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ABSTRACT: 

The paper presents an innovative approach for improving the orientation results when terrestrial and UAV images are jointly processed. 

With the existing approaches, the processing of images coming from different platforms and sensors leads often to noisy and inaccurate 

3D reconstructions, due to the different nature and properties of the acquired images. In this work, a photogrammetric pipeline is 

proposed to filter and remove bad computed tie points, according to some quality feature indicators. A completely automatic procedure 

has been developed to filter the sparse point cloud, in order to improve the orientation results before computing the dense point cloud. 

We report some tests and results on a dataset of about 140 images (Modena cathedral, Italy). The effectiveness of the filtering procedure 

was verified using some internal quality indicators, external checks (ground truth data) and qualitative visual analyses.  

 

a)   b)   

Figure 1: Some examples of the image dataset acquired with a terrestrial camera (a) and UAV platforms (b) for the 3D documentation of the Modena 

Cathedral (Italy).  
 

 

1. INTRODUCTION 

In the field of Geomatics and Geoinformatics, data integration (or 

sensor integration) is understood as the combination of data 

acquired with various sensors in order to derive more accurate 

information which cannot be deduced from one sensor alone 

(Zhang, 2010; Gasparovic and Malaric, 2012; Petrasova et al., 

2017). The integration of heterogeneous (2D or 3D) data acquired 

with different sensors and platforms is a relevant and open issue 

in various fields and applications: 3D modelling of man-made 

environments, heritage documentation, medicine, autonomous 

driving, etc. In the cultural heritage field, data integration is often 

necessary for recording large structures but also complex and 

small architectural details. Depending on the data sources, 

several approaches have been explored (Khaleghi et al., 2013; 

Ramos and Remondino, 2015). However, each developed 

method is focused on specific issues related to sensors’ 

limitations and data characteristics (point clouds density, 

accuracies, viewpoints, scales, etc.). 

 

1.1 Aim of the paper 

The paper presents a novel approach to integrate – at raw data 

level – images coming from different platforms (e.g. terrestrial 

and UAV) and acquired for the documentation of cultural 

heritage monuments (Figure 1). Such image datasets, if not 

properly processed by the bundle adjustment method, could lead 

to errors in the 3D reconstructions due to too large viewpoints, 

scale and illumination changes, etc. We propose to use a set of 

quality features (Section 3.1) computed directly on the sparse 

point cloud derived by the orientation procedure. These features 

are combined (Section 3.2) and used to remove possible outliers 

from the 3D tie points before recomputing the orientation 

parameters of the image dataset and the final dense point cloud 

(Section 3.3). 

 

2. RELATED WORKS 

In the last years many solutions were presented for the integration 

of geospatial data in various disciplines, such as autonomous 

guiding of vehicles, robotics, heritage documentation, landslide 

monitoring, etc. (Luo et al., 2011; Serna et al., 2015; Zieher et al., 

2018). All solutions try to exploit advantages of the different data 

(or sensors) in order to overcome limitations of single data 

sources.  

Data integration can be performed on three levels, depending on 

the purpose of the data acquisition and the employed sensors 

(Kochi et al., 2012; Bastonero et al., 2014): (i) raw data level 

(pixels in case of raster data or 3D points in case of point clouds), 

(ii) feature level and (iii) decision level. The integration at the 

raw data level requires sensors to provide similar types of data 

(i.e. measurements of the same physical entity). Alternatively, 

data must be integrated based on either extracted features (feature 

level) or decisions inferred from the single sensors (decision 

level). The integration of surveying data derived from different 

sensors or platforms could be accomplished on each of these 

levels. However, the raw data level should be preferred, as 

extractable features or inferred decisions may change over time 

and could not be comparable. 

Another way of classifying data integration methods is based on 

the registration and processing procedures:  

• Registration methods based on 3D information: they include 

ICP-like algorithms optimized for merging data coming 

from heterogeneous sources or hybrid approaches 

(Pomerleau, 2015; Mandlburger et al., 2017; Bracci et al., 

2018);
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Figure 2: An example of the sparse (left) and dense (right) point cloud produced by jointly processing UAV and terrestrial images featuring different 

scales, viewpoints, etc. The final dense cloud is noisy and with visible misalignments, due to inaccurate orientation results.  

• Registration methods based on automated 2D-2D or 3D-3D 

correspondence extraction: they focus on the development 

/ improvement of new tie point or 3D feature matching 

extraction approaches (Tombari and Remondino, 2013; 

Gerke et al. 2016; Koch et al., 2016; Wu et al., 2018); 

 

 

3. DEVELOPED METHODOLOGY 

Two main approaches are usually employed to process images 

acquired with different sensors and platforms. In the first 

approach, image datasets are independently oriented, 

scaled/georeferenced and different dense 3D point clouds are 

generated. The obtained point clouds are then aligned and merged 

with several procedures (i.e. common points among the clouds, 

matching targets across the datasets, etc.). The final merged 

dense point cloud often presents visible misalignments as well as 

color and texture mismatches. In the second approach, all the 

available images are jointly processed together within the bundle 

adjustment. However, the derived dense point clouds are often 

noisy (Figure 2), mainly due to inaccurate orientation results 

caused by large viewpoints, scale and illumination changes, 

outliers in the tie points, etc. 

The presented work is focused on the joint processing of 

terrestrial and UAV images and on the implementation of new 

procedures for the analysis and the improvement of the 

orientation results. Using some quality features computed on the 

sparse point cloud produced by the orientation step (bundle 

adjustment), computed camera parameters are deeply evaluated 

and refined, before running the dense image matching and 

generate the final dense point cloud. The entire pipeline is built 

upon MicMac (Rupnik et al., 2017) as shown in Figure 3. The 

specific filtering procedure is developed in Python, so it could be 

coupled to any other photogrammetric processing pipeline. 

Contrary to other methods (e.g. Mauro et al., 2014) where 

features are computed for next best view (NBV) planning and 

image selection, our method wants to eliminate points that 

negatively affect the image orientation step and, consequently, 

the dense point cloud generation.  

 

3.1 Quality features 

The evaluation of image orientation’s quality within SfM 

methods can be performed using external checks and internal 

quality statistics (Roncella et al, 2011). Internal statistics can be 

used to evaluate the accuracy of the feature extraction and 

matching techniques whereas external check can control possible 

block deformations. 

Given a set of oriented images, we derive some quality features 

of the sparse 3D points using in-house developed procedures. We 

compute the following quality features (Remondino et al., 2017):  

• Reprojection error in image space, i.e. the Euclidean distance 

between a measured image point and the back-projected 

position of the corresponding 3D point in the same image. 

It is normally not true that a small reprojection error is a 

sign of good 3D point. A high reprojection error can 

negatively affect the quality of the exterior orientation. 

• Image redundancy (or multiplicity), i.e. the excess of 

observations (image points) with respect to the number 

unknowns (3D object coordinates). This value is related to 

the number of images where a point has been measured. 

Therefore, in theory, the higher is the redundancy, the 

better is the quality of the 3D point – assuming a good 

intersection angle. 

• Intersection angle, i.e. the (maximum) angle between 

viewing directions generating a 3D point. A high 

intersection angle increases the quality of a 3D point. 

• DoN (Difference of Normals) vector, i.e. the normalized sum 

of two surface normal vectors derived from different 

support radii (Ioannou et al., 2012). DoN is a multi-scale 

filtering operator, used in unorganized point clouds to 

compute surface discontinuites. High DoN values are 

expected in areas with substantial surface changes in the 

given radii range. 

• 3D point density, i.e. the distribution of 3D points in object 

space computed in local neighborhoods. Assuming a good 

image texture, a low density values can be related to 

outliers.  

 
Figure 3: The pipeline flowchart, developed with the MicMac suite. The standard workflow (red blocks) is extended with the filtering procedure 
developed in Python (blue blocks) for the removal of bad estimated 3D tie points in order to improve the orientation results and the dense 3D 

reconstruction. 
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3.2 Features aggregation 

All the aforementioned features (Figure 4), directly linked to 

image orientation results, network geometry and complexity of 

the surveyed objects, have different ranges and therefore they 

need to be normalized and rescaled in the same range [0, 1] in 

order to be aggregated. The normalization is performed using a 

“feature scaling” method. This method allows to standardize and 

scale a range of independent variables and features of data. For 

each input value x, the normalized value y is given by: 

 

𝑦 =  
(𝑥 −  𝑚𝑖𝑛𝐷) ∗  (𝑚𝑎𝑥𝑁 − 𝑚𝑖𝑛𝑁)

(𝑚𝑎𝑥𝐷 − 𝑚𝑖𝑛𝐷)
+ 𝑚𝑖𝑛𝑁 (Eq.  1) 

 

where 𝑚𝑖𝑛𝐷 and 𝑚𝑎𝑥𝐷 are the highest and lowest values in the 

data and 𝑚𝑖𝑛𝑁 and 𝑚𝑎𝑥𝑁 are referred to the values in the new 

range.              

Using these normalized features, we aggregate them as a linear 

combination using specific weights for each feature: 

 

𝐴𝑣 = (𝑉𝑅𝐸 ∗ 𝛼) + [1 − (𝑉𝑀 ∗ 𝛽)] + [1 − (𝑉𝐴 ∗ 𝛾)]

+ [1 − (𝑉𝐷𝑜𝑁 ∗ 𝜑)] + [1 − (𝑉𝐷 ∗ 𝜇)]  (Eq. 2) 

where: 

• 𝐴𝑉 is the aggregated value computed for each 3D tie point; 

• 𝑉𝑅𝐸  is the normalized value of the reprojection error and 𝛼 

its weight; 

• 𝑉𝑀 is the normalized multiplicity value and 𝛽 its weight; 

• 𝑉𝐴 is the normalized angle of intersection and 𝛾 its weight; 

• VDoN is the normalized DoN derived from different support 

radii and  φ its weight; 

• VD is the normalized value of the density computed in a 

local neighborhood and 𝜇 its weight. 

The aggregated value 𝐴𝑉 represents a sort of quality of a 3D point 

in terms of the combined contribution of the employed features. 

As expressed in Eq. 2, high values of 𝐴𝑉 denote low-quality 

points. 

 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 

Figure 4: Examples of computed quality features visualized on the sparse point cloud (about 3 million points - a): reprojection error (b), multiplicity 

(c), intersection angle (d), difference of normals (DoN) (e) and 3D density (f). Please note that the DoN (e) is higher where surface discontinuities 
are present (i.e. decorations of the main door). The 3D density (f) is higher where multiplicity and intersection angles are also higher. 
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The optimal threshold value of 𝐴𝑉 and the feature weights have 

been assigned considering both photogrammetric principles and 

empirical tests (Section 4.4), such as the influence of each feature 

in the filtering step (Table 2), in terms of deleted 3D tie points 

and the effective improvement in the orientation results. The 

choice of assigning appropriate values for the feature weights is 

essential to avoid filtering out an excessive number of 3D points. 

 

3.3 Filtering and new EO computation 

The aggregated value 𝐴𝑉, with the optimal threshold and weights, 

is then used to discard or keep a 3D point of the sparse point cloud 

(and the contributing tie points). Low-quality points are 

automatically filtered out and a new bundle adjustment is re-run 

in order to compute new orientation parameters and, 

successively, the final dense point cloud. 

 

 

4. EXPERIMENTS AND DISCUSSION 

4.1 Test case 

Although various case studies were performed to evaluate the 

developed method, hereafter only the Modena dataset (Figure 1) 

is reported. It is composed of 138 images of the Modena 

Cathedral in Italy (82 terrestrial and 56 from an UAV platform). 

The terrestrial images were acquired with a Nikon D750 

mounting a 28 mm lens (pixel size of 5.98 µm). The UAV was 

equipped with a Canon EOS 600D (focal length of 28mm, pixel 

size of 4.4 µm).  

 

4.2 Processing environments for features extraction 

The open-source suite MicMac was chosen for performing the 

image processing and 3D reconstruction. MicMac allows to 

implement and share new tools and algorithms to enrich the 

photogrammetric workflow and to deepen the qualitative 

evaluation of the results. It already provides the possibility to 

interact with the processing pipeline and to access some 

qualitative indicators (e.g. bundle block adjustment residuals, 

covariance matrices, etc.) for the evaluation of the results.  

We have enriched the MicMac suite with a new tool, named 

“Grappa”, developed to extract the following quality features 

(Figure 4 a-b-c): 

● mean re-projection error of the points in the sparse cloud; 

● multiplicity values (the number of images where each point 

is visible and measured); 

● max intersection angles among image observations 

generating a 3D point.  

Grappa is run after the bundle adjustment step and it extracts the 

quality features by processing orientation results, 3D tie points 

coordinates and RGB values. 

On the other hand, the difference of Normals (DoN) feature is 

computed with PCL library (version 1.8). The DoN (Ioannou et 

al., 2012) is a multi-scale approach used to process unorganized 

point clouds. For each 3D point 𝑝, two normal vectors are 

estimated with different support radii (𝑟1, 𝑟2). The estimation of 

the point normal vector is generally based on support radii or 

considering a fixed number of neighbours. Depending on the 

chosen radius and the underlying geometry of the surface, the 

normal vector is clearly different. The DoN ∆�̂� is the normalized 

vector obtained as difference between these point normals 

estimated with different radii: 
 

∆�̂� (p, 𝑟1, 𝑟2) =
�̂� (𝑝, 𝑟1) −  �̂� (𝑝, 𝑟2)

2
 (Eq. 3) 

 

where 𝑟1< 𝑟2 and �̂� (p, 𝑟) is the surface normal estimated for the 

point p, considering the support radius r.  Several pairs of support 

radii values were tested (Figure 5): small support radii highlight 

small changes in the surface structure of the scene whereas bigger 

radii values are most effective in highlighting surface changes in 

large scale structures. In our experiments, considering the normal 

surface estimation on small and complex surface details, the radii 

0.03-0.3 were chosen as good values for the successive filtering 

step.  

Finally, the point cloud density is computed scripting a 

CloudCompare plugin. The sparse point cloud density is used to 

identify points with low density values in their neighborhood. 

Such points could be low-quality 3D points. Density values are 

computed considering the number of neighbors in a sphere of a 

chosen radius r or determining the distance to the nearest 

neighbours. In our experiments a sphere of radius 0.05 m 

(corresponding to the lowest spatial resolution of the sparse cloud 

reconstruction) helped to recognize low quality points and reduce 

noise in the data, particularly in areas like roof, windows, etc.  

 

4.3 Tests on joint and independent orientation procedures 

Preliminary photogrammetric tests were performed to compare 

the two orientation strategies discussed in Section 3 (i.e. 

independent and joint) in terms of number of 3D tie point 

extracted, reprojection error, multiplicity values, points in the 

dense clouds and RMS Error (RMSE) on Check Points (CPs) 

collimated in the images (Table 1). Results show that both 

independent (followed by a merging of the dense point clouds) 

and joint orientation of terrestrial and UAV images lead to similar 

results, although a visual inspection of the obtained 3D result 

shows less noisy dense reconstructions adopting the joint 

processing procedure.   

 

4.4 Thresholds, weights and point filtering 

The aggregated value Av in Eq. 2 is calculated for each 3D tie 

point and it is a sum of the normalized and weighted quality 

feature values. Therefore, choosing the appropriate weight for 

each feature and the threshold of Av is a crucial step in the filtering 

procedure, which can greatly affect the aggregated value 

calculation.  

 

 

 Orientation of only 

terrestrial images 

Orientation of 

only UAV images 

Independent orientation 

and combined clouds 

Joint orientation of 

terrestrial and UAV images 

Computed 3D tie points 696K 1 Mil 1. 7 Mil 1.6 Mil 

# pts in the dense cloud 13.3 Mil 10.5 Mil 18.4 Mil 18.9 Mil 

Reprojection error (pix) 0.791 0.672 0.742 0.718 

# pts in 2 images ~ 63% ~52% ~ 56% ~ 57% 

# pts in 3 images ~ 17% ~19% ~ 19% ~ 18% 

# pts in 4 or more images ~ 7% ~ 10% ~ 9% ~ 8% 

RMSE on CPs (cm) 1.8  2.2 1.8 1.7 

Table 1: Results of the orientation tests on the Cathedral images run with the independent and joint datasets. Number of reconstructed 3D points (sparse 

and dense clouds), reprojection error and multiplicity values with two different approaches: jointly-orientated and independently-oriented-and-combined. 
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a) DoN radii: 0.02-0.2 m 

 

b) DoN radii: 0.2-2 m 

 
 

c) DoN radii: 0.03-0.3 m 

 

d) DoN radii: 0.06-0.6 m 

 

e) DoN radii: 0.6-0.6 m 

 

f) DoN radii: 2-20 m 

 

Figure 5: Vector magnitude of the Difference of Normals (DoN) operator using several combinations of radii. The DoN operator produces high 

response in areas with significative surface changes in the given radii range. For small radii values (i.e. case –b), greater variations are expected in 

fine-detailed areas. Increasing the radii values (i.e. case -f), DoN detects higher changes in the large architectonical parts (roof, façade,..). 

 

  

Figure 6: Two different visualizations of the DoN vectors (radii 0.03-0.3 m) computed in the area of the main entrance of the Cathedral: fine-detailed 

parts (architectural ornaments – left and steps - right) present vectors (white segments) with strong magnitude. On the left, the visualization of the 

sparse point cloud (red points) and the DoN vectors (white segments). On the right, only the DoN vectors are showed.  

 

Feature Threshold Deleted 3D points 
Variation of features’ mean values 

Reproj. error Multiplicity Intersec. angle 

Reprojection error (px) 1 109K (~ 4%) ~ -10% ~ -1% ~ -2% 

Multiplicity 3 1.6 Mil (~ 62%) ~ -34% ~ 61% ~ 57% 

Max intersection angle (degree) 10 1.2 Mil (~ 47%) ~ -16% ~ 27% ~ 58% 

DoN (normalized degrees) 0.001 930K (~ 35%) ~ -2% ~ -4% ~ 17% 

Density (numb. of neighbors) 2 320K (~ 12%) ~ -1% ~ 1% ~7% 

Table 2: Variation of the employed quality features when filtering is performed using a single feature. For each feature, the filtering threshold, the 

number of removed 3D tie points and the variation of the quality features after the points removal are shown. Negative variations represent an 

improvement only in the reprojection error case.  
 

a)  b)  c)  

Figure 7: Filtering results with the DoN feature on an area full of 
architectural ornaments (a). Sideview before (b) and after (c) filtering. 

Firtsly, the influence of quality features’ values was investigated 

when a single feature filtering was applied (Table 2). Qualitative 

evaluations for DoN and density values variation (respectively in 

terms of surface changing variation response and noise reduction) 

were also performed (Figure 6-7). This allowed to quantify the 

effect of each feature in the filtering process and to find the 

optimal value of Av. After various empirical tests, the following 

features’ thresholds were chosen: the reprojection error should be 

smaller than 1 px, the multiplicity should be at least 3 (images) 

and the intersection angle should be greater than 10°, the DoN 

operator should be 0.001 and the number of neighbors for the 

cloud’s density should be at least 2. 

Considering the effect of the single feature’s filtering, in terms of 

removed tie points and general improvements of the internal 

quality values, we realized that the filtering could not rely only 

on the single features as highly correlated among them. Therefore 

other tests were performed using, instead, the aggregated filtering 

approach (Eq. 2) with ad-hoc weights. 

Table 3 reports the variation of three quality features when the 

filtering procedure considers aggregated and weighted values. 

Three different combination of feature weights were used (Figure  
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Case 

Weight 
Threshold 

Av 

Deleted 

points 

Variation of features’ mean values 

Reproj. 

error 
Multipl. 

Inters. 

angle 
DoN Density 

Reproj. 

error 
Multiplicity 

Inters. 

angle 

1 10% 40% 30% 10% 10% 0.941 
53K 

(2%) 
~ -4% ~1% ~1% 

2 10% 40% 30% 10% 10% 
0.847 

(90%) 

1.8 Mil. 

(68%) 
~ -7% ~45% ~66% 

3 10% 40% 30% 10% 10% 
0.894 

(95%) 

809K 

(30%) 
~ -10% ~13% ~26% 

Table 3: Weights, aggregated filtering thresholds, deleted 3D tie points and internal quality values improvements for the best weights’ combination 

(highlighted box in Figure 8) applied to filter the sparse point cloud. The first case considers the Av threshold derived by photogrammetric principles 
and empirical experiments (Section 4.4). Case 2 and 3 investigate a lower Av threshold (90% and 95%). Case 3 had the most balanced ratio between 

number of deleted points and improvements of the considered quality features (lower reprojection error and higher values of multiplicity and 

maximum angle). 
 

 
Figure 8: Graphical representation of the tested weights combinations. The highlighted box shows the combination yielding the best results in terms 
of quality feature improvements (see also Table 3). 

 

8). For each combination, three different thresholds of Av are 

used: the optimal value (computed using the before-mentioned 

photogrammetric principles) and two lower thresholds 

(respectively 90% and the 95%). In particular, Case 3 highlights 

the best weights combination, in terms of acceptable deleted 

points and general improvements of the considered quality 

values. 

 

4.5 The filtering step 

Given the optimal thresholds and weights, the developed 

automatic Python filtering tool handles the removal of the 3D tie 

points - and the corresponding 2D tie points - not fulfilling the 

given conditions. 3D tie points with an aggregated value above 

the optimal threshold are automatically removed. A new MicMac 

workspace is then generated for the computation of a new set of 

orientation parameters and a new dense 3D point cloud. 

 

4.6 Results evaluation using external checks 

Beside validating the proposed methodology using internal 

quality values (Table 3), external checks were also used to 

evaluate the quality of the newly derived dense point clouds. The 

ground truth is a point cloud of the Cathedral acquired with a 

Leica HDS7000. A seven parameters Helmert transformation 

was used to co-register the photogrammetric and ranging clouds. 

The evaluation was performed considering: 

• RMS error (RMSE) on Check Points (CPs) (Table 4); 

• RMSE on plane fitting (Figure 9 and Table 5); 

• mean error and standard deviation values with a cloud-to-

cloud distance on selected areas (Table 6).  
 

RMSE on Check Points (cm) 

Original dense cloud 3.5 

Filtered dense cloud 2.6 

Average variation ~ 22% 

Table 4: RMSE on some natural CPs measured on the dense point 
clouds and variation (improvement) after the filtering procedure. 

Plane fitting RMSE (cm) 

Plane # Original dense 

cloud 

Filtered 

dense cloud 

Variation 

1 1.44 1.40 ~ 4% 

2 0.60 0.56 ~ 11% 

3 1.50 0.70 ~ 52% 

4 1.60 1.40 ~ 16% 

5 0.40 0.41 ~ -2.00% 

Average 1.10 0.90 ~ 17% 

Table 5: Improvement of the average plane fitting RMSE on five 
selected planar areas, considering the original and the filtered dense 

point clouds. 
 

 

Figure 9: The areas where the plane fitting analyses were performed. 

 

Cloud to cloud distance on sub-areas (cm) - Average values 

 Mean St.deviation Variation 

Original dense cloud 5,4 5,8 
~ 12% 

Filtered dense cloud 5,0 5,3 

Table 6: Average cloud-to-cloud distance variation. 
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A visual inspection of the newly computed dense point cloud 

(Figure 10) shows also a general improvement of the results with 

respect to the dense cloud generated with the orientation 

parameters before the filtering procedure. 

 

 

5. CONCLUSIONS AND FUTURE WORKS 

The paper presented a new workflow for improving the joint 

processing of UAV and terrestrial images. An extended 

photogrammetric pipeline, involving a filtering step, is used to 

remove bad 3D tie points in the sparse point cloud before 

computing the dense reconstruction. The filtering is based on 

quality features derived from the sparse point cloud. The method 

was evaluated analyzing internal quality checks, external 

reference data and qualitative visual analysis. Obtained results 

showed a general improvement of all the evaluated parameters 

on the tested dataset. 

Further tests are planned to investigate the effectiveness and the 

reliability of the proposed pipeline on different datasets. 

Moreover, additional quality features (DoN combined with 

curvatures, flatness and roughness values), other normalization 

functions and different weights combinations will be investigated 

to verify the robustness of the filtering equation.  
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Figure 10: Qualitative evaluation of the dense point clouds derived with the standard photogrammetric pipeline (left images for each box) and the 
clouds derived after the proposed filtering method (right images). A visual comparison highlights clear improvements in the dense reconstruction 

(less holes, higher density, etc.). 
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