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ABSTRACT: 

Automatic semantic segmentation of images is becoming a very prominent research field with many promising and reliable solutions 

already available. Labelled images as input for the photogrammetric pipeline have enormous potential to improve the 3D reconstruction 

results. To support this argument, in this work we discuss the contribution of image semantic labelling towards image-based 3D 

reconstruction in photogrammetry. We experiment semantic information in various steps starting from feature matching to dense 3D 

reconstruction. Labelling in 2D is considered as an easier task in terms of data availability and algorithm maturity. However, since 

semantic labelling of all the images involved in the reconstruction may be a costly, laborious and time consuming task, we propose to 

use a deep learning architecture to automatically generate semantically segmented images. To this end, we have trained a Convolutional 

Neural Network (CNN) on historic building façade images that will be further enriched in the future. The first results of this study are 

promising, with an improved performance on the quality of the 3D reconstruction and the possibility to transfer the labelling results 

from 2D to 3D. 

 

a)  b)  c) d)  

Figure 1: Boosting photogrammetric 3D reconstruction with semantic information: an input image (a), its corresponding automatic 

labelling in 4 classes (b) and the semantic 3D data (c) image network for 3D reconstruction (d). Semantic aids also the various 

photogrammetric steps, from tie point extraction to dense image matching. 

  

 

1. INTRODUCTION 

The image-based 3D reconstruction pipeline, based on 

photogrammetry and computer vision principles, has become in 

the last years a powerful approach for the generation of detailed 

and precise 3D data. It is getting commonly preferred over costly 

laser scanning methods in many fields, including heritage 

documentation. Indeed, photogrammetry can generally reassure 

adequate automation, high quality results and ease of use, even 

for non-expert users along with cost efficiency. Recent advances 

were achieved in all core components of the photogrammetric 

pipeline enhanced even more the aforementioned arguments: 

from the image pre-processing (Verhoeven et al., 2015) to 

keypoints extraction (Hartmann et al., 2015), bundle adjustment 

(Schoenberger and Frahm, 2016) as well as dense points clouds 

generation (Remondino et al., 2014). 

At the same time, the latest decade has witnessed a massive usage 

of machine and deep learning techniques in the fields of computer 

vision and signal processing among the fields of data science. 

The availability of an extensive amount of image data along with 

the increasing computational power of PC but, most importantly, 

the use of GPU processing, has promoted the so-called deep 

learning techniques (Goodfellow et al., 2016) letting the data 

scientists to achieve unexpected good results. Machine and deep 

learning methods are getting more and more popular also in the 

photogrammetric community. Indeed, they are used for image 

classification, scene semantic segmentation as a pre-requisite for 

several tasks in robotics (e.g. object modelling and recognition, 

autonomous grasping and manipulation, object tracking, etc.), 

autonomous driving, indoor and urban modelling, etc. (Finman 

et al., 2014; Martinovic et al. in 2015; Marmaris et al., 2016; 

Tateno et al., 2017; Tsai et al., 2018). They are also used to 

segment 3D heritage data (Grilli et al., 2018) or remove outliers 

in point clouds (Stucker et al., 2018).  

 

1.1 Aim of the paper 

Since 2D semantic segmentation algorithms are robust enough 

and can achieve high level performance scores, the work 

proposes to support photogrammetric 3D reconstructions with 

state-of-the-art semantic image segmentation methods (Fig. 1). 

We propose to use semantic image labelling in various steps of 

the photogrammetric pipeline and also to apply label transfer 

from 2D to 3D. We apply our method to heritage datasets 

developing our own training set. In more detail, the paper 

suggests semantic segmentation of images in order to (Fig. 2): 

• Constrain the search area of image features when extracting 

tie points among images in order to minimize mismatched 

correspondences - only features under the same label should 

be matched. 

• Use semantic labelling to mask out areas that should not be 

considered during the generation of the dense point cloud 

(e.g. the sky). 

• Reinforce dense image matching using pixel labels and 

reduce noisy 3D points. 
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• Label transferring from the image to the 3D data. 

 

 

Figure 2: The proposed semantic photogrammetric pipeline 

where semantic segmentation using deep learning methods are 

implemented to support 3D results. 

 

To reach these goals, we use a Convolution Neural Network 

(CNN) trained on our own historic façades dataset (Fig. 3) to 

facilitate automatic semantic labelling of similar image sets. The 

images depict various architectural scenes, namely facades of 

historical buildings of several towns in Italy. The data was 

carefully selected in order to cover a large variety of historic 

buildings. 

 

   
 

   
 

    

Figure 3: Example of the historic building façades used in our 

tests to train a CNN for automatic semantic segmentation.  

 

In the next Sections, the related work on semantic segmentation 

methods is discussed (Section 2), followed by the description of 

our training method (Section 3). Section 4 presents our 

experiments towards boosting image-based 3D reconstruction by 

exploiting semantic information within the processing pipeline. 

Section 5 draws some final conclusions and our vision for future 

works. 

 

 

2. RELATED WORK 

The recent technological advances in computation power led to a 

popularization of deep learning methods and their broad use in 

image processing and scene understanding. Image classification 

refers to the assignment of a category label to an image, 

commonly based on its most salient objects. On the other hand, 

image segmentation refers to the assignment of a predicted label 

for each single image pixel in a semantic meaningful way. 

State-of-the-art approaches in image classification and 

segmentation as well as object detection benefit from the recent 

advances in Convolutional Neural Networks (CNNs) which tend 

to outperform other methods in efficiency and accuracy 

(Simonyan et al., 2014; Long et al., 2015; Girshick et al., 2015; 

He et al., 2017). The concept of CNNs was originally introduced 

in the 1980s (Fukoshima et al., 1982), but gained popularity 

because of the recently achieved results published to the 

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 

challenge (Deng et al., 2009; Russakovsky et al., 2015), one of 

the pioneer efforts to collect an extensive dataset harvested from 

the web and train an image classification deep CNN. The most 

famous CNN architectures probably are AlexNet (Krizhevsky et 

al., 2012), VGG-16 (Simonyan et al., 2014), ResNet (He et al., 

2016), Inception (Szegedy et al., 2015). As an extension of the 

standard CNN, the so-called Fully Convolutional Network 

(FCN) (Chen et al., 2015) are adapted in order to deal with 

arbitrary sized images and are commonly used for semantic 

segmentation problems (Long et al., 2015). To train these 

networks, a large amount of dense pixel annotations must be 

collected and used as training data. Like all machine learning 

methods, training with a poor amount of annotated data leads to 

models that may not generalize well to all test images and cases. 

Semantic annotation of objects and classes is performed on single 

images or video sequences. An extensive bibliography on 

semantic segmentation of sequences exist, especially on urban 

street scenes towards complete scene understanding mainly for 

autonomous driving purposes. To this end, several benchmark 

datasets are introduced for training and testing like CamVid 

(Brostow et al., 2009), Rue-Monge2014 (Riemenschneider et al., 

2014) or CityScapes (Cordts et al., 2016). However, to the best 

of our knowledge, no dataset is available to specifically tackle 

heritage and architectural scenarios, including historical façades.  

 

 

3. DATA LABELLING AND NETWORK TRAINING 

3.1 Image annotation and labelling 

Labelling ground truth data (either simple boxes or more 

complex shapes) is something that still remains unsolved in 

supervised learning, due to the complexity of the task and the fact 

that it is time consuming. Up to now, it is an indispensable and 

laborious stage that cannot be automated but necessary to train 

the deep learning model. Moreover, the labeller should pay large 

attention to avoid gross errors that would affect the training 

quality. The labouring time can be significantly reduced by using 

specially designed interfaces for annotation (e.g. RectLabel, 

Labelbox, LabelMe) whereas research is going on towards 

efficient object annotation (Papadopoulos et al., 2017). Recently, 

the high demand for data labelling gave rise to specialized 

services, such as Edgecase, HumanInThe Loop, Raidon, etc. 

Crowdsourcing services are also used for creating large annotated 

datasets (e.g. MTurk, Clickworker) providing relatively fast 

results under low cost although they could be risky in terms of 

low quality and inconsistency. Weak and semi-supervised 

approaches were also proposed to reduce the heavy labelling cost 

of collecting segmentation ground truths (Khoreva et al., 2017), 

while synthetic semantically annotated data have been also 

introduced for urban scenes (Ros et al., 2016). 

For our experiments, ground truth data was created by manually 

labelling the available images (Fig. 4). Up to now, 5 classes were 

used to semantically segment the scenes, namely “building”, 

“sky”, “obstacle”, “window” and “door”. The classes were 

chosen as such to boost the second objective of this study, i.e. the 

photogrammetric 3D reconstruction. Thus, classes that are not 

contributing positively to the 3D reconstruction could be masked 

out, or, in other words, the reconstruction will be implemented 

for just the areas of interest among our scene. 
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Figure 4: Examples of our training dataset (above) and the 

corresponding manually labelled images (below). The classes 

correspond to the following colors: “sky”=yellow, “building” 

= blue, “window”=green and “obstacle”=red. 

 

 

3.2 Deep learning model and training 

Various implementations of deep learning models exist and are 

available as open-source libraries and frameworks (Tensorflow, 

Caffe, PyCharm etc.). There exist also several tools particularly 

designed to tackle specific challenges e.g. semantic 

segmentation. Our pipeline is built upon the Semantic 

Segmentation Suite tool based on Tensorflow, known for its good 

performance on the CamVid dataset (Brostow et al., 2009). 

Among all the state-of-the-art models, we used a fully 

convolutional FC-DenseNet (Jégou et al., 2017) with 56 layers 

on a GPU Tensorflow implementation. The network was trained 

over 300 epochs using a learning rate of 0.00001 on our ground 

truth dataset. The learning rate value was adjusted regarding the 

needs of the project and selected as the best performing rate 

within several attempts (visual inspection of the tested images – 

Fig.5). 

 

  
 

  

Figure 5: Ground truth labels (left) and testing (right) results. 

 

During the testing phase, we evaluated the accuracy of the tested 

images with respect to their ground truth (Table 1). Considering 

that our training set is not extensive and still expanding and that 

we are considering a large diversity of architectural scenes (and 

thus objects that belong to the same class), the achieved values 

are considered satisfying. 

 

Measure Average value 

Accuracy 0.81 

Precision 0.87 

Recall 0.81 

F1 score 0.83 

Table 1: Statistics of the testing phase. 

 

The resulting pixel annotations are used as input in the 3D 

reconstruction pipeline providing the additional information 

needed to undertake the aforementioned subtasks (Section 1.1). 

 

 

4. BOOSTING PHOTOGRAMMETRY WITH 

SEMANTIC INFORMATION - EXPERIMENTS AND 

DISCUSSION 

The ultimate goal of the work is to support the photogrammetric 

pipeline with semantic information, till the generation of 

semantically enriched 3D point clouds (Fig. 2). Thus, 2D images 

with available labelled data are used as input in our 3D 

reconstruction pipeline. The labelled data could be ground truth, 

if available, or test data resulting from our trained architecture 

(Section 3.2). 

 

4.1 Constrained tie point extraction 

Given a labelled set of images, each putative tie point on the 

master image is to be matched only within a subset of points on 

the search image that have the same labelling information. With 

such a “constrained matching”, certain false correspondences can 

be avoided and the final list of tie points is more reliable. In our 

pipeline, we used the ORB (Rublee et al., 2011) feature detector 

and descriptor coupled with brute force matching (OpenCV 

library) guided by the labelling information. The matches were 

then filtered by comparing the closest match to the second closest 

based on the ratio test criterion (Lowe, 2004), the so-called “good 

matches”. Rejecting all matches in which the distance ratio is 

greater than 0.65, we perform the experiments on the image pairs 

while constraining the search areas based on the labelling 

information. Examples results of the constrained matching are 

shown in Figure 6 for label “window” (Figure 6a-b) and 

“building (Figure 6c). 

a)  
 

b)  
 

c)  
 

Figure 6: Constrained feature matching for tie points 

extraction based on the feature’s label. For a clearer 

visualisation, only few features are drawn on grey scale 

images. 

 

The number of good matches is compared to the respective 

number of good matches while no labelling constrain is applied. 
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According to these experiments, constrained matching resulted 

to 10% -20% less good matches. 

 

4.2 Automatic masking for dense image matching 

Using the deep learning network results, undesired parts of the 

scene (e.g. sky, occlusions, etc.) can be automatically excluded 

from the dense image matching (DIM) procedure. This procedure 

is normally called “masking”, it is generally manually performed 

and time consuming. The masking of undesired areas is 

performed to remove areas that would degrade the dense point 

clouds adding unwanted or noisy points.  

Figure 7 shows an example where the sky in background and in 

between the columns would produce outliers close to the temple 

borders. Semantically classified images allow to automatically 

mask the unwanted areas (“sky” class), robustly eliminating large 

part of the outliers and the noise close to the edges (white/blue 

points in Figure 8a). The number of removed points was around 

5% of the total reconstructed 3D points. Using this approach a 

large part of the post-processing/editing of the dense point cloud 

(manual or automatic filtering) can be avoided. 

 

a)  b)   

c)  

Figure 7: An image of the considered dataset (a), its 

corresponding automatically generated semantic mask in 

binary format (b) and the orientation results (c). 

 

 

 

 

a)  

b)  

Figure 8: Dense 3D reconstruction of part of the temple 

without semantic masking (a) versus dense 3D reconstruction 

with semantic masking and exclusion of the sky category (b). 

 

4.3 Label transfer from 2D images to 3D data 

The semantic enrichment of 3D point clouds can be performed 

either on the sparse or on the dense point cloud. 

The sparse point cloud generated during the bundle adjustment 

procedure can be expressed, for every camera, using the 

projection matrix P which connects the 3D with the 2D space. 

Thus, giving the correspondences between an image point 𝑥 and 

its projection to the object space 𝑋, a semantic label can be 

assigned to each 3D point based on the label of its back-

projection to the 2D image (Fig. 9). All images that contribute to 

a 3D point are considered for label contribution. If the assigned 

labels to each back-projected point do not match, the most 

weighted label wins. In case of inconsistent labels with the same 

weight, the pixel is considered as unlabeled and is subject to 

further investigation (white points in Figure 9c).  

The quality of the sparse point cloud is fundamental for the 

success of this procedure. Outliers and noisy points are not 

projected correctly on the images and, consequently, they are 

assigned to erroneous or inconsistent labels, thus producing an 

undesired result with randomly assigned labels. In our 

experiments, points with an ambiguous label were below the 2% 

of the total number of points, so this issue is considered to be of 

minor importance. 

 

a)  b)  c)  

Figure 9: Image (a), its semantic segmentation (b) and the 

labelled sparse point cloud after label transfer (c). 

 

In a similar fashion, the projection of each pixel label to the dense 

cloud will result to a labelled dense cloud. If the information 

about image contribution on each 3D point is available, the 

winner label can be projected onto the dense point cloud given 

the image orientation. However, this procedure is not straight 

forward since most of the MVS algorithms may apply some 

filtering or interpolation between the dense 3D points and thus, 

the back-projection may lead to wrong traces giving misleading 

label information. 

The labelling can also be performed on mesh 3D models, whereas 

each pixel label is projected to the mesh nodes and interpolated 

to the faces.  
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5. CONCLUSIONS AND FUTURE WORK 

The paper presented some initial results of using semantic labels 

to boost the photogrammetric processing of terrestrial datasets. 

Semantically segmented images are automatically generated 

using deep learning methods (CNN). Then labels are used as 

constraints in the photogrammetric processing or transferred to 

the generated 3D information. The initial results are promising 

and the developed methods will be integrated in our web-based 

pipeline (Tefera et al., 2018) to extend its functionalities and 

potentially boost the reconstruction results. Similarly to feature 

matching constraint, dense image matching can be constrained 

based on the semantic information provided for each pixel. 

The training dataset will be extended in order to have a larger 

input of our CNN method and optimize its accuracy. More 

classes will be annotated as there is no such a training dataset in 

the heritage community. The dataset, as well as our pre-trained 

network, will be available to the public in the near future to 

facilitate research towards this direction. 
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