Also, nearly 30% of the data was unfit

Table 2. Clustering results of the Stanford 2D-3D-Semantics 
Dataset (2D-3D-S)

Data set Segments Clusters Reduction[%] Time [s]

Area1 2968 2301 22.5 280
Area2 2883 2185 24.2 267
Area3 1216 450 19.2 93
Area4 2810 2147 23.6 221

to cluster due to small clusters sizes, noise and clutter such as
vegetation.

Clustering The clustering results are shown in table 2 and Fig. 4.
The node and edge features were standardised for generalisation
purposes. Two node features were used encoding the size and
the surface type of each segment. Three edge features were in-
troduced that represented the coplanarity, the distance between
boundaries and the surface type similarity. The weights of the
model were trained by minimizing the negative log-likelihood
given the feature vectors x and the labels y of known observa-
tions. In total, 3000 surfaces of an office building were used to
train the weights (Fig. 1). In order to improve the performance
of the model, an equal number of observations of each class was
observed. Additionally, a regularization parameter λ was intro-
duced that penalises deviating weights.

The model was tested on the Stanford 2D-3D-Semantics Dataset
(2D-3D-S). The performance is depicted in Fig. 5. The average
recall and precision is 78% and 79% respectively. This is very
accurate given the large feature variance and the configuration
of the observed segments. However, a portion of the inliers are
easily found due to the data tiling. Planar surfaces belonging to
different tiles will cluster more easily as they initially belonged
to the same object. Overall, an average reduction of 22.4% was
recorded for the clustering of the segments. The mean time for
the feature extraction of each cluster and computing inference in
the graph is 80 milliseconds per segment. The experiments re-
vealed that the majority of clustered components are of the pla-
nar surface type. This is expected due to the used features and the
characteristics of these objects. However, several pipe segments
properly clustered due to surface similarity and connectivity.
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Figure 5. Overview classification Stanford 2D-3D-Semantics 
Dataset (2D-3D-S): The averaged recall matrix (left) and the av-

eraged precision matrix (right).

5. DISCUSSION

Point cloud segmentation can be performed with numerous 2D
and 3D algorithms. Most methods are capable of finding planar or
other primitives in a scene. However, there are few methods that
deal with large unstructured data. A promising approach is data
tiling which separates the initial point cloud into more workable
chunks and allows for efficient parallel processing. As in our
work, the segmentation process can be sped up nearly equal to
the number of available threads. This approach can be further
extended towards GPU integration.

A key issue in point cloud segmentation is oversegmentation.
While other approaches typically propose heuristics to cluster
the individual segments, we tackle this problem using graph the-
ory. By considering the segments as a Conditional Random Field,
a probabilistic classification is made to determine which nodes
should be clustered. A major advantage is the associative be-
haviour of neighbouring clusters which leads to more accurate
classification. Also, the model parameters are learned from ex-
tensive training data which allows better generalisation.

6. CONCLUSION

This paper presents an unsupervised method to segment large un-
structured point clouds of buildings. The segmentation is con-
sidered as an optimisation problem that can be solved with graph
theory. First, the data is oversegmented into planes and complex
geometry. A greedy octree-based region growing method is im-
plemented to associatively group points. For efficiency purposes,
the data is tiled and parallel processed on multiple CPU threads.
Next, the candidate segments are represented by a Conditional
Random Field (CRF) with both local and contextual features to
determine the most likely clustering candidates. The result of the
method is a set of segmented clusters of the initial point cloud
data.

The experiments prove that the used method is a fast and reli-
able segmentation framework for unstructured point cloud data.
Segmentation speeds up to 40,000 points per second are recorded
for the region growing. Additionally, the recall and precision of
graph clustering is approximately 80%. Overall, it can be stated
that the used algorithm shows promising results for point cloud
segmentation.

In future work, the presented approach will be investigated fur-
ther to reduce oversegmentation and have better results on sur-
face types other than planar segments. Also, GPU integration
will be considered to further speed up the process. The use of
Conditional Random Fields for the clustering of the initial seg-
ments will be extended to yield better clustering results and to
be applicable to other research topics such as classification and
reconstruction of BIM objects from point cloud data.
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