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ABSTRACT: 

Automated identification of high-level structures in unorganized point cloud of indoor spaces Indoor space is an important aspect of 

scene analysis that provides essential information for many applications, such as building digitization, indoor navigation and 

evacuation route planning. In addition, detection of repetition and regularities in the organization indoor environments, such as 

rooms, can be used to provide a contextual relationship in the reconstruction phase. However, retrieving high-level information is a 

challenging task due to the unorganized nature of the raw data, poor-quality of the input data that are in many cases contaminated 

with noise and outliers. in point benefit from the apparent regularities and strong contextual relationships in façades. The main 

observation exploited in this paper is the fact that building indoor is generally constituted by a set of basic shapes repeated several 

times in regular layouts. Building elements can be considered as similar if they share a set of features and elements in an idealized 

layout exhibiting some regularities. Starting from this main assumption a recursive adaptive partitioning of the indoor point cloud is 

carried out to automatically derive a flexible and hierarchical 3D representation of the building space. The presented methodology is 

tested on a synthetic dataset with Gaussian noise. The reconstructed pattern shows a close correspondence with the synthetic one 

showing the viability of the proposed approach. 

 

 

1. INTRODUCTION 

Up-to-date 3D indoor models are increasingly requested for the 

management of existing buildings. In the last years, Building 

Information Modelling - BIM (Eastman et al., 2011) become 

more and more important not only for planning the construction 

site but also for the management of the building during its 

lifetime. For this reason, in large renovation projects the 

availability of “as-build” and “as-found” BIM become a major 

need not only in the design phase but also for maintenance 

panning. The availability of a reliable geometrical model is of 

primary importance for the generation of a BIM (Barazzetti et 

al., 2015). To this end, laser scanning technologies are gaining a 

lot of popularity for the documentation of indoor environments. 

Indeed, ongoing advances in the reduction of size and weight of 

terrestrial laser scanning sensors, together with improvements in 

indoor positioning techniques, have led to the development of 

highly productive Indoor Mobile Mapping Systems (IMMS) 

that allows rapid acquisition of large area and collection of 

millions of points in a reduced time. However, the processing of 

the data and the procedure for the creation of a geometrical 

model of a building indoor is still mainly a manual task. Even if 

in the last years several authors focused on this topic (Banfi et 

al., 2017; Macher et al., 2017) it remains an active research 

filed. This is mainly due to the fact that captured point clouds 

often suffers from severe missing data, noise and outliers, 

making the reconstruction of architectural elements a 

challenging task. Indeed, both a faithful geometrical 

reconstruction and topology definition may mostly suffer for 

incomplete data. This problem is made even more challenging 

due to the wide variability of architectural styles. Another 

strictly connected problem is the detection high-level structures 

in the point cloud. This is due to the fact that in many cases a 

data driven approach is used for the automating the 

reconstruction from point clouds. While data driven methods 

provide highly faithful geometrical reconstructions, they are 

generally processing the different features independently, 

missing context-based information. Indeed, man-made 

environments generally exhibit some regularities (e.g., a 

floorplan is generally organized considering symmetries, 

alignments and repetition criterion) that can be used to constrain 

the reconstruction. Those high-level information are not taken 

into consideration if the building’s rooms are separately 

extracted. In addition, this context-based information is crucial 

for obtaining a consistent model less dependent on data quality. 

 

This paper presents a methodology for the automated detection 

and layout regularization of similar features in point clouds of 

building indoors. Automatically discovering high-level building 

structures, like rooms, in unorganized 3D point clouds is 

generally challenging due to the wide variability of possible 

patterns in room organization, large amount of noise, outliers or 

clutter. The main observation exploited in this paper is the fact 

that building indoors are generally constituted by a set of basic 

shapes repeated several times in regular layouts. Building 

elements can be considered as similar if they share a set of 

features and elements in an idealized layout exhibit some 

regularities (i.e., they are aligned and uniformly distributed 

along specific directions). Starting from this main assumption a 

recursive adaptive partitioning of the indoor point cloud is 

carried out to automatically derive a flexible and hierarchical 

3D representation of the building space.  

 

The paper is structured as follows. Section 2 reviews related 

work on building and indoor reconstruction starting from point 

cloud data with a specific focus on methodologies introducing 

strategies for repetition detection and regularization for building 

modeling. Section 3 presents an overview of the developed 

methodology, while a detailed description of the room 

partitioning and layout regularization step is provided in section 
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4. Section 5 is focused on presenting results for a test carried 

out a synthetic dataset with Gaussian noise. The reconstructed 

pattern shows a close correspondence with the synthetic one 

showing the viability of the proposed approach. The final 

section is devoted to draw some conclusions and to address 

future developments. 

 

2. RELATED WORK 

There is a large amount of literature on the reconstruction of 

indoor environments based on point clouds. This review is 

focusing only on existing works focusing specifically the metric 

accuracy of the reconstruction using Terrestrial Laser Scanning 

(TLS) and Mobile Laser Scanning (MLS) and discovery of 

repetitive/symmetric patterns as well as other types of 

regularities (e.g., same alignment, same spacing, etc.). 

 

Early works Yue et al. (2012) and Becker et al. (2015) 

developed a formal grammars, which describes different 

building styles, for the reconstruction of 3D indoor models from 

3D point clouds. A similar approach was also adopted by 

Khoshelham and Dìaz-Vilarino (2014). In this case the 

modeling of building indoor was solved by using an iterative 

procedure based on placing, connecting and merging of cuboids. 

All these grammar-based approaches require a pre-design of an 

according set of grammar rules. Jiang et al. (2016) are 

presenting a methodology for detection and enforcing of 2D 

regularization that can be applied also for floorplans.  

  

Previtali et al. (2014) and Wang et. al. (2017) used a similar 

idea for generation of building floor plans. Based on some a-

priori assumption about wall organization, the floorplan 

estimation was posed in terms of an optimal labeling problem 

solved by minimizing a score function in the framework of s-t 

cut. However, no specific analysis are performed concerning the 

identification of high-level similarities. 

 

Armeni et al. (2017), Macher et al. (2017), Previtali et al. (2018) 

and Jung et al. (2018) presents similar approaches for the 

generation of semantic parsing of 3D point cloud of building 

indoors. The presented approaches follows similar steps. Firstly, 

the point cloud is subdivided into spaces and basic geometries. 

Secondly, spaces and objects are parsed into their structural and 

building elements (e.g. walls, columns, etc). Finally, a 3D 

model of the building is derived. Bassier et al. (2016) combine 

simultaneously contextual and geometrical characteristics to 

assign an object category to extracted elements. 

 

Ikehata et al. (2015) introduce a new framework that defines a 

structure graph and grammar for an indoor scene geometry, 

which can be extended to add more details such as multiple 

stories. But their method is based on the Manhattan world 

assumption that restricts the types of geometric expression. 

Another approach proposed by Mura (2014) exploring the 

vertical structure (e.g., planar patches from the walls) and 

visibility check to eliminate occlusions through the positions of 

the stationary laser scanner. 

 

While most approaches require measurements of high quality, 

Loch-Dehbi et al. (2017) proposed a methodology for predicting 

the floorplan and the room arrangement by using a limited 

number of observations. A set of hypothesis are generated and 

tested by using the sparse observation available together with 

strong model assumptions. In the same context, Rosser et al. 

(2017) presented a semi-automatic data driven estimation of 2D 

building interior floorplans.  

 

Detection of regular patterns was a topic also addressed in 

building façades reconstruction. Mitra et al. (2006) and Shen et 

al. (2011) present a pair-matching based approach to detect 

symmetries in 3D shapes and point clouds. In Pauly et al. 

(2008) a general regularity detection method for 3D models is 

presented. This approach can be used for extracting a single 

façade pattern. However, in this case similarities in the model 

are detected by considering a local similarity measure of the 

point cloud curvature which is more prone to output outliers. 

Lian et al. (2018) present an algorithm for automatically 

detecting and inferring repetitive elements from façades. Firstly, 

candidate templates are automatically derived starting on the 

clustering of similar features. Secondly, an adaptive region 

descriptor is used to detect partially occluded repetitive 

elements. Finally, the fully occluded elements are inferred by 

utilizing the Bayesian probability network, which can be 

learned from a database of the selected façades. In Previtali et 

al. (2013) regularities are imposed on building facades 

assuming that elements are distributed in an irregular lattice 

schema. Repeated candidates are identified according to a 

voting scheme and the final regular lattice is estimated 

minimizing a score function. 

 

3. OVERVIEW 

An overview of the developed method is presented in Figure 1. 

 

 
 

Figure 1. Overview of the workflow for the developed 

approach. 

 

In this discussion we consider the Manhattan-World-

Assumption holds so building rooms are characterized by flat 

dominant planes. In addition, the point cloud should be aligned 

such that the Z-axis correspond to the vertical direction. 

After a pre-processing phase each iteration of the adaptive 

partitioning algorithm consists of three main steps: point cloud 

splitting, similar features grouping and layout regularization.  

The pre-processing step is aimed at identifying possible 

splitting planes into the point cloud. Firstly, the whole point 

cloud is subdivided into floors (Figure 2a-b). In particular, this 

initial subdivision can be performed by considering the 

distribution of points along the vertical directions. In 

correspondence of local minima in point cloud density is sought 

a horizontal splitting between floors. 
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a.  

b.  

 

Figure 2. Synthetic point cloud used as a reference dataset to 

test the presented methodology (a); and point cloud density 

distribution in vertical direction (z). 

 

Once data are subdivided into different floors, planar pieces are 

detected in the point cloud using a RANSAC (Fisher and Boles, 

1981) approach identifying possible boundary lines. This stage 

is accomplished by using the segmentation strategy described in 

(Previtali et al., 2013). In particular, the planar primitive 

detection is carried out by using a hybrid technique combining 

RANSAC algorithm and region growing. In this 

implementation, major attention is paid to the reduction of so 

called ‘bad segmentation’ problems. Indeed, spurious results 

may be due to the fact that points constituting the maximum 

consensus to RANSAC planes are derived from different 

objects. 

A confidence value indicating the likelihood that a point lies 

along a true boundary is assigned. The confidence value is 

evaluating the local structure of the point cloud taking into 

account eigenvalues computed for the k-nearest point boundary. 

A second parameter associated to each point is the length of the 

line the point belongs to.  

As previously anticipated, identification of structure regularities 

is carried out in three recursive steps:  

 structure splitting which is aimed at subdividing each 

building floor into a set of sub-blocks; 

 similar feature grouping  where the similarity of the 

different detected element is evaluated and similar 

slices are grouped together; 

 layout regularization that is devoted to the 

optimization of the layout. 

The final output is a top-down hierarchical subdivision of the 

building space. 

 

4. HIGH-LEVEL STRUCTURES IDENTIFICATION 

Using as input data the outcomes of the pre-processing stage 

described in the previous section the methodology for 

identification of high-level structures and similarities is carried 

out in three recursive steps: structure splitting, similar features 

grouping, and layout regularization. This section the three 

stages are discussed and to obtain a top-down hierarchical 

subdivision of the building indoor. 

 

4.1 Structure splitting 

Structure splitting stage is aimed at subdividing each building 

floor into a set of sub-blocks. The initial splitting (number and 

localization of splitting planes) can be driven considering some 

weak prior knowledge of building floorplan arrangement. 

Indeed, it can be easily observer that into an orthogonal building 

floorplan horizontal splitting planes should be placed where 

horizontal lines are dense and vertical lines are rare; vice versa 

vertical splitting planes should be placed where vertical lines 

are dense and horizontal lines are rare (Muller at al. 2007). To 

incorporate such prior knowledge, the following formulation is 

used (for horizontal boundaries): 

 

     ∑
(           (          )) ( (       ) ‖⟨       ⟩‖

 )

     
     (1) 

 

 

 

where the product between the direction of the boundary line    

and the vertical direction measures the contribution of every 

boundary to the vertical direction. The weight function 

 (       )          
 takes into consideration the 

contribution to the op point pi to the splitting line P. The 

parameter  is related to the size of the walls in the dataset. In 

particular, for the examples presented in this paper  = 0,2 m 

was used. 

Confidence of the boundary point is weighted taking into 

account the length of the boundary the point belongs to 

 (          )             . Finally,       measures the local 

density around pi. In particular, the local density  is evaluated 

as: (pi) = k / V(k), where V(k) is the volume of the bounding 

ball of the k-nearest neighbouring point around pi in the original 

point cloud. The number of the nearest neighbouring point to be 

evaluated id dependent to the data density. In the examples 

reported in this paper a number of k = 10 nearest neighbouring 

point was used. This factor is of main importance to compensate 

the influence of non-uniform point distribution in the point 

cloud. In particular, for  a relevant comparison between areas 

with different sampling density, boundaries point in regions 

with low density are compensated by larger weights. On the 

other hand, areas characterized by higher density are 

compensated with lower weight.  

Similar considerations can be formulated for vertical 

boundaries. To take into consideration the previously defined 

prior we can define the score function: 

 

              (2) 

 

Initial splitting planes are located in correspondence of local 

maxima Fy (Figure 3).  

Similar considerations can be formulated for vertical 

boundaries. Once detected the splitting planes they are used to 

subdivide the current building floor into slices. Splitting planes 

are added sequentially starting from the ones having higher 

score (Figure 4). In the case one splitting plane intersect with 

another one the splitting is interrupted and it is resumed only if 

a new intersection is found. At the end of the splitting step a set 

of sub-building blokes is derived. 
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Floor 1 

a. 

Score Y split 

b. 

Score X split 

c. 

Floor 2 

 
d.  

Score Y split 

e. 

Score X split 

f. 

 

Figure 3. Building floorplan for Floor 1 (a) and Floor 2 (d) with score function Chor and Cver for Floor 1 (b and c respectively) and for 

Floor 2 (e and f respectively). 

 

a. b.  

Figure 4. Building floorplan for Floor 1 (a) and Floor 2 (b) with insertion of the splitting planes numbered according to the sequence 

used. 

 

4.2 Similar feature grouping 

In the grouping step similar slices are grouped together, so that 

to identify repetitive building elements (rooms) and generate a 

regularized layout in the next step. Given two two objects Si 

and Sj the similarity measure (SM) between them is evaluated. 

To tolerate poor quality input data the space of the overlapping 

region of the aligned slices is quantized and the similarity 

between Si and Sj is calculated in this quantized space. 

Specifically, for each resulting voxel two functions vi and vj are 

defined to indicate the number of points contained in the voxel 

from Si and Sj, respectively. At the end, the original point 

clouds are quantized into a tensor representation. The SM 

between slices Si and Sj is defined as: 
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(4) 

 

The adopted SM may range from -1 (full inverse correlation) to 

+1 (full direct correlation). For this reason, SM values close to 

+1 indicate high similarity between Si and Sj, while in the case 

SM is close to zero or negative, they are assumed to be different 

each other. SM also supports partial matching of two slices, 

since the similarity is defined on the overlapping region of their 

aligned versions. 

 

Once the similarity is measured for each pair of slices, the ones 

having the maximum similarity are automatically clustered by 

using a bottom-up method as far as no more clusters (C1,C2,…, 

Cn) can be created. The clustering process is stopped until SM 

is lower than a user-defined threshold (SM = 0.7 has been used 

in the experiments). In this way, elements with low similarity 

concerning the others in the cluster are discarded, improving the 

robustness of the method.    
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4.3 Layout regularization 

Once similar slices are grouped together the optimization of the 

layout is carried out. In particular each object Si can be 

described as a cube where the position of the bottom left corner 

is (xi, yi, zi), its height is hi, its width is wi and its depth is di, so: 

Si={xi, yi, zi, hi, wi, di}. In this paper we are looking for three 

specific sets of constraints: 

 

• ‘same shape;’ 

• ‘same alignment;’ and 

• ‘same spacing.’ 

 

Given a set of objects S whose ‘shape similarity’ is identified at 

the previous step the remaining two types of similarity are 

separately evaluated. First, the ‘same alignment’ constraint is 

investigated. Three different kinds of clustering are applied: the 

first one by considering the ‘horizontal alignment’ (x and y) 

between objects, the second one the vertical alignment (z).  

 

 

        (horizontal alignment #1) 

        (horizontal alignment #2) 

(5) 

(6) 

       (vertical alignment) (7) 

 

Finally, the ‘same spacing’ constraints are defined on two 

element pairs. These can be either in the horizontal or in the 

vertical direction. In particular, assuming that Si and Sj have the 

same spacing of Sn and Sm in the horizontal direction #1 and 

objects are organized in an ascending order with respect to the x 

coordinate (xi<xj<xn<xm), his constraint can be formulated as: 

 

            =>               (8) 

 

A similar definition can also be given for the ‘same spacing’ 

constraints in horizontal direction #2: 

 

            =>               (9) 

 

And in the vertical direction: 

 

 

            =>               (10) 

 

For all objects belonging to the same clusters, pairwise 

constraints are defined. In particular, the whole group of 

detected objects is clustered by using the mean-shift clustering 

algorithm (Comaniciu and Meer, 2002). This exploits the object 

shape using as bandwidth the user-defined tolerance α. Objects 

with different shapes will be recognized as different clusters. 

The main advantage of the mean shift algorithm is that it is a 

non-parametric clustering technique which does not require 

prior knowledge of the number of clusters, and does not 

constrain the shape of the clusters. For all objects belonging to 

the same clusters, pairwise constraints defined according to Eq. 

(5), (6), (7), (8), (9), (10) are set up. 

Since in many cases the spacing between objects is obtained as 

a multiplier of a basic dimension (‘unit’) the cluster with 

smaller spacing is used as reference and others are checked it 

they are the integer multiplier of the ‘unit’ (to do this test, the 

mean values of the different clusters are used). A user-defined 

bandwidth tolerance α is used. In the case the following 

constraint are added: 

 

                (11) 

 

where k is an integer value. 

 

Once the constraints between objects are identified, the second 

step of the proposed approach is aimed at regularizing the 

layout under the previously identified constraints. The 

regularization is performed by using an approach similar to the 

one presented in Dang et al. (2014). In particular, the 

regularization problem is addressed by transforming the initial 

layout, L, into a regularized one, L*, by minimizing the 

following score function: 
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(12) 

 

where the first term represents the element’s position while the 

second one represents the element’s shape. The parameter ω 

balances the influence between the position and the shape 

constraints. 

 

In addition to the previously identified constraints, some 

additional constraints are added to limit possible changes of the 

element’s position. In particular, the maximum allowed width 

change inside a cluster is limited to ( ̅      ̅    )  where  ̅ 

is the average height of the cluster and  is the RMSE (Root 

Mean Square Error) of the cluster. Similar constraints are added 

also for object width and depth. 

By solving the quadratic programming problem of Eq. (12) the 

regularized layout is obtained. Similarly to Jiang et al. (2016), 

constraints are added sequentially to avoid potential conflicts. If 

any conflict is detected, the constraint will be discarded. 

 

5. EXPERIMENTAL RESULTS 

In this section we show some partition into similar features and 

layout regularization results. To test the viability of the 

proposed approach we have used some synthetic datasets. In 

particular, a two story building was simulated. The floorplan of 

each story is symmetrical with respect to a central area 

simulating an hall. At the each side of the hall at the ground 

floor five rooms having the same shape are connected to a 

rectangular space representing a corridor. All rooms are aligned 

along the Y axis and are equally spaced (Figure 5a). Instead, at 

the first floor the corridor is connected to three rooms (having 

the same shape of the room at the ground floor) and a larger 

one. All rooms are aligned along the Y axis (Figure 5b). The 

point cloud simulating the scanning of the building is composed 

of 8 million points with a density of about 1.000 points/m2. The 

output of the processing is a set of coordinates representing the 

hierarchical structure of the data set. In particular, the output 

represents the centre of the room. 

In particular, the following tests were performed: 

 Processing of the syntactic dataset without noise; 

 Processing of the synthetic dataset with Gaussian 

noise having  = 2.0 cm 

 Processing of the synthetic dataset with Gaussian 

noise having  = 5.0 cm 

 Processing of the synthetic dataset with a large 

missing area in Rom type 2 
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a.  

b.  

Figure 5. Building floorplan for Floor 1 (a) and Floor 2 (b). 

 

For each test the output of the processing were compared with 

the original synthetic set. In particular, both the coordinates of 

the room centres and the regularizing constraints (‘same shape’, 

‘same alignment’ and ‘same spacing’) were evaluated. In all our 

examples, we represent features having the ‘same shape‘ as 

circles of the same colour and features meeting the ‘same 

spacing’ constraints lines of the same colour connecting the 

features. In all tests performed the regularizing constraints 

detected by the proposed method met the one of the synthetic 

dataset ground truth. Comparison of the room coordinates is 

summarized in Table 1. If ‘same alignment’ constraints are 

identified between features, a possible misalignment between 

room centre and ground truth is exemplified as a systematic 

error over all the features. In other words, since all “Room type 

1” are detected as having the ‘same alignment’ in Y direction 

the same misalignment is observed on all the rooms (e.g., see 

for example the test with syntactic dataset without noise in 

Table 1). 

  

Syntactic dataset without noise 

 ΔX [m] ΔY [m] ΔZ [m] 

Room type 1 0.000 0.001 0.000 

Room type 2 0.000 0.000 0.000 

Corridor 0.000 0.000 0.000 

Hall 0.000 0.000 0.000 

Synthetic dataset with Gaussian ( = 2.0 cm) 

 ΔX [m] ΔY [m] ΔZ [m] 

Room type 1 0.001 0.001 0.000 

Room type 2 0.000 0.001 0.000 

Corridor 0.001 0.000 0.000 

Hall 0.000 0.000 0.000 

Synthetic dataset with Gaussian ( = 5.0 cm) 

 ΔX [m] ΔY [m] ΔZ [m] 

Room type 1 0.000 0.002 0.000 

Room type 2 0.001 0.001 0.001 

Corridor 0.001 0.001 0.000 

Hall 0.001 0.001 0.000 

Synthetic dataset with a large missing area in Room #1 

 ΔX [m] ΔY [m] ΔZ[m] 

Room type 1 0.001 0.000 0.000 

Room type 2 0.000 0.000 0.000 

Corridor 0.000 0.001 0.000 

Hall 0.000 0.000 0.000 

Table 1. Comparison between room center coordinates as 

detected by the proposed method and ground truth for the 

performed tests. 

 

Results in Table 1 confirms the viability of the developed 

mythology for detecting similar features and regularization their 

layout. A graphic representation of the results is reported in 

Figure 6 where each identified similarity is represented by a 

different colour. 

a.  

 

 

b.  

c.  

Figure 6. Estimated room hierarchy: synthetic point cloud (a); 

volumetric representation (b) and hierarchical representation (c) 

element detected as similar rooms are highlighted as spheres 

with the same color and same spacing constraints are 

represented with segments having same color. 

 

6. CONCLUSIONS AND FUTURE WORKS 

This paper investigates the problem of identifying high-level 

information in a point cloud of a building indoor. The main 

observation exploited in this paper is the fact that building 

indoors are generally constituted by a set of basic shapes 

repeated several times in regular layouts. For this reason, this 

paper is focusing on detecting similar features (e.g. rooms) and 

regularization their 3D layout according to a set of defined 

constraints (‘same shape’, ‘same alignment’ and ‘same 

spacing’). Starting from this main assumption a recursive 

adaptive partitioning of the indoor point cloud is carried out to 

automatically derive a flexible and hierarchical 3D 

representation of the building space. The number and 

localization of the splitting planes are adaptively determined in 

the structure splitting phase. It is then followed by an iterative 

grouping of similar features. Measurement of feature similarity 
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is carried out by a similarity measure function. Finally, 

similarity constraints in alignment and spacing are exploited and 

enforced into a regularization step. The presented approach was 

tested on a synthetic dataset to verify its viability. However, the 

results presented in this paper are only some preliminary tests. 

Indeed, a validation with real dataset is of primary importance 

to have real feedback about the presented approach. In addition, 

a more in-depth evaluation of precision, recall and F-measure 

will be necessary taking into consideration a ground truth data 

set. The presented article is talking only a specific set of 

translational similarities. Possible extension of the developed 

methodology may include circular of radial functions. 

Obviously, buildings completely irregular repetitive patterns are 

not targeted in this research.  Finally, the presented 

methodology can be extended to other domain. For example, 

building facades are characterized by the repetition of a set of 

elements (e.g., windows, doors, balconies) into a repetitive 

pattern and the presented methodology can be adapted to face 

this problem too.   
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