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1. INTRODUCTION

Synthetic aperture radar (SAR) images are completely different
from optical images in terms of both geometric and radiometric
appearance: While SAR is a range-based imaging modality and
measures physical properties of the observed scene, optical im-
agery basically represents an angular measurement system and
collects information about the chemical characteristics of the en-
vironment. Thus, the interpretation of SAR imagery is still a chal-
lenging task for remote sensing scientists. However, SAR image
interpretation can be alleviated when optical colors are used to
support the interpretation process. For decades, this has been a
special case of remote sensing image fusion (Pohl and van Gen-
deren, 1998; Schmitt and Zhu, 2016). Still, SAR-optical image
fusion by definition needs both a SAR and an optical image ac-
quired at approximately the same time, which means standard im-
age fusion techniques do not particularly help the interpretability
of SAR images as an independent data source. To overcome the
need for accompanying optical imagery, this paper proposes to
learn feasible colorizations of Sentinel-1 SAR images from co-
registered Sentinel-2 training examples using deep learning tech-
niques. This is meant to provide a significant step in SAR-optical
data fusion (Schmitt et al., 2017) with application to improved
SAR image understanding, and will enable SAR data providers
to attach colorized versions of their imagery to their products.

In order to achieve this goal, we find inspiration in recent com-
puter vision approaches dealing with gray-scale image coloriza-
tion. In the frame of this paper, we use the network architec-
ture proposed by Deshpande et al. (2017), which utilizes both a
variational autoencoder (VAE) as well as a mixture density net-
work (MDN) (Bishop, 1994) to create multi-modal colorization
hypotheses. Since our problem is different from the computer vi-
sion task in that there are no color SAR images that can be used as
target samples during training, we first create artificial color SAR
images by SAR-optical image fusion. In the remainder of this pa-
per, we will first describe how these artificial color SAR images
can be created (Section 2). Then, we introduce our dataset based
on Sentinel-1 and Sentinel-2 imagery in Section 3, before we de-
scribe the employed deep generative model in Section 4. Finally,
exemplary results are shown in Section 5.

2. SAR-OPTICAL IMAGE FUSION BY COLOR SPACE
TRANSFORM

As Pohl and van Genderen (1998) have already summarized two
decades ago, image fusion by exploitation of color space transfor-
mation has long been an established approach in remote sensing.

Figure 1. The visible gamut within the Lab color space.
c©Wikimedia Commons / CC-BY-SA-3.0

In particular, the so-called intensity-hue-saturation (IHS) trans-
form has become a standard procedure for SAR-optical image fu-
sion (Harris and Murray, 1990), making use of the advantage over
the conventional RGB color space that intensity or brightness is
disentangled from the image colors (Tu et al., 2001). However,
we follow a similar fusion strategy that employs a transformation
of the optical imagery to Lab color space, which has the advan-
tage that it describes all perceivable colors in a three-dimensional
Cartesian coordinate system which reserves two dimensions for
the actual color components and an additional luminosity axis
(see Fig. 1). It has to be noted that the usage of the term Lab is
not clearly defined and commonly used for different color space
variants. In the context of this paper, we use it to refer to the CIE
1976 L*a*b* color space (Pauli, 1976).

For our case of SAR-optical image fusion, the Lab color trans-
form can be exploited in the following way: First, the optical
image Iopt comprised of RGB pixels pRGB = (R,G,B)> is con-
verted to Lab color space by determining the luminosity
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is calculated by linearly mapping from RGB space and Xn =
95.047, Yn = 100, Zn = 108.883 are defined by the CIE stan-
dard illuminant D65 (Noboru and Robertson, 2005). Afterwards,
the optical luminosity L is replaced by a SAR-derived pseudo-
luminosity

LSAR = 100 · σ0, (5)

where σ0 is the terrain-corrected SAR backscatter coefficient in
decibel scale and the factor 100 is needed to bring σ0 ∈ [0; 1] to
the range of luminosity L ∈ [0; 100]. Then the new Lab color
triplet pLab = (LSAR, a, b)

> is transformed back to RGB color
space to obtain the fused image ILab. Depending on the prepara-
tion of the SAR-derived luminosity, ILab is similar to the example
shown in Fig. 2. We use such Lab-fusion-based artificial color
SAR images as targets in the training of the colorization model
described in Section 4.

3. THE DATASET

The experiments presented in this paper make use of a dataset
consisting of co-registered SAR and optical image patches sized
256× 256 px with a pixel spacing of 10m. The patches were cut
from hundreds of georeferenced Sentinel-1 and Sentinel-2 im-
ages downloaded from uniformly distributed regions of interest
spread across the land masses of the Earth. For the Sentinel-1
SAR images, GRD products were used, which represent the σ0

backscatter coefficient in dB scale. Restituted orbit information
was combined with the 30m-SRTM-DEM (or the ASTER DEM
for high latitude regions where SRTM is not available) to pro-
duce precisely ortho-rectified images. While the original data is
quantized to 16 bit, the images used in this study were reduced
to 8 bit. For Sentinel-2, the red, green, and blue channels (i.e.
bands 4, 3, and 2) corresponding to the same areas of interest
were downloaded and reduced to 8 bit as well. Since Sentinel-
2 data are not provided in the form of satellite images, but as
precisely georeferenced granules, no further pre-processing was
required. Instead, for Sentinel-2, the data were selected based on
the amount of cloud coverage. In order to not discard too many
images, during the database query less than or equal to 1% of
cloud coverage was used as search criterion.

Since for a given, randomly selected, region of interest, full cov-
erage by single Sentinel-1/Sentinel-2 acquisitions cannot be en-
sured, mosaicking was used, whereas only images from within a
meteorological season (i.e. spring, summer, fall, winter) were
combined. However, automatic mosaicking of Sentinel-1 im-
agery can lead to artifacts such as seam lines. Furthermore, some
clouds can still be present in the Sentinel-2 imagery. There-
fore, all the produced image patches were manually inspected
in order to remove affected patches. This way, in total 282,384
quality-controlled patch-pairs covering all continents and all sea-
sons were produced.

(a)

(b)

(c)

Figure 2. Example for Lab-based image fusion: (a) logarithmic
Sentinel-1 image ISAR, (b) Sentinel-2 RGB image (bands 4, 3,

2) Iopt, (c) fusion result ILab. The fused image combines a
SAR-derived luminosity with the colors of its optical

counterpart.

In order to produce colorized SAR images as training examples,
Lab-based image fusion, as described in Section 2, was carried
out for each patch-pair.

4. LEARNING COLORIZATION

4.1 Deep Generative Architecture

In order to learn an automatic colorization model for SAR images
ISAR, which does not need an accompanying optical image at pro-
duction time, we make use of the variational autoencoder (VAE)
and mixture density network (MDN) architecture developed by
Deshpande et al. (2017). It aims at training a conditional color
distribution from which different colorization hypotheses can be
drawn. The basic design of this deep generative model is depicted
in Fig. 3. Within this architecture, the VAE is employed to gen-
erate a low level embedding z of the color field of the Lab-based
colorized SAR image ILab. Relying on this low-dimensional la-
tent variable embedding, the MDN is used to generate a multi-
modal conditional distribution p (z|ISAR) that models the rela-
tionship between the gray-level SAR image ISAR and the color
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Figure 3. The proposed colorization network. (a) The training network architecture which uses both Sentinel-1 and Sentinel-2 data in
order to learn feasible colorizations for SAR images. (b) The colorization test network which makes use of only a Sentinel-1 image in

order to estimate a color distribution which is then sampled to colorize the original image.

embedding z. By sampling zk ∼ p (z|ISAR) from this distribu-
tion, the decoder network of the VAE is able to generate a diverse
range of colorized representations ÎLab,k of the original SAR im-
age.

4.2 Implementation Details

For the VAE, which comprises the upper right part of Subfig-
ure 3a, we chose to rely on the encoder-decoder architecture with
skip connections that has provided the best results in (Deshpande
et al., 2017). As for the losses, we also follow the optimal case,
i.e. we use the full decoder loss as a sum of color rebalancing
loss Lhist, the specifity loss Lmah, and the regularizing loss Lgrad.

For the MDN training, as suggested by Deshpande et al. (2017),
we do not feed the SAR image ISAR directly into the MDN, but
rely on the features extracted up to the conv7 layer of the col-
orization network proposed by Zhang et al. (2016), which was
pre-trained on the 1.3 million images from the ImageNet training
set (Russakovsky et al., 2015).

4.3 Training

We trained the network depicted in Subfigure 3a in a two-stage
manner. Firstly, the VAE network was trained on 252,384 Lab-
based fusion images using standard Adam optimization (Kingma
and Ba, 2015) implementation for 15 epochs. The optimization
hyper-parameters are fixed to β1 = 0.9, β2 = 0.999 with a learn-
ing rate of αt = 5 · 10−5.

The second stage was to train the MDN network. Training was
performed using the corresponding 252,384 conv7 gray-level fea-
tures, as well as the latent codes produced by trained VAE for
each of the Lab-based fusion training images. The MDN net-
work was trained for 7 epochs, with the same β parameters as the
VAE network and a learning rate of αt = 10−3.

The β parameters are the default parameters recommended for
the Adam optimization algorithm, while the learning rates were
based on the details provided by Deshpande et al. (2017).

5. COLORIZATION RESULTS

For evaluation of the colorization capabilities of the architecture
described in Section 4, we order the MDN-predicted gaussian
mixture model means µi in descending order based on the mix-
ture weights πi and then display the results of the top-8 means
for some example images of our test set comprising 1024 images.
Some colorization examples drawn from the test set are shown in
Fig. 4. It can be seen that Subfigures 4a to 4d can be considered
as successful colorizations, as the target Lab appearance was well
met, whereas the color adds valuable information to the SAR im-
age, which supports general interpretability. For example, in re-
sults 4a, the rectangular field-like structures could possibly also
have been caused by a fish farm or desalination ponds, while the
optical color information rather suggests we are looking at some-
thing like rice fields. Another interesting phenomenon to be noted
is the correct prediction of blue roofs in example 4d. While blue
roofs are not uncommon in parts of China, they are rarely seen
in the rest of the world. The colorization network, however, has
successfully learned to predict them where applicable.

In contrast to these promising results, Subfigures 4e and 4f clearly
belong to the class of failed examples. In these cases, the network
does not only fail to match the target Lab color distribution, but
also does not add any valuable information that would help im-
age interpretation endeavours. Probably caused by the fact that
many natural surfaces show a green or brown color appearance,
the colors are predicted close to the corresponding expectation
value.

The results indicate that colorizing SAR images based on a com-
bination of Lab-based SAR-optical image fusion and a deep gen-
erative neural network architecture is able to produce artificial
color SAR images, which can greatly support human operators in
the task of image interpretation.

6. SUMMARY AND CONCLUSION

In this paper, we have shown an approach for the automatic col-
orization of SAR backscatter images, which are usually provided
in the form of single-channel gray-scale imagery. Using a deep
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generative model proposed for the purpose of photograph col-
orization and a Lab-space-based SAR-optical image fusion for-
mulation, we are able to predict artificial color SAR images, which
disclose much more information to the human interpreter than the
original SAR data. Future work will aim at further adaption of the
employed procedure to our special case of multi-sensor remote
sensing imagery. Furthermore, we will investigate if the low-level
representations learned intrinsically by the deep network can be
used for SAR image interpretation in an end-to-end manner.
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(e)

(f)

Figure 4. Some test-time examples for colorized Sentinel-1 SAR images. Top row in every subfigure: SAR image (left), target Lab
image (center), corresponding optical image (right). The remaining 8 images in each subfigure show the top-8 colorization samples

drawn from the learned color distribution.
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