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ABSTRACT: 

Automatic semantic segmentation of images is a prominent research field with promising and reliable solutions already available, 

based on recent advances in machine learning. At the same time, using image labels as input to image-based 3D reconstruction is 

believed to have an enormous potential to improve the quality of its results. In this work we discuss this argument, exploring the 

contribution of semantic labelling towards 3D reconstruction in photogrammetry. We experiment with semantic information in various 

steps of the pipeline starting from feature matching to dense 3D reconstruction. Labelling in 2D instead of 3D is considered as an easier 

task in terms of data availability and algorithm maturity. However, since semantic labelling of all the images involved in the 

reconstruction may be a costly, laborious and time consuming task, we propose to use a deep learning architecture to automatically 

generate semantically segmented images. To this end, we have trained a Convolutional Neural Network (CNN) on historic building 

façade images that will be further enriched in the future. The first results of this study are promising, with an improved performance 

on the quality of the 3D reconstruction and the potentiality to transfer the labelling results and get, thus, a labelled 3D model. 

 

a)  b)  c)  d)  

Figure 1: Boosting photogrammetric 3D reconstruction with semantic information: an input image from a dataset of terrestrial 

acquisitions (a), its corresponding automatic labelling in 4 classes (b), the recovered camera poses of the image dataset (c) and the 

semantic 3D reconstruction (d). Semantic aids also the various photogrammetric steps, from tie point extraction to dense image 

matching. 

  

 

1. INTRODUCTION 

The image-based 3D reconstruction pipeline, based on 

photogrammetry and computer vision principles, has become in 

the last years a powerful approach for the generation of detailed 

and precise 3D data. It is commonly preferred over costly laser 

scanning methods in many fields, including heritage 

documentation. Indeed, photogrammetry can generally reassure 

adequate automation, high quality results and ease of use, even 

for non-expert users along with cost efficiency. Recent advances 

were achieved in all core components of the photogrammetric 

pipeline enhanced even more the aforementioned arguments: 

from image pre-processing (Verhoeven et al., 2015) to keypoints 

extraction (Hartmann et al., 2015), bundle adjustment 

(Schoenberger and Frahm, 2016) as well as dense points clouds 

generation (Remondino et al., 2014). 

In the meantime, the latest decade has witnessed a massive usage 

of machine and deep learning techniques in the fields of computer 

vision and signal processing among the fields of data science. 

The availability of an extensive amount of image data along with 

the increasing computational power but, most importantly, the 

use of GPU processing, has promoted the so-called deep learning 

techniques (Goodfellow et al., 2016) letting the data scientists to 

achieve unexpected good results. Thus, machine and deep 

learning methods are getting more and more popular in several 

research communities including photogrammetry. Indeed, they 

are used for image classification, scene semantic segmentation or 

object detection as a pre-requisite for several tasks such as object 

modelling and recognition, autonomous grasping and 

manipulation in robotics, tracking, autonomous driving, indoor 

and urban modelling, etc. (Finman et al., 2014; Martinovic et al. 

in 2015; Marmaris et al., 2016; Tateno et al., 2017; Tsai et al., 

2018). They are also used to segment 3D heritage data (Grilli et 

al., 2018) or remove outliers in point clouds (Stucker et al., 2018).  

 

1.1 Aim of the paper 

Since 2D semantic segmentation algorithms are robust enough 

and can achieve high level performance scores, the work 

proposes to support photogrammetric 3D reconstructions with 

state-of-the-art semantic image segmentation methods (Figure 1). 

We propose to use semantic image labelling in various steps of 

the photogrammetric pipeline while also applying label transfer 

from 2D to 3D. We test our method on heritage datasets 

generating our own training set. In more detail, the paper suggests 

semantic segmentation of images in order to (Figure 2): 

 Constrain the search area of image features when 

extracting tie points among images in order to 

minimize mismatched correspondences - only features 

under the same label should be matched. 

 Use semantic labelling to mask out areas that should 

not be considered during the generation of the dense 

point cloud (e.g. the sky). 
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 Reinforce dense image matching using pixel labels and 

reduce noisy 3D points. 

 Apply label transfer from the image to the 3D data. 

 

 

Figure 2: The proposed semantic photogrammetric pipeline 

where semantic segmentation using deep learning methods are 

implemented to support 3D results. 

 

To reach these goals, we use a Convolution Neural Network 

(CNN) trained on our own historic façades dataset (Figure 3) to 

facilitate automatic semantic labelling of similar image sets. The 

images depict various architectural scenes, namely facades of 

historical buildings of several towns in Italy. The data was 

carefully selected in order to cover a large variety on architectural 

style of historic buildings. 

 

   
 

   
 

    
Figure 3: Example of the historic building façades used in our 

tests to train a CNN for automatic semantic segmentation.  

 

In the next sections, related work on semantic segmentation 

methods is discussed (Section 2), followed by the description of 

our training method (Section 3). Section 4 presents our 

experiments towards boosting image-based 3D reconstruction by 

exploiting semantic information within the processing pipeline. 

Section 5 draws some final conclusions and our vision for future 

works. 

 

 

2. RELATED WORK 

The recent technological advances in computation power led to a 

popularization of deep learning methods and their broad use in 

image processing and scene understanding. Image classification 

refers to the assignment of a category label to an image, 

commonly based on its most salient objects. On the other hand, 

image segmentation refers to the assignment of a predicted label 

for each single image pixel in a semantic meaningful way. 

State-of-the-art approaches in image classification and 

segmentation as well as object detection benefit from the recent 

advances in Convolutional Neural Networks (CNNs) which tend 

to outperform other methods in efficiency and accuracy 

(Simonyan et al., 2014; Long et al., 2015; Girshick et al., 2015; 

He et al., 2017). The concept of CNNs was originally introduced 

in the 1980s (Fukoshima et al., 1982), but gained popularity 

because of the recently achieved results published to the 

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 

challenge (Deng et al., 2009; Russakovsky et al., 2015), one of 

the pioneer efforts to collect an extensive dataset harvested from 

the web and train an image classification deep CNN. The most 

famous CNN architectures probably are AlexNet (Krizhevsky et 

al., 2012), VGG-16 (Simonyan et al., 2014), ResNet (He et al., 

2016), Inception (Szegedy et al., 2015). As an extension of the 

standard CNN, the so-called Fully Convolutional Network 

(FCN) (Chen et al., 2015) are adapted in order to deal with 

arbitrary sized images and are commonly used for semantic 

segmentation problems (Long et al., 2015). To train these 

networks, a large amount of dense pixel annotations must be 

collected and used as training data. Like all machine learning 

methods, training with a poor amount of annotated data leads to 

models that may not generalize well to all test images and cases. 

Semantic annotation of objects and classes is performed on single 

images or video sequences. An extensive bibliography on 

semantic segmentation exist, especially on urban street scenes 

towards complete scene understanding mainly for autonomous 

driving purposes. To this end, several benchmark datasets are 

introduced for training and testing like CamVid (Brostow et al., 

2009), Rue-Monge2014 (Riemenschneider et al., 2014) or 

CityScapes (Cordts et al., 2016). However, to the best of our 

knowledge, no dataset is available to specifically tackle heritage 

and architectural scenarios, including historical façades.  

 

 

3. DATA LABELLING AND NETWORK TRAINING 

3.1 Image annotation and labelling 

Labelling ground truth data (either simple boxes or more 

complex shapes) is a task that still remains unsolved in 

supervised learning, due to its complexity and the fact that it is 

time consuming. Up to now, it is an indispensable and laborious 

stage that cannot be automated but necessary to train the deep 

learning model. Moreover, the labeller should pay large attention 

to avoid gross errors that would affect the training quality. The 

labouring time can be significantly reduced by using specially 

designed interfaces for annotation (e.g. RectLabel, Labelbox, 

LabelMe) whereas research is going on towards efficient object 

annotation (Papadopoulos et al., 2017). Recently, the high 

demand for data labelling gave rise to specialized services, such 

as Edgecase, HumanInThe Loop, Raidon, etc. Crowdsourcing 

services are also used for creating large annotated datasets (e.g. 

MTurk, Clickworker) providing relatively fast results under low 

cost although they could be risky in terms of low quality and 

inconsistency. Weak and semi-supervised approaches were also 

proposed to reduce the heavy labelling cost of collecting 

segmentation ground truths (Khoreva et al., 2017), while 

synthetic semantically annotated data have been also introduced 

for urban scenes (Ros et al., 2016). 

For our experiments, ground truth data was created by manually 

labelling the available images (Figure 4). Up to now, 5 classes 

were used to semantically segment the scenes, namely 

“building”, “sky”, “obstacle”, “window” and “door”. The classes 

were chosen as such to boost the second objective of this study, 

i.e. the photogrammetric 3D reconstruction. Thus, classes that are 

not contributing positively to the 3D reconstruction could be 

masked out, or, in other words, the reconstruction will be 

implemented for just the areas of interest among our scene. 
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Figure 4: Examples of our training dataset (above) and the 

corresponding manually labelled images (below). The classes 

correspond to the following colors: “sky”=yellow, “building” 

= blue, “window”=green and “obstacle”=red. 

 

3.2 Deep learning model and training 

Various implementations of deep learning models exist and are 

accessible as open-source libraries and frameworks (Tensorflow, 

Caffe, PyCharm etc.). Moreover, several tools particularly 

designed to tackle specific challenges e.g. semantic segmentation 

are available online. Our pipeline is built upon the Semantic 

Segmentation Suite tool based on Tensorflow, known for its good 

performance on the CamVid dataset (Brostow et al., 2009). 

Among all the state-of-the-art models, we used a fully 

convolutional FC-DenseNet (Jégou et al., 2017) with 56 layers 

on a GPU Tensorflow implementation. The network was trained 

over 300 epochs using a learning rate of 0.00001 on our ground 

truth dataset. The learning rate value was adjusted regarding the 

needs of the project and selected as the best performing rate 

within several attempts based on visual inspection of the tested 

images and statistic scores criteria. Some examples are shown in 

Figure 5. 

 

  
 

  

Figure 5: Ground truth labels (left) and testing (right) results. 

 

During the testing phase, we evaluated the accuracy of the tested 

images with respect to their ground truth (Table 1). Given that for 

the time being our training set is not extensive enough as well as 

that we are considering a large diversity of architectural scenes 

(and thus objects that belong to the same class may vary 

significantly), the achieved values are satisfying. 

 

 

 

Measure Average value 

Accuracy 0.81 

Precision 0.87 

Recall 0.81 

F1 score 0.83 

Table 1: Statistics of the testing phase. 

The resulting pixel annotations can be used as input in the 3D 

reconstruction pipeline providing the additional information 

needed to undertake the aforementioned subtasks (Section 1.1). 

 

 

4. BOOSTING PHOTOGRAMMETRY WITH 

SEMANTIC INFORMATION - EXPERIMENTS AND 

DISCUSSION 

The goal of this work is to support the whole photogrammetric 

pipeline with semantic information, up to the generation of 

semantically enriched 3D point clouds and models (Figure 2). 

Thus, 2D images with available labelled data are used as input in 

our 3D reconstruction pipeline. The labelled data could be ground 

truth, if available, or test data resulting from our trained 

architecture (Section 3.2). 

 

4.1 Constrained tie point extraction 

Given a labelled set of images, each putative tie point in the 

master image is to be matched only within a subset of points in 

the search image that have the same labelling information. With 

such a “constrained matching”, certain false correspondences can 

be avoided and the final list of tie points is putative more reliable. 

In our pipeline, we used the ORB (Rublee et al., 2011) feature 

detector and descriptor coupled with brute force matching 

(OpenCV library) guided by the labelling information. The 

matches were then filtered by comparing the closest match to the 

second closest based on the ratio test criterion (Lowe, 2004), the 

so-called “good matches”. Rejecting all matches in which the 

distance ratio is greater than 0.65, we perform the experiments in 

the image pairs while constraining the search areas based on the 

labelling information. Examples results of the constrained 

matching are shown in Figure 6 for label “window” (Figure 6a-

b) and “building (Figure 6c). 

a)  
 

b)  
 

c)  
 

Figure 6: Constrained feature matching for tie points 

extraction based on the feature’s label. For a clearer 

visualisation, only few features are drawn on grey scale 

images. 

 

The number of good matches is compared to the respective 

number of good matches while no labelling constrain is applied. 

According to these experiments, constrained matching resulted 
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to 10% -20% less good matches, eliminating, thus, putative 

mismatches across different classes. 

 

a)  b)   
 

c)  

Figure 7: An image of the considered dataset (a), its 

corresponding automatically generated semantic mask in 

binary format (b) and the orientation results (c). 

 

4.2 Automatic masking for dense image matching 

Using the deep learning network results, undesired parts of the 

scene (e.g. sky, occlusions, etc.) can be automatically excluded 

from the dense image matching (DIM) procedure. This 

procedure, commonly called “masking”, it is generally 

performed manually and thus time consuming. Masking aims to 

eliminate areas that would degrade the dense point clouds adding 

unwanted or noisy points.  

Figure 7 shows an example where the sky in background would 

generate noisy points close to the object borders. In this case, 

instead of a building façade we chose to test on an ancient temple 

dataset as the column structure makes it more challenging for sky 

masking. Semantically classified images allow to automatically 

mask out the unwanted pixels (in this case pixels with “sky” 

label), robustly eliminating large part of the outliers and noise 

close to the object edges (white/blue points in Figure 8a). The 

number of removed points was around 5% of the total 

reconstructed 3D points. Using this approach, a large part of the 

post-processing/editing of the dense point cloud (manual or 

automatic filtering) can be avoided. 

 

4.3 Label transfer from 2D images to 3D data 

The semantic enrichment of 3D point clouds can be performed 

either on the sparse or on the dense point cloud. 

Every point of the sparse point cloud that is generated during the 

structure from motion procedure can be expressed, for each 

camera, using the projection matrix P which connects the 3D 

with the 2D space (Equation 1). 

  

𝑥 = 𝑃𝑋                                        (1) 

 

Thus, giving the correspondences between an image point 𝑥 and 

its projection to the object space 𝑋, a semantic label can be 

assigned to each 3D point based on the label of its back-

projection to the 2D image (Figure 9). All images that contribute 

to a 3D point are considered for label transferring. If the assigned 

labels to each back-projected point do not match, the most 

weighted label wins. In case of inconsistent labels with the same 

weight, the pixel is considered as unlabeled and is subject to 

further investigation (white points in Figure 9c). This case is 

possible to arise in areas close to the class borders. 

The quality of the sparse point cloud is fundamental for the 

success of this procedure. Outliers and noisy points are not 

projected correctly on the images and, consequently, they are 

assigned to erroneous or inconsistent labels, thus producing an 

undesired result with randomly assigned labels. In our 

experiments, points with an ambiguous label were mostly below 

the 2% of the total number of points, so this issue is considered 

to be of minor importance. 

 

a)  b)  c)  

Figure 9: Image (a), its semantic segmentation (b) and the 

labelled sparse point cloud after label transfer (c). 

 

In a similar fashion, the projection of each pixel label to the dense 

cloud will result to a labelled dense cloud. If the information 

about image contribution on each 3D point is available, the 

winner label can be projected onto the dense point cloud given 

the image orientation. However, this procedure is not straight 

forward since most of the MVS algorithms may apply some 

filtering or interpolation between the dense 3D points and thus, 

the back-projection may lead to wrong traces giving misleading 

label information. 

The labelling can also be performed on mesh 3D models (Figure 

1d), where each pixel label is projected to the mesh nodes and 

interpolated to the faces.  

 

 

5. CONCLUSIONS AND FUTURE WORK 

The paper presented some initial results of using semantic labels 

to boost the photogrammetric processing of terrestrial datasets. 

Semantically segmented images are automatically generated 

using convolutional neural networks (CNN). Subsequently, 

labels are used as constraints in the photogrammetric processing 

(feature matching and mask generation) and transferred to the 

generated 3D information. The preliminary results are promising 

and the developed methods will be integrated in our web-based 

pipeline (Tefera et al., 2018) to extend its functionalities and 

potentially boost the reconstruction results. Similarly to feature 

matching constraint, dense image matching will be constrained 

based on the semantic information provided for each pixel. As up 

to our knowledge there is no other such dataset publicly available 

in the heritage community, our training set will be expanded in 

order to have an extensive input to our CNN method and optimize 
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a)  b)  

Figure 8: Dense 3D reconstruction of part of the temple without semantic masking (a) versus dense 3D reconstruction with semantic 

masking and exclusion of the sky category (b). 

 

its accuracy In the same line of thought, a larger number of 

classes is to be annotated to include more details. Moreover, it 

will be enriched to cover other heritage cases apart from building 

façades, such as temples like the one presented in Section 4.2. 

The dataset, as well as our pre-trained network, will be available 

to the public in the near future to facilitate research towards this 

direction. 
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