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ABSTRACT: 
 
In this paper, an efficient and robust registration method of multiple point clouds is proposed. In our research, we assume that point 
clouds are acquired by Terrestrial Laser Scanning (TLS) systems, and the scanned environments have a relatively flat base plane such 
as the ground or a floor. Our method is based on an existing pairwise registration method based on point projection images, which can 
quickly register the point clouds under the above assumptions. In the method, sliced point clouds are projected onto the base plane, and 
a binary image with feature points is created. The registration is done by using feature points of the images based on the sample 
consensus strategy. In this paper, first, we improve the efficiency of the pairwise registration method by introducing height and 
occlusion information to the image. Then, a validity check method of pairwise registration using space-classified images is proposed 
to avoid exhaustive pairwise registration in the multiple point cloud registration process. Finally, an efficient multiple point cloud 
registration algorithm based on progressive creation of a point cloud connectivity graph using iterative rough and precise pairwise 
registration and the validity check method is proposed. The effectiveness of our method is shown through its application to three 
datasets of outdoor environments. 
 

1. INTRODUCTION 

1.1 Background and Objective 

Terrestrial laser scanning (TLS) systems can efficiently acquire 
the dense and accurate point clouds of large-scale environments, 
and are widely used in several fields such as plants, civil 
engineering, architecture, and cultural assets. To obtain the point 
clouds which completely cover the surfaces of objects or 
structures in the environments, multiple scanning at different 
positions is required. Therefore, registration for the acquired 
multiple point clouds of large-scale environments is required in 
point cloud applications. 
 
Various registration methods for point clouds of large-scale 
environments have been proposed (Aiger et al., 2008, Akca, 2003, 
Al-Durgham et al., 2013, Date et al., 2014, Kang et al., 2009, 
Nüchter et al., 2011, Poreba and Goulette, 2015, Rusu et al., 2009, 
Theiler et al, 2013, Theiler et al, 2015, Yang et al., 2016, 
Yoshimura et al., 2016). The methods can be classified by several 
points of view: automatic or manual, with or without markers, 
rough or precise, and pairwise or multiple. With the growth of 
TLS technologies, many point clouds can be easily obtained, 
therefore more efficient and robust automatic registration 
methods for multiple point clouds without markers are necessary 
for efficient scanning and point cloud applications.  
 
In this paper, we propose an automatic efficient marker-less 
registration method for multiple TLS point clouds of large-scale 
environments. The method is based on the iterative pairwise 
rough registration method and the Iterative Closest Point (ICP) 

algorithm (Besl and McKay, 1992) for precise pairwise 
registration. To realize efficient rough registration, we extend a 
registration method based on the point projection images (Date 
et al., 2014) by adding height and occlusion information to the 
images. The multiple registration is achieved by progressive scan 
graph construction using pairwise rough and precise registration, 
without exhaustive pairwise registration. The scan graph 
represents neighboring relationship of the point clouds. In order 
to achieve progressive graph construction, an arrangement 
validity check method for the point cloud pair using space-
classified images is developed. In the algorithm, the accumulated 
registration errors are quickly modified using the graph and 
resulting coordinate transformation matrices obtained by the 
pairwise registration. 
 
1.2 Related Work 

Many rough registration methods for point clouds of large-scale 
environments have been proposed (Aiger et al., 2008, Akca, 2003, 
Al-Durgham et al., 2013, Date et al., 2014, Kang et al., 2009, 
Nüchter et al., 2011, Poreba and Goulette, 2015, Rusu et al., 2009, 
Theiler et al, 2013, Theiler et al, 2015, Yang et al., 2016, 
Yoshimura et al., 2016). Generally, rough registration is required 
as the pre-process of precise registration by the ICP algorithm 
(Besl and McKay, 1992, Rusinkiewicz and Levoy, 2001), which 
works well for the roughly aligned point cloud pairs. Without 
rough registration, the algorithm often results in incorrect 
registration due to the local minima of the energy function being 
minimized.  
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In order to realize efficient and robust registration, finding 
correspondences between the point clouds is required, and 
several representations and features are used. As the features 
extracted from 3D point clouds, for examples, 3D SIFT (Theiler 
et al., 2013), 4 congruent points (Aiger et al., 2008), and point 
feature histogram (Rusu et al., 2009) are developed. These 
methods are applicable to point clouds acquired from several 
environments or objects, but often require a high computational 
cost. Geometric primitives such as linear features (edges) and 
planes are also used in some methods (Al-Durgham et al., 2013, 
Poreba and Goulette, 2015, Watanbe et al., 2016). These methods 
work well especially for point clouds from environments 
including artificial structures and objects. Features from 
panoramic representations of the TLS point clouds are also used 
for finding correspondences, for example, SIFT for reflectance 
images (Kang et al., 2009) and skylines for range images 
(Nüchter et al., 2011). However, robust extraction of 
correspondences from point clouds acquired at distant scanner 
positions is difficult. 2D features on planes are also useful under 
the assumption that the scanned environment has a common large 
planar region such as a flat ground or a flat floor. By aligning the 
planar region, 3D registration problems can be reduced to 2D 
problems, therefore an efficient process can be achieved. As 2D 
features, for example, intersection points between vertical edges 
and the ground plane (Yang et al., 2016, Yoshimura et al., 2016) 
and images with feature points (Date et al., 2014) are used. In our 
research, we use the image-based method (Date et al., 2014) 
because of its efficiency and applicability to several 
environments. In this paper, we extend the method to realize 
more efficient registration using additional height information of 
points and occlusions. As a precise registration method after 
rough registration, the ICP algorithm and its variants (Besl and 
McKay, 1992, Rusinkiewicz and Levoy, 2001) are available and 
used in practical applications. We used the standard ICP 
algorithm for precise registration in our algorithm. 
 
Multiple point cloud registration methods for precise scan data of 
engineering products or small objects have been developed in last 
few decades (Pulli, 1999, Guehring, 2001, Zhu et al., 2016), and 
methods for large TLS point clouds of large-scale environments 
have been proposed in recent years (Yang et al., 2016, Theiler et 
al., 2015). Yang et al. (Yang et al., 2016) proposed a method 
using a minimum spanning tree for representing neighbouring 
relationships between point clouds. The method realizes effective 
and robust registration, but exhaustive pairwise registration is 
required and loop closure is not considered. Theiler et al (Theiler 
et al., 2015) achieves global alignment using the scan graph, 
including loops. The effectiveness was shown through 
applications to six datasets of different scenes. However, the 
method also requires exhaustive pairwise registration. In our 
method, by using a simple validation check for arrangement of 
the point cloud pair, exhaustive pairwise registration is avoided. 
The scan graph is constructed progressively by iterative pairwise 
registration, and accumulated errors are efficiently modified 
using the graph and coordinate transformation matrices obtained 
by pairwise registration.  
 

In section 2, a pairwise rough registration method using point 
projection images and its extension is described. In section 3, a 
multiple point cloud registration algorithm is described. In 
section 4, experimental results for three datasets are shown. 

 

2. PAIRWISE ROUGH REGISTRATION METHOD 

2.1 Overview 

In our research, a registration method based on the point 
projection images (Date et al., 2014) is used as the basic pairwise 
rough registration method. The flow of the method is shown in 
Figure 1. In the method, under the assumptions that a common 
planar region called the base plane, such as the flat ground or a 
floor, exists in the scanned point clouds, first, base planes are 
extracted from the point clouds and the images are generated. 2D 
registration on the plane is done by using the RANSAC algorithm 
(Fischler and Bolles, 1981) and hashing for the images. Finally, 
with the alignment of the base planes, registered point clouds are 
obtained. 
 

 

Figure 1. Pairwise rough registration process 
 

Figure 2. Point projection image generation 
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2.2 Point Projection Image Generation 

The point projection image of a point cloud is created by base 
plane extraction, point projection, binary image generation, and 
feature point extraction. Many methods for planar region 
extraction from point clouds have been developed, e.g. (Dong et 
al., 2018). In the method that we used (Date et al., 2014), the base 
plane is efficiently extracted from a TLS point cloud using the 
region growing on a 2D panorama point cloud representation 
based on azimuth and elevation angles (Masuda and Tanaka, 
2010). Then, points within the specified height interval shown in 
Figure 2(a) are projected onto the base plane, as shown in Figure 
2(b). Next, using a regular grid with the user-specified cell size 
on the plane, a binary image where the value 1 is assigned to the 
cells including the projected points, and 0 to the others, is created. 
In this method, the center of the grid is set to the scanner position. 
Finally, using the Douglas-Peucker algorithm (Douglas and 
Peuker, 1973), corners and endpoints of figures in the image are 
detected as feature points, as shown in Figure 2(c). Actual point 
projection images generated from the TLS point clouds are 
shown in the middle of Figures 1 and 3(a). In the figures, red cells 
are the one with value 1, and yellow cells indicate feature points. 
 
2.3 Pairwise Registration Algorithm 

The rigid transformation to register the feature points in the point 
projection images is robustly and efficiently derived by the 
RANSAC algorithm (Fischler and Bolles, 1981) and hashing. 
The registration algorithm is described as follows. In the 
algorithm, the point projection image of the target (fixed) point 
cloud is called the target image, and the term source image is 
used for the source (movable) point cloud. 

Step1  Create a hash table of all feature point pairs of the target 
image TI . The hash key is the distance between the feature 
points of the pair. Iterate the following steps by the user- 
specified numbers ITTRN .  

Step2  Randomly select a feature point pair Sp  from the source 
image SI , and calculate the distance Sd  between the points 
in Sp .  

Step3  From the hash table, obtain a set of feature point pairs TP  
of the target image TI , which have similar distances to Sd , 
and apply steps 4 and 5 to each pair T Tp P .  

Step4  Calculate a 2D rigid transformation matrix M  to align 
points in Sp  and Tp , and apply the matrix to all feature 
points in the SI . 

Step5  Calculate a consensus which is the number of transformed 
feature points CN  overlapping with the feature points in 
the TI . If the CN  is the maximum in the iteration, store the 
transformation matrix M as the output matrix BM . 

Finally, two coordinate transformations: a 3D rigid 
transformation to align the base planes and scanner positions of 
two point clouds and a 2D transformation by the MB scaled for 
3D space, are applied to the source point cloud. In our 
implementation, the processing time of image generation and 
pairwise registration for two TLS point clouds containing about 
10M points was less than 3 seconds on average on a PC with Intel 
Core-i7 3960X CPU. 

2.4 Efficiency Improvement using Height Values 

The method described in section 2.3 can be extended through 
several approaches, e.g. using multi-layers and assigning 
additional information to each pixel, to improve efficiency and 
robustness. In our research, we add height values of the points in 
the point clouds to the feature points in the image for improving 
efficiency. In the original algorithm, two feature point pairs 
which have similar point distances are used for calculating the 
coordinate transformation matrix and the consensus. By adding 
the matching condition for the height values, such calculations 
can be reduced without the loss of correct matches. 
 
In the point projection image generation, the maximum height of 
the points in each grid cell is recorded in the cell, as shown in 
Figure 3(b), and assigned to the feature points. In the registration 
process, feature point pairs which have similar distances and 
height differences smaller than a given threshold H  are used in 

 
Figure 3. Extension of point projection image 

 
Figure 4. Occlusion boundary detection 
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the following coordinate transformation and consensus 
calculation. This method can reduce the computational cost, 
however, incorrect height values are often assigned, which are 
caused by occlusions, as shown in Figure 4(a). In some cases, this 
causes incorrect registrations, as shown in Figure 5(a). To solve 
this problem, the feature points affected by the occlusions are 
recognized using the following process.  
 
First, a 2D panorama point cloud representation is created, and 
planar regions are detected using region growing. Then, the 
boundary points of two neighbouring regions are extracted. 
Finally, the points on one boundary, which is more distant from 
the scanner, are detected as occlusion boundary points as shown 
in Figure 4(a). Figure 4(b) shows an example of detected 
boundary points. Feature points including occlusion boundary 
points are marked as occlusion feature points. In the height 
comparison of feature points in the registration process, if one of 
the feature points is the occlusion point, the matching condition 
becomes that its height is smaller than the other. If two feature 
points are the occlusion points, we do not apply height 
comparisons. 
 
The method is applied to the registration of two datasets 
consisting of six and seven TLS point clouds. Compared with 
original method, the numbers of coordinate transformation and 
consensus calculation were reduced to 18.7% and 25.6% on 
average by using the height values. Moreover, by using occlusion 
boundary estimation, improvement of the robustness was 
observed in some registration processes, as shown in Figure 5. In 
the multiple point cloud registration process described in the next 
section, the extended method is used. 
 

3. MULTIPLE POINT CLOUD REGISTRATION 

3.1 Overview 

In multiple point cloud registration, reliable adjacency 
relationships of point clouds must be determined. A graph, whose 
node represents each point cloud and edge represents correctly 
aligned adjacent point clouds by pairwise registration, is often 
used for representing the relationship (Yang et al., 2016, Theiler 
et al., 2015, Zhu et al., 2016). The graph is often called a scan 
graph, and we also use the scan graph to represents the adjacency 
relationship of point clouds. Methods in (Yang et al., 2016, Zhu 
et al., 2016) use minimum spanning trees as the scan graph. 
However, the trees cannot handle the loops, therefore the method 
may miss point cloud pairs which have the potential to improve 
the global registration accuracy, and correct modification of 
accumulated errors is often difficult. Furthermore, an appropriate 
anchor point cloud should be selected using certain criteria. 
Therefore, in our research, we use a graph with loops similar to 
(Theiler et al., 2015). 
 
To obtain the reliable graph connectivity, the reliability of the 
pairwise registration results are often calculated by using 
distances between sampled points, feature points or scanner 
positions (Aiger et al., 2008, Yang et al., 2016, Theiler et al., 
2015). The scan graph is constructed so that the total reliability 

becomes larger from an initial complete graph (Yang et al., 2016, 
Theiler et al., 2015). However, the methods require exhaustive 
pairwise registration and it can be a cause of long computational 
times. In our method, we crate the scan graph progressively to 
avoid exhaustive pairwise registration. To realize progressive 
graph creation, a validity check method for the arrangement of 
registered point cloud pairs is used. The method is based on not 
only points but also the spatial consistency and overlap to achieve 
a more reliable validity check.  
 
In our method, the scan graph is created by iterative pairwise 
registration and the validity check from a randomly selected point 
cloud. The point clouds which have valid arrangement to the 
point cloud of the leaf in the graph are added as new leaves. As a 
result, this process creates a tree. To create a more accurate 
neighboring relationship of point clouds and to be able to 
consider the loop closure, we add additional edges into the graph. 
If the spatial distance between two point clouds (scanner 
positions) in the graph is shorter than a given threshold, we check 
the validity of their arrangement. If they pass the validity check, 
they are connected by an additional edge. As a result, the graph 
has loops, and the resulting graph is not affected by the selection 
of initial point clouds.  
 
Precise registration by the ICP is also done in the pairwise 
registration in the graph creation. The resulting coordinate 
transformation matrices of precise registration are stored on the 
edges in the scan graph. After the scan graph creation, the 
accumulated errors are modified efficiently. In the next section, 
the arrangement validity check method is described first, and then 
the algorithm is shown. 
 

 

 
Figure 5. Effect of occlusion estimation 
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3.2 Arrangement Validity Check Method 

Our validity check method is based on consistency and overlap 
of classified space. Therefore, we first describe space 
classification. In the laser scanning, the part of the 3D space can 
be classified into three types, as shown in Figure 6(a): the 
occupied space where the object’s surfaces (the scanned points) 
exist, the free space where no object exists, i.e. the laser passes, 
and the unknown space. The space classification is used in some 
point cloud applications, such as change detections (Xiao et al., 
2013) and next best view problems (Kawashima et al., 2014). To 
classify 3D space, the voxel is often used. Each cell is classified 
into either the OCCUPIED, FREE, or UNKNOWN cell. The 
OCCUPIED cell includes laser-scanned points. The cells 
between the scanner position and the laser-scanned points are the 
FREE cells, and the others are the UNKNOWN cells.  
 
In our rough registration process, the image which corresponds 
to the slice of 3D space is used. Therefore, we use the image to 
classify the part of 3D space. Similar to three-dimensional case, 
each pixel in the point projection images are classified into either 
of three types. The OCCUPIED cells are already recognized in 
the point projection image creation, as shown in Figure 2. The 
FREE cells are identified by lay tracing from the center of the 
image, which is the scanner position, to each OCCUPIED cell. In 
our implementation, the Digital Differential Analyzer (DDA) 
interpolation was used to find FREE cells. The remaining cells 
are marked as UNKNOWN cells. An example of point projection 
image with space classification is shown in Figure 6(b). 
 
If two point clouds are correctly registered, there are no large 
changes in the scanned scene, and certain overlaps between the 
two point clouds exist, then following both properties for aligned 
space-classified images of correctly registered two point clouds 
can be observed. 
 
1) No collisions between the OCCUPIED cells of an image and 

the FREE cells of the other image exist. 
2) Certain overlaps of FREE cells in both images exist. 
 
Conversely, incorrect registration results will make collisions 
between OCCUPIED and FREE cells larger (Figure 7 left), and 
overlaps between FREE cells of both images smaller (Figure 7 
right). Based on these properties, the arrangement of two point 
clouds can be evaluated. 
 
In our method, the collision ratio ( , )COL A Br p p and the overlap 
ratio ( , )OVL A Br p p  for two point clouds Ap  and Bp  are defined 
by the following equations.  
 

 
| |

( , )
| |

A B
OCCU FREE

COL A B A B
OCCU OCCU

P P
r p p

P P





    (1) 

 
| |

( , )
| |

A B
FREE FREE

OVL A B A B
FREE FREE

P P
r p p

P P





    (2) 

 
where   X

OCCUP  = a set of OCCUPIED cells of point cloud Xp  
 X

FREEP  = a set of FREE cells of point cloud Xp  

 
If the following condition is satisfied, we decide that the 
arrangement of the point clouds Ap  and Bp  are valid.  
 

   ( , ) ( , ) ( , )COL A B COL B A c OVL A B fr p p r p p r p p       (3) 

 
where  fc  ,  = thresholds 
 
The appropriate thresholds are required for a correct decision. In 
our research, the values of thresholds are experimentally 
determined through the evaluation of the collision ratio and the 
overlap ratio using the several registration results. The values are 
shown in section 4. 
 
3.3 Multiple Registration Algorithm  

The multiple point cloud registration algorithm based on the idea 
described in section 3.1 is shown below. Figure 8 shows an 
example of the states in the registration process for eight point 

 
Figure 6. Space classification  

 

 
Figure 7. Incorrect registration 
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clouds. In the figure, each filled circle corresponds to each point 
cloud, and each column shows the state after step 3 in the 
following algorithm. 

Step1  Insert an arbitrary point cloud into a scan graph G and a 
front queue fQ . Add the other point clouds into a source 
set S. 

Step2  Dequeue a point cloud from fQ  and set it as target Tp . 
Step3  Execute a pairwise rough registration and arrangement 

validity check between the target Tp  and all point clouds 
in the source set S, and obtain a set of point clouds VP  
which have valid arrangement to Tp .  

Step4  Apply the following processes to each point cloud Pp  in 

VP . 
Step4-1  Add Pp  to the graph, and make edges between the Tp  

and Pp . Insert Pp  into the front queue fQ . 
Step4-2  Apply the ICP algorithm to the target Tp  and the 

source Pp , and store the resulting coordinate 
transformation matrix to the corresponding edge in the 
graph.  

Step4-3  Obtain point clouds NP  in the graph G, which are close 
to the point cloud Pp , by thresholding for the distance 
between their scanner positions. 

Step4-4  If the point cloud Pp  and the point cloud Np  in NP  
passes the validity check, add an edge between Pp  and 

Np , apply the ICP algorithm, and store the resulting 
transformation matrix to the corresponding edge. 

Step4-5:  Remove Pp  from the S. If S becomes empty, finish the 
algorithm. 

Step5.  If fQ  is not empty, return to Step 2. 

Finally, the accumulated errors are modified using a method 
similar to Pulli’s method (Pulli, 1999). In modification of the 
accumulate error, simultaneous alignment of a point cloud to the 
adjacent point clouds is used. Let XYM  be a homogeneous 
coordinate transformation matrix from a point cloud Xp  to the 
other point cloud Yp  derived by the ICP between Xp  and Yp , 
and XM  be a coordinate transformation matrix to determine the 
current positions and orientations of a point cloud Xp . Now we 
assume that a point cloud Ap  is neighbouring two point clouds 

Bp  and Cp  in the graph, as the simplest case of simultaneous 
alignment of a point cloud to the other point clouds. The target 
positions of a point i (homogeneous coordinates of its position is 
denoted as ip ) in the point cloud Ap  to point clouds Bp  and Cp  
can be calculated by B AB iM M p  and C AC iM M p . Therefore, re-
precise alignment of Ap  to both the Bp  and Cp , that is, finding 
a new coordinate transformation matrix AM , is done by 
minimizing the difference between the current positions and 
target positions derived by the above calculation for a certain 
number of points in overlap regions of Ap . In this process, 
finding correspondences is not required, so the matrix AM  is 
quickly determined by the quaternion or SVD (Besl and McKay, 
1992, Arun et al., 1987). 
 
In the process of the improvement of the accumulated errors, first, 
a point cloud which has a maximum number of incident edges in 
the scan graph, is inserted to fixed point cloud set FP , and the 
others are stored in the original point cloud set OP . Then, we find 

a point cloud from OP , which has maximum overlap to the 
neighbouring point cloud(s) in FP , and insert it to modifying 
point cloud set MP . Next, a point cloud mp  is extracted from MP , 
and align it to neighbouring point clouds in FP , and insert it to 

FP . If the movement of mp  is larger than the threshold, its 
neighbours in FP  are added to MP . These processes are repeated 
until MP  becomes empty. If MP  becomes empty, the next point 
cloud is selected from OP , and a similar process is iterated until 

OP  becomes empty. 
 

4. REGISTRATION RESULTS 

Three datasets shown in Figure 9 are used in our experiments. 
The scan sites are the University’s campus, and all datasets are 
acquired by a TLS system (FARO Focus 3D S120). Dataset A 
consists of 5 scans (point clouds), and the total number of points 
is 25M points. In Dataset B, 9 scans and 45M points are included. 
Dataset C consists of 39 scans and 326M points. The parameters 
used in our experiments are summarized in Table 1. The 
parameters are experimentally determined. 
 
Figure 9 shows original arrangements of input point clouds (top) 
and registration results (bottom) for each dataset. In the 
experiments, all point clouds are correctly registered. Figure 10 
shows the scanning positions and the created graph for Dataset C. 
The edges are created between close point clouds, and a scan 
graph with loops is created. The influence of the difference of the 
initial point cloud selection was confirmed by applying the 
method while changing the initial point cloud. As a result, all 
registrations were correctly done regardless of the selection of the 
initial point cloud. 
 
The processing times of the registration for Dataset A, B and C 
are 27 sec, 83 sec, and 876 sec, respectively (CPU: Intel Core i7-
5960X, RAM 64GB). The detail of the processing time of Dataset 
C is shown in Table 2. Although it is difficult to perform the strict 
comparisons with the existing methods, our method could 
efficiently register multiple TLS point clouds in practical 
processing times. 

 

Figure 8. Process of scan graph creation 
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Local registration accuracy was evaluated by calculating the 
distance between points and fit planes in Dataset C. First, as 
shown in Figure 11(a), we selected three pairs of point clouds, 
each of which includes more than two non-parallel planes and 
overlaps. Then, three planar regions are selected in each pair. 
Next, a plane was fitted to the points in one of the point clouds 
using the least square method, and the average distance between 
the plane and points in other point clouds is calculated. The 
evaluation results are summarized in Figure 11(b). The errors 
were from a few millimetres to about 8 mm in our experiments.  

5. CONCLUSIONS 

In this paper, an efficient multiple point cloud registration 
method based on the point projection images was proposed. First, 
we described the basic rough registration algorithm using point 
projection images and its extension based on height information 
and occlusions. In the experiments, it was shown that the 
extensions can reduce the number of calculation of coordinate 
transformation matrices and consensus to about 20% on average 
compared with the original method. Then, a method for the 
validity check of the arrangements of two point clouds using 
space-classified images was proposed. Next, a multiple point 
cloud registration algorithm using progressive scan graph 
construction based on the pairwise registration and validation 
check was described. In the experiments, our method can register 
all TLS point clouds in three datasets acquired at the University’s 
campus, which include trees and buildings. Processing times 

were about 27 sec, 83 sec, and 919 sec for 5 scans, 9 scans, and 
39 scans, respectively. Using our method, the practical 
registration for multiple TLS point clouds was achieved. Future 
work includes more efficient registration using parallel 
processing and automatic execution parameter adjustments based 
on point cloud analysis. 

 
Figure 9. Multiple point cloud registration results 

 
Table 1. Parameters used in experiments 

 

 
Table 2. Computation times 

 
Figure 10. Created scan graph for Dataset C 

 

 
Figure 11. Registration error 
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