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ABSTRACT:

This work presents an approach for the task of person re-identification by exploiting bifocal stereo cameras. Present monocular per-
son re-identification approaches show a decreasing working distance, when increasing the image resolution to obtain a higher re-
identification performance. We propose a novel 3D multipath bifocal approach, containing a rectilinear lens with larger focal length
for long range distances and a fish eye lens of a smaller focal length for the near range. The person re-identification performance
is at least on par with 2D re-identification approaches but the working distance of the approach is increased and on average 10%
more re-identification performance can be achieved in the overlapping field of view compared to a single camera. In addition, the 3D
information is exploited from the overlapping field of view to solve potential 2D ambiguities.

1. INTRODUCTION

Person re-identification (re-id) is the challenge to re-identify per-
sons in images taken from different perspectives. Solving this
task is necessary e.g. to concatenate trajectories of persons in
non-overlapping fields of view within a multi camera network,
to re-associate person tracks for crowded scenes or to re-identify
persons in the robotic domain such as robot owner re-id. In close
range face recognition can achieve remarkable re-id results to-
day, when persons look straight into the camera.1 However, in
real world situations such as railway stations, public spaces and
airports such a set up can not be guaranteed. Hence, researchers
try to solve this issue by exploiting full body appearance.

Activities in person re-id (PRID) are rapidly increasing. A survey
of recent literature shows that about a single digit number of new
papers are published every week. The work can be divided into
five main groups:

1. Image data pre-processing, to make the image information
more robust against illumination changes and ambiguous
colors, e.g. salient color names and foreground segmenta-
tion (Yang et al., 2014) or a retinex transformation (Liao et
al., 2014). As the results of person detection and tracking
(Milan et al., 2016) are considered to be given in PRID, this
step is also part of preprocessing.

2. Feature extraction, to find a discriminative descriptor that
represents the appearance of the persons and further feature
aggregation to fuse features over time for multi shot re-id.
A detailed survey can be found in (Karanam et al., 2016).

3. Metric Learning, to increase the matching distance between
images of two different persons while decreasing the one
for images of the same person. A detailed survey can also
be found in (Karanam et al., 2016).

∗Corresponding author
1face-rec.org/vendors

4. Post re-ranking, to re-rank the n-first best matching results
from a first trial to achieve a better ranking, e.g. with a dif-
ferent learned metric for only very similar looking persons.
Surveys can be found in (Garca et al., 2015), (Leng et al.,
2015) and (Zhong et al., 2017).

5. 3D information extraction from active sensor systems, e.g
the Microsoft Kinect, where especially the distance between
skeleton joints and the ground plane and gait analysis are
frequently used for re-id. Detailed surveys can be found in
(Imani and Soltanizadeh, 2016), (Liu et al., 2017) and (Wu
et al., 2017).

In this work a new bifocal multipath approach for image based
person re-identification is proposed. For this purpose the sen-
sor is equiped with a fish eye and a rectilinear lens. Although
general in nature, our work is applied in a security environment.
Figure 1 gives an overview of the main input and improvements
compared to current work. The highlights of this study are: (1)
The first bifocal PRID approach for security camera application
that combines near range 2D image, long range 2D image and in
the mid-range additionally 3D information from the overlapping

Figure 1. Input and benefit of bifocal PRID.
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field of view. We call this approach multipath PRID to emphasize
the different input data paths. (2) A validation of stereo precision
for PRID. Besides, all 3D reconstruction experiments are carried
out under different lighting conditions. (3) Practical implementa-
tion and validation of the approach with the best camera hardware
with suitable stereo baseline for outdoor use cases according to
the EMVA-1288.

The rest of the paper is organized as follows: In section 2 the
problem statement is introduced. Further, in section 3 the ap-
proach to solve the problem statement is discussed including the
architecture overview, and it is shown what can be expected from
the approach in theory for single point measurements. In sec-
tion 4 results of validation experiments are described and dis-
cussed. In this study no closed loop validation is done, instead
the individual steps of the approach are validated independently.
In section 5 a closed loop discussion follows. Finally, conclusions
is given.

2. PROBLEM STATEMENT

2.1 Security Camera Mounting Location

As mentioned, we are interested in security applications. Secu-
rity cameras located in airports, railway stations, religious places
and public spaces are typically mounted four to five meters above
the ground with a large field of view to observe as much area as
possible. An example is shown in Figure 2. In this study the fo-
cus lies on a working distance of around ten meters to observe
an area of around 100 square meters by using a field of view of
around 90◦. Additionally, cameras have a pitch angle towards
the ground, that varies between a few degrees and 90◦ (bird’s eye
view).

2.2 Person Image Resolution vs. Working Distance

State-of-the-art PRID approaches, work as follows: A so called
probe person image (queried person image) is compared to a set
of known person images (gallery persons), typically of coarser
resolution, to re-identify the probe person. The probe person im-
age is then down-sampled to the size of the gallery images for a
direct comparison. This means by the (coarser) resolution of the
gallery image defines the working distance of the PRID approach
and part of the higher information content of the probe image is
lost during down-sampling. Obtaining a larger working distance
or alternatively a higher re-id performance at a constant gallery
resolution is addressed in this paper.

2.3 3D Re-Identification with Passive Stereo

In this study additionally 3D PRID based on dense image match-
ing is addressed to support situations where persons can not be
distinguished only by appearance. An often quoted challenge is
to distinguish two persons of different height but wearing simi-
lar clothes, e.g. a black business dress, that can thus not be re-
identified by only analysing color information.

Figure 2. Security camera image taken from 4m camera height,
30◦ pitch angle towards ground and 97◦ camera opening angle.

2.4 Difference to existing approaches

The approaches from the main working fields, introduced in Chap-
ter 1, e.g. feature description and metric learning, form the foun-
dation of this approach. Furthermore, on the one hand the bifocal
stereo camera approach exploits proven 2D approaches and on
the other hand additionally uses 3D information, automatically
determined from the overlapping sensor field of view. In contrast
to Kinect approaches a passive stereo system is used to acquire
the 3D information and consequently a higher 3D reconstruction
error is expected due to potential matching inconsistency. To the
best of the authors’ knowledge this article is the first PRID con-
tribution that combines two sensors with different opening angles
in a passive stereo system.

3. BIFOCAL PERSON RE-IDENTIFICATION

3.1 Architecture overview

Figure 3 introduces the flow chart of our PRID approach. It can
be separated into the modules 2D near-, 2D long- and 3D re-id.
For the 2D modules state-of-the-art approaches are employed to
re-identify persons. Near to the camera, the fish eye image only
is used since the persons are generally not visible in the rectilin-
ear image, while for the long range the rectilinear image only is
used because the resolution of the fish eye image is too poor. In
the ranges in-between the fusion is performed. Investigation of
the detection and tracking module is not part of in this article, see
(Leal-Taixé et al., 2015) and (Milan et al., 2016) for reference.
Further, rectification (de-warping) of the fish eye image to a rec-
tilinear projection was done based on a unified projection model
(Mei, 2007). The gallery, containing images of known persons
in constant resolution, is shared by the long and the near range
module.

For our study a hardware camera rig is used, consisting of two
cameras with different lenses mounted with a fixed baseline (cf.
Fig. 4). One camera is mainly responsible for the near range
PRID and is equipped with a fish eye lens of small focal length
with 180 degree opening angle. The second camera is mainly
responsible for the long range PRID and is equipped with a rec-
tilinear lens of a longer focal length. Images from both cameras
are fused to generate 3D information in the overlapping field of

Figure 3. Bifocal PRID processing modules.
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Figure 4. Bifocal camera rig with 21cm baseline.

focal length [mm] 4 6 8 10 12
hor. opening angle [◦] 110 89 71 59 51

Z [m] 9 14 19 23 28

Table 1. Maximum distance (Z) to project a person of 1.75m
into image space, having the same height as person images in the

most cited PRID dataset VIPeR (128 pixels).

view. In addition, this set up enables new possibilities for PRID
that are not part of this article, e.g. the use of new features based
on two images of the same person in different resolutions.

The cameras selected are two AVT Mako G-234C (2.35 MP).
They are equipped with infrared cut filters to suppress the spec-
trum that is not visible for humans. The effective foal length of
the rectilinear lens is 5mm (97◦ horizontal and 71◦ vertical open-
ing angle) and 2.5mm for the fish eye lens (180◦ opening angle).
Further, the baseline of the stereo rig is set to 21cm as used in
the Carnegie Robotics Multisense.2 The camera itself was cho-
sen because of the fact, that a Sony IMX249 imager is included.
This imager complies with EMVA Standard 1288 (Standard for
Charterization of Image Sensors and Cameras3) and is one of the
score board leaders in the year 2016 for RGB quantum efficency,
dynamic range, saturation capacity, absolute sensitivity threshold
and temporal dark noise.4

3.2 Working Distance of Re-Id Approaches

We define the maximum working distance as the distance, were
a person projected into an image has the resolution that is used
in the person gallery. If the person is further away, up-sampling
of the image is necessary, which however does not introduce new
information. If the person is nearer to the camera, the captured
image has to be down-sampled and information content is lost.

This maximum working distance Z can be computed, given the
interior orientation of the camera and a mean person height, to
Z = f · hpW · (hpI · ppitch)−1, where hpI is the person height
in pixels that is used in the gallery, hpW is the person height
in meters5, f is the focal length and ppitch is the pixel pitch,
amounting to 5.86 µm for the used sensor. Table 1 illustrates the
equation for the introduced AVT G-234C camera. As a result the
working distance of the selected hardware is around 12m, since
a 5mm rectilinear lens for the long range is used, and around 6m
for the de-warped fish eye image.

2carnegierobotics.com/multisense-s21
3emva.org/wp-content/uploads/EMVA1288-3.0.pdf
4eu.ptgrey.com/support/downloads/10624
5(DIN EN 33402-2, 2005) gives a median of 1.75m for German men

3.3 Precision of the 3D reconstruction

For the re-identification of persons using 3D information more
than one strategy can be used. (a) One strategy is to use a single
3D point, for example the highest point of the head or shoulder.
In an interactive scenario, the respective positions are determined
manually in one image, the conjugate points can then be found
by image matching. For an automatic analysis a 2D algorithm
able to detect the respective body parts is necessary. (b) Another
strategy is to first reconstruct a person shape using dense stereo
matching and then further process the resulting 3D point cloud.
In this section the approximated 3D reconstruction precision is
discussed for single point measurements (cf.(a)) since a closed
theory exists to model the expected error. Further, in Chapter 4.2
experiments are done to validate dense matching (cf.(b)).

In the following section only the central image region of the fish
eye image is considered. In this case the pixel content of a rec-
tilinear projection and a fish eye projection is roughly the same.
First, the central region is defined. The distance between the prin-
ciple point and a point in space projected into a fish eye image can
be approximated with equidistant projection to Rfe = ffe · α
(Förstner and Wrobel, 2016), where α is the angle between the
point in space and the optical axis as seen from the camera origin.
The corresponding distance of the same point in rectilinear pro-
jection isRrl = frl·tanα.As long as points in the world are pro-
jected to roughly the same sensor area by both projection models,
pixel information is roughly the same. The difference in sensor
area can be approximated toAdifference = π ·R2

fe−π ·R2
rl. For

the selected hardware an image area corresponding to α < 10◦

results on a negligible difference. Consequently, the equations
for rectilinear stereo projection are also valid for this central re-
gion of the fish eye image. Using the well known equations for
the stereo precision for the normal case the standard deviation of
the depth can be approximated to

σZcam =
Z2

f ·B · σm, (1)

where f is the focal length after the rectification, B is the stereo
baseline, σm is the standard deviation of the image coordinate
measurement (the matching error) and Z is the depth of the ob-
served point in space. The standard deviations of the other two
3D coordinates can be determined to

σXcam =

√
(
x− ppx

f
· σZcam)2 + (

Z

f
· σx)2, (2)

and

σYcam =

√
(
y − ppy

f
· σZcam)2 + (

Z

f
· σy)2, (3)

where [x, y]′ are the coordinates of the observed point in the ref-
erence camera (left camera), [ppx, ppy]′ is the principle point in
x- and y-direction, [σx, σy]

′ are the standard deviations of the
matching error in x- and y-direction (they were set to one pixel
for all following calculations).

In Figure 5 the standard deviations σXcam , σYcam and σZcam at
the image border are shown as functions of the depth to the cam-
era, for three different matching errors. In a depth of 10m and for
0.5 pixel standard deviation of the matching, a depth precision
of around 30cm as well as 38cm and 24cm for the other two co-
ordinates are found. In a depth of 5m and for 0.5 pixel standard
deviation of the matching the values are 7.6cm, 9.6cm and 6.0cm,
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all at the image border. For the bifocal approach less precision is
expected, especially towards the image border since the fish eye
image is resampled.

Solving equation (1) for σm yields the necessary accuracy of im-
age matching (or, equivalently, for the stereo parallax) for a given
configuration. Table 2 shows which parallax accuracy in pixel
units is necessary in our case to resolve a depth of 1cm, 2cm,
5cm and 10cm, respectively, in a distance Z of between seven
and ten meters. In the addressed working distance of 10 meters

Zcam 1cm 2cm 5cm 10cm
7m 0.033 0.066 0.165 0.327
8m 0.025 0.051 0.126 0.251
9m 0.020 0.040 0.100 0.198

10m 0.016 0.032 0.081 0.161

Table 2. Stereo parallax accuracy σm in pixel (col. 2-4) to
resolve 1cm, 2cm, 5cm, 10cm in a distance Zcam of 7-10m.

to the camera the parallax accuracy must be less than one sixth of
a pixel to obtain a depth resolution of 10cm and one twelvth of a
pixel for 5cm depth resolution. Reaching these values is hardly
possible in real world applications (for a state-of-the-art match-
ing accuracy evaluation see the Midddlebury6 Stereo Evaluation
and the KITTI7 stereo evaluations).

3.4 Precision of the person height estimation

In this paragraph the person height estimation precision with re-
spect to security camera orientations is discussed. Further, in
(Barbosa et al., 2012) the person height had the most significant
impact on the 3D re-id performance. The underlying assump-
tions of this paragraph are, firstly, a head reference point (the
highest point of a person) in the images is given with high preci-
sion; secondly, the 3D reconstruction precision, discussed in 3.3,
is correct, and thirdly, the ground plane is known very precisely.
In this case the person height precision depends only on the head
point precision.

In this subsection two error models are introduced to simplify two
special cases (cf. Fig. 6): One model for a reference point next
to the image principle point called Best Case Model (BC) and a
second one for the case of a reference point next to the image

6vision.middlebury.edu/stereo/eval3/
7cvlibs.net/datasets/kitti/

Figure 5. Standard deviations in 3D space at the image border in
the camera coordinate system.

Figure 6. Illustration for the person height estimation error.

border, called Worst Case (WC) Model. The person is assumed
to have arbitrary height and a camera mounted with a pitch angle
β towards ground is introduced. The precision in Y-direction (cf.
Fig. 6) as function of the camera pitch angle can be determined
with

σY =
√

(sinβ · σZcam)2 + (cosβ · σYcam)2. (4)

In Figure 7 the resulting precision for five different camera pitch
angles and 0.25 pixel matching error is shown. Depending on
the pitch angle of the camera the precision of the person height
changes. The highest precision can be reached for a pitch angle of
zero degree, the lowest precision if the camera is mounted with
90 degrees (bird’s eye view) to the ground. However, the best
camera pitch angle for 2D PRID is around zero. In this case a
person is completely visible in the image, whereas with increas-
ing pitch angle less person parts can be seen. Furthermore, in the
addressed working distance of 10m the Figure shows (a) for 0.25
pixel matching accuracy and zero degree camera pitch angle the
person height can be measured with a precision of around 1cm
along the optical axis (best case), but the precision decreases to-
wards the image border to 12cm (worst case). (b) A more practi-
cal camera pitch angle is 45◦, here in the best case 11cm precision
and in the worst case 14cm precision can be reached.

The outcome of this paragraph is, that both error models show,
that the obtainable precision of the 3D person height is not very
good. At the addressed working distance of 10 meter, even in
the best case and a matching accuracy of 0.25 pixels, a person
height precision of 20cm can be achieved. As Table 3 shows,
90% of the population of German men have a height between
1.65m (5% percentil) and 1.85m (95% percentil), also a range
of 20cm. Consequently the person height obtained from a single
measurement is not a distinctive feature for PRID. Furthermore,

Figure 7. Precision with the BC and the WC error model for 0◦,
10◦, 45◦, 65◦ and 90◦ pitch angle and 0.25pixel matching error.
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head eye shoulder elbow
95% percentil 1.85 1.73 1.55 1.17

median 1.75 1.63 1.45 1.10
5% percentil 1.65 1.53 1.34 1.02

Table 3. Height to the ground plane for German men between
18-65 years. The Table is based on (DIN EN 33402-2, 2005).

as the table also shows the height of eye, shoulder and ellbow are
also not beneficial for PRID.

4. EXPERIMENTS AND EVALUATION

In this section results of experiments conducted to validate the so-
lution of the problem statement are discussed. Section 4.1 evalu-
ates by how much percentage the PRID performance increases by
using the bifocal approach. Section 4.2 focuses on the precision
of dense bifocal 3D person reconstruction to obtain quantitative
values which 3D precision is possible in the real world. Finally,
section 4.3 tackles person candidate rejection by exploiting re-
constructed 3D person height to reduce possbile person matches
for a subsequent 2D PRID fusion approach.

4.1 Re-Id Performance on down-sampled images

The goal of this paragraph is to determine the PRID performance
by using the bifocal approach. To validate the performance per-
son images are down-sampled in image resolution to extrapo-
late how the bifocal approach will perform. For the experiment
two recently published feature descriptor approaches, GOG (Mat-
sukawa et al., 2016) and LOMO (Liao et al., 2014) are used.
For the metric learning part XQDA (Liao et al., 2014) is ex-
ploited. For test and training data ten random splits (cf. (Gray
et al., 2007)) of often cited datasets VIPeR (Gray et al., 2007),
prid4502 (Roth et al., 2014), and i-lids (Wang et al., 2016) (Wang
et al., 2014) were analysed. The same splits are used for ev-
ery down-sampled trial. In Figure 8 the result is depicted. The
abscissa presents the percentage of the original image size dur-
ing down-sampling the ordinate shows the performance (rank#1
recognition rate), 100% is the original benchmark protocol res-
olution. For VIPeR the original resolution is not known, for
the other datasets the original resolution of the person images
varies between 76x30pixels and 267x137 pixels but was set to the
benchmark protocol value here. By down-sampling from 100%
to 50% the performance decreases on average by 10% for both

Figure 8. PRID rank#1 as function of the percentage image
resolution. 100%, 95%, 90%, 75%, 50% and 25% are measured.

PRID approaches (compare average performance difference be-
tween 100% and 50% for each PRID algorithm). Furthermore,
by down-sampling from 100% to 25% the performance decreases
by 33% for GOG and by 24% for LOMO. The best configuration
was achieved with GOG and 100% image resolution. The out-
come of this experiment is the confirmation, that a high resolution
is mandatory for a higher performance. However, a high resolu-
tion also reduces the working distance of a monocular PRID sys-
tem since sensor resolution is limited and only the focal length of
a lens can vary. Consequently, the working distance can be dou-
bled with our bifocal approach without PRID performance loss,
and additionally an increased average performance of 10% in the
overlapping field of view is feasible.

4.2 3D precision for different scene lighting

Section 3.3 addressed the expected 3D reconstruction precision
for single measurements in a closed form. In this paragraph ex-
periments for dense person shape reconstruction are described.
The basic set up is shown in the left part of Figure 9, the right part
shows images taken with the bifocal rig. Images of the depicted
dummy were taken at different depths. Since a passive stereo
system is used, the results depend on illumination. Here, all ex-
periments were conducted with 300lux scene lighting, and with
1000lux. Corridor lighting is arround 100lux8, office or room
lighting is arround 400lux and TV studios work with 1000lux.
The objective of the experiments is, firstly, to determine person
point clouds to obtain a qualitative impression of the 3D shape re-
construction and, secondly, to identify reconstructed 3D positions
taken from the point cloud and compare them against a reference.
The interior orientation of the cameras and the base line were es-
timated based on (Strauß et al., 2014) in a bundle adjustment with
450 images for each lens. Semi Global Matching (Hirschmüller,
2008) was used as dense matcher.

As reference measurement system for the evaluation of the re-
constructed stereo locations a Leica 3D DISTO laser was used,
which has a precision of around 1mm for the working distance
of 10m9. To register the laser data to the bifocal stereo camera
coordinate system the transformation and rotation was estimated
with 46 ground control points, including a RANSAC (Fischler
and Bolles, 1981) procedure for outlier rejection. The root mean
square error of the registration was 0.53cm.

The first experiment is discussed in the following. In Figure 10
the person point clouds are shown for 1000 lux office lighting,
to give a first qualitatively impression of the results. The shape
of the dummy remained unchanged during the experiments. As

8en.wikipedia.org/wiki/Lux
9lasers.leica-geosystems.com/eu/de/3d-disto/3d-disto

Figure 9. Overview of the experiment (left). Fish eye image
(right, bottom) and rectilinear image (right, top).
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Figure 10. Point clouds for 4,6,8 and 10m distance and 1000lux
lighting. The top row depicts four different distances to the

camera in a front view. The second row shows the same point
cloud from a side view.

can be seen it is difficult to differentiate e.g. between nose and
forehead in a side view. Also, it is hardly possible to differentiate
between arm and torso for distances larger than six meters. More-
over, the same person looks very different from two different dis-
tances. To distinguish between two different persons is harder
as in 2D images, since the appearance enables more comparison
possibilities than a point cloud in the obtained quality. In 10m
working distance the reconstructed surface can consequently not
be regarded as a discriminative feature for the re-id of persons.

In the following second experiment the reconstructed 3D posi-
tions are validated to obtain quantitative results for precision of
one single point. The objective of this experiment is to deter-
mine the 3D surface reconstruction error for distances from 4m
to 13m from a single stereo image pair and dense matching. Here,
only one single point of the densely reconstructed surface is fo-
cused on. The person dummy was located at 20 different loca-
tions. For each location two stereo measurements were taken, one
for 300lux and one for 1000lux scene lighting. The center point
of the dummy forehead was the measurement target and could
easily be re-identified in the point cloud and also with the laser
reference system. The coordinates in the reference system coor-
dinate system were transformed to the camera coordinate system
and compared with the bifocal stereo coordinates, see Figure 11
for 300lux and Figure 12 for 1000lux. The bifocal stereo coor-
dinates are shown as crosses (green) and the coordinates of the
reference system as circles (red). The numbers represent the Eu-
clidean distance between the two measurements and the error in
Z-direction (depth). The error of the reference system and the
interactive measurement is determined to less than 1cm each. In
a working distance of around ten meters an error of better than
20cm (corresponding to around one third pixel matching accu-
racy) was achieved in the central image region, irrespective of
illumination. At the border of the central region 48cm (300lux)
and 18cm (1000lux) were obtained, and 32cm (300lux) / 28cm
(1000lux) outside the central region.

The KITTI10 Stereo Benchmark showed 0.6pixels Average dis-
parity / end-point error in non-occluded areas (Avg-Noc) for
Semi Global Matching. The pixel matching accuracy of one third

10cvlibs.net/datasets/kitti/eval_stereo_flow.php?

benchmark=stereo&table=all&error=2&eval=est

outside

working 

distance

central

image

region

Figure 11. Visualization of the reconstructed 3D positions in a
bird’s eye view, for 300 lux lighting. Points within the bluish

triangle are obtained from the central image region.

central

image

region

outside

working 

distance

Figure 12. Visualization of the reconstructed 3D positions in a
bird’s eye view, for 1000 lux lighting. Points within the bluish

triangle are obtained from the central image region.

is consequently plausible and confirms the magnitude of the re-
sulting error.

Furthermore, the experiment shows: (a) for 12 out of 20 mea-
surements (60%) the depth error for 1000lux lighting was smaller
than for 300lux. The reconstructed 3D position was 13 times
(65%) better with 1000lux. (b) The absolute error increased with
higher distance to the central image region. (c) With increasing
distance to the camera the depth respectivly 3D error increases.
For a PRID exploration the achived values confirm, that 3D po-
sitions can normally not be used for discrimination. (d) In the
addressed working distance of 10m the achieved accuracy was
19 cm in the best case.

4.3 Person Candidate Rejection by inacurate 3D Informa-
tion

In this subsection the reconstruction accuracy necessary to actu-
ally use the bifocal approach for PRID fusion is discussed. One
PRID example is addressed which can deal with inaccurate per-
son height and supports a subsequent 2D PRID algorithm, namely
person candidate rejection by using the person height reconstruct-
ed from 3D information. The fusion works as follows: Measured
person heights are used in combination with an error range value
to reject possible 2D person candidates and to reduce the number
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of potential person candidates for a subsequent 2D PRID fusion
approach.

In a first step consider a queried person pP (probe person) in
a first view and a gallery of persons pG = [p1, p2, ..., pP , pn],
including the first person in a second view. The persons have
random heights hp. We assume that people with heights outside
an interval of uncertainty, denoted as

hpP − 2 · e ≤ hpP ≤ hpP + 2 · e (5)

where e is the precision of measurements, can be rejected as pos-
sible 2D PRID matching candidates. In a second step the re-
maining possible person candidates are in the focus. Consider
the person gallery size s, the mean person height in Germany µP

(DIN EN 33402-2, 2005) and the standard deviation of person
heights in Germany σP (DIN EN 33402-2, 2005). The underly-
ing assumption is the population is Gaussian distributed in per-
son height. Furthermore, the percentage of persons that can not
be differentiated in terms of person height is determined with the
error function (integral over the Gaussian distribution, erf ) to

p(hp − 2 · e ≤ hp < hp + 2 · e) =
1

2
· erf( (hP + e · 2)− µP√

2 · σP

)− 1

2
· erf( (hP − e · 2)− µP√

2 · σP

).

(6)

This equation shows the percentage of population which can not
be distinguished. This means for PRID that the correct match is
somewhere between rank#1 and the rank corresponding the max-
imum number of persons that can not be distinguished, called
worst case rank. The worst case PRID rank from the person
height distribution is denoted as rankWC = s · p · 0.01. Since
in the worst case, a probe person is on the last indistinguishable
rankWC and can only be distinguished from other gallery per-
sons that are not lying in the interval of uncertainty, the number of
persons, that can not be distinguished, depends on the final per-
son height. With increasing distance to the mean person height
the absolute number of rejection candidates increases.

In Figure 13 the simulated Cumulative Matching Characteristic
curve (CMC) is shown for a Gaussian distributed simulated per-
son height dataset. The CMC curve is the commonly used metric
to compare PRID approaches. The simulated distribution is again
based on the German population, including males and females,
between 18-65 years. On the ordinate the re-id performance is
shown and on the abscissa the rank#. For the simulation for ev-

Figure 13. CMC curve for the simulation of German population.

ery person of the population the worst case rank was determined
and the CMC curve was iteratively generated. In other words
the diagram shows, how many re-id ranks have to be taken into
account to be sure, that the correct match is among them. The
visualized height estimation precision e is 1cm, 2cm, 5cm, 10cm
and 20cm. The used gallery and probe size is 316 persons, since
this is the gallery size for the most cited dataset, VIPeR. Abso-
lute values of ranks bellow 100% re-id rate are not important in
this context, so the person ranks below 99% were set to a ran-
dom number between the perfect match and the worst case rank
to illustrate which real re-id result can be expected. However,
it is important to point out the rank, when the first time 100%
performance is achieved because this information can finally be
used to validate the person rejection only by height. From 316
persons in the gallery with a height error of 1 centimetre, it is
possible to reduce the gallery by 78% to 68 remaining persons
that can be re-identified with ordinary 2D PRID approaches. The
removed 238 persons can also not contribute to wrong 2D person
matches. With 2 centimetres height error 174 persons (55%) can
be rejected, whereas an error of 5cm results in 46 persons (14%)
being rejected. Further, Figure 13 depicts, that a height error of
10cm and 20cm is not beneficial for the person candidate rejec-
tion.

The necessary precision of one, two and five centimetres can be
reached with the bifocal approach only with multiple measure-
ments (more than one stereo image) and filtering to get a higher
precision or with a single measurement if the working distance of
the approach is, by referencing to the 3D reconstruction experi-
ment result, limited to around five meters (cf. Fig. 11,12).

5. CONCLUSION

In comparison to existing methods using mono cameras or the
Kinect the new bifocal stereo approach proposed in this work in-
creases both robustness and accuracy of PRID algorithms. The
major extension is a new architecture with two cameras with dif-
ferent projections and viewpoints. Additionally, the system al-
lows for the generation and exploitation of 3D data.

Section 4.1 showed that using this approach the working distance
can be increased, since a person can be re-identified in near-range
and long-range images. Moreover, the proposed hardware config-
uration increases the re-identification rate by 10% in the overlap-
ping field of view and increases the working distance (c.f. section
3.1).

The previous sections showed in theory (cf. Sec. 3.3, 3.4) and
experiments (cf. Sec. 4.2) that the reconstructed 3D surface does
not have a high precision and it is hardly possible to use shape
parameters derived from the reconstructed 3D point cloud to dis-
tinguish between persons. This result is not surprising since sec-
tion 3.3 showed that the related necessary depth resolution cor-
responds to a parallax accuracy which cannot be reached in real
world applications.
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