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ABSTRACT:

Build on soft soil, close to sea level the Netherlands is at high risk for the effects of subsidence and deformation. Interferometric

Synthetic Aperture Radar (InSAR) is successfully used to monitor the deformation trends at millimetre level. Unfortunately the InSAR

deformation trends suffer from poor geolocation estimates, limiting the ability to link deformation behaviour to objects, such as build-

ings, streets or bridges. A nationwide, high resolution, airborne LiDAR point cloud is available in the Netherlands. Although the

position accuracy of this LiDAR point cloud is to low for deformation estimates, linking the InSAR location to the geometries outlined

by the LiDAR point can improve the geolocation estimates of the InSAR trends. To our knowledge no such integration is available as

of yet. In this article we outline methods to link deformation estimates to the LiDAR point cloud and give an outlook of possible

improvements. As a test we link 3.1 million TerraSAR-X InSAR Persistent Scatterers to 3 billion LiDAR points, covering the city of

Delft and surroundings.

1. INTRODUCTION

1.1 Subsidence

Subsidence in the Netherlands, and deformation in general, is

threatening building integrity, damaging infrastructure and low-

ering the land with respect to sea-level. Deformation occurs at

all scales, from single pillar failure at the ’t Loon shopping mall

in 2011 (Chang and Hanssen, 2014) to complete regions suffer-

ing from effects such as subsidence relative to the water table

(Boersma, 2015).

Deformation processes include: peat compaction in the west and

north of the country (Boersma, 2015); induced subsidence (and

seismic activity) due to gas extraction in the Groningen area

(Ketelaar et al., 2006); land uplift and cavity formation due to the

flooding of old mine works in Limburg (Bekendam and Pottgens,

1995).

1.2 PS-InSAR deformation monitoring

Interferometric Synthetic Aperture Radar (InSAR) is used to

monitor deformation from satellites. Millimetre per year ac-

curacy can be achieved in deformation trend estimation. Un-

fortunately the source of the deformation signal is, in general,

less accurately known: geolocation estimates of PS-InSAR are

known with metres precision at best, depending on the sensor

(Dheenathayalan et al., 2016).

Although this will allow for deformation estimates up to street

level (Ketelaar et al., 2006), the deformation signal can not be at-

tributed to a single geometric feature. Persistent scatterer InSAR

(PS-InSAR) measurements are commonly dominated by a single

scatterer. The location of this scatterer is of key importance in the

understanding and interpretation of the deformation behaviour: a

subsiding garden house or street will require different precautions

than a subsiding bridge pillar.
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1.3 Combination with LiDAR

To find and improve the estimated location of the dominant scat-

terer it is beneficial to combine radar measurements with a (high

resolution) point cloud. This will allow for linking scattering be-

haviour to a geometric feature in the scene.

An example of a traditional (2D) InSAR deformation map can be

seen in figure 2. A 3D visualisation aids this interpretation of the

PS-InSAR signal, over the classical 2D mapped interpretation.

Geometric 3D linking of PS-InSAR geolocation estimates to 3D

LiDAR point cloud data will give a quantifiable improvement of

the geolocation.

Geometric (3D) linking of the datasets will provide:

• Assessment of differential deformation, as a deformation

signal can be attached to a building geometry.

• Linking of the deformation signal to specific parts of the

infrastructure, for maintenance planning and early warning.

• Detection and mitigation of (regional) errors and trends in

the radar processing.

This article explains how to create this missing link by truly in-

tegrating both data sources. Given the (free) availability of a na-

tionwide airborne LiDAR dataset (Actueel Hoogtebestand Neder-

land), and the available TerraSAR-X InSAR data, the Netherlands

form a perfect test bed for this integration of datasets. Further-

more existing online point cloud viewers, such as Potree (Schütz,

2018), can be extended to visualise this link between the laser

point cloud and radar data.

Currently no such combination of datasets is known to us. The

combination of optical images and SAR is more common and
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aimed at the texturing, classification or 3D reconstruction of SAR

point clouds (Tupin, 2010, Schmitt et al., 2017). Although suc-

cessful, (Wang et al., 2017) suffered from poor InSAR geoloca-

tion accuracy.

2. DATA

2.1 TerraSAR-X

The German (DLR) TerraSAR-X Synthetic Aperature Radar

(SAR) mission, was launched in 2007 and delivers high resolu-

tion radar imagery ever since. As a Public-Private Partnership the

mission combines scientific and commercial interests of X-band,

land oriented monitoring applications. With an 11-day repeat cy-

cle and resolutions up to 3× 3 m the mission can provide defor-

mation data of high spatial and temporal resolution (Werninghaus

and Buckreuss, 2010).

For this article radar data from two TerraSAR-X orbits is avail-

able, descending and ascending orbits over the same region, cov-

ering Delft, surrounding fields, Rijswijk and parts of The Hague

(the Netherlands), marked in red on figure 3 and shown in more

detail in figure 1.

A total of 72 radar images were acquired between 2016-01-06

and 2018-01-01, 36 for each orbit. SAR Interferometry (InSAR)

was applied to extract deformation signals by analysing the time

series of phase changes. Pixels that can be tracked consistently

over multiple acquisitions are Persistent Scatters (PS). These co-

herent pixels denote the deformation behaviour of the same scat-

terer over longer periods of time. (Hanssen, 2001) A linear de-

formation trend (in time, mm
yr

) is estimated for those points.

Data of the descending orbit contains 1.7 million PS-InSAR

points, the ascending data contains 1.4 million points. For all

points a geolocation estimation is provided in WGS84 coordi-

nates and a height above NAP (Normaal Amsterdams Peil). Both

datasets span the same area of 123 km2, of which 60 km2 is over

urban (built) terrain, where the highest density of persistent scat-

terers is to be excepted (Hanssen, 2001, CBS, 2017).

2.1.1 Error model The ratio of the error ellipsoid in range

(direction of radar signal), azimuth (direction of flight) and cross-

range (perpendicular to signal and flight direction) was estimated

to be 1/2/22 for typical consistent scatterers (figure 4, not to

scale). With an estimated standard deviation of 0.128 m, the axes

of the error ellipsoids are 0.128 m (range, σr), 0.256 m (azimuth,

σa), 2.816 m (cross-range, σcr) (Dheenathayalan et al., 2016).

The direction of flight was defined to be 192
◦ for the descending

and 350
◦ for the ascending orbit, with a elevation angle of 65.9◦

for both orbits.

2.2 Actueel Hoogtebestand Nederland

Actueel Hoogtebestand Nederland (AHN) is a nationwide Li-

DAR elevation model. AHN was first recorded in 1996 and is

licensed as open data since march 2014. The raw point cloud data

is published via Publieke Dienstverlening Op de Kaart (PDOK)

(Kadaster and Geonovum, 2018).

AHN was acquired from an airborne platform, from which laser

pulses were fired at the ground below. Given the known propa-

gation velocity of light in air, the time interval between transmis-

sion and receiving the reflected signal (echo) is proportional to

the distance from the aircraft to the ground. Multiple returns are

possible, for example in vegetated areas, where parts of the pulse

reflect on different surfaces in the scene. The position and ori-

entation of the aircraft are recorded simultaneously using GNSS

and inertial motion sensors to record the position from where the

measurement was acquired and in which direction (Vosselman

and Maas, 2010).

New iterations are acquired approximately once every ten years,

as can be seen in table 1. Acquisition of both AHN1 and AHN2

is finished: AHN2 supersedes AHN1. AHN3 is yet only par-

tially available, and is used where available (figure 3). A com-

bination is made between AHN2 and AHN3 to create a single

dataset with the highest possible point density. The higher point

density allows for better detection of small objects and improved

reconstruction of facades that are badly aligned with respect to

the viewing angle of the laser scanner.

A summary of the data volume involved is given in table 2. The

file size increase of AHN3 is due to the addition of extra at-

tributes, such as classification, intensity and acquisition time.

Recording Density (
pt

m2 )

AHN1 1996 - 2003 0.06 - 1

AHN2 2008 - 2012 16.8

AHN3 2014 - 2018 18.2

Table 1. Acquisition years and average data density of the three

available iterations of AHN. Point densities for AHN2 and

AHN3 were determined over the study area (9 tiles).

Area (km2) Points Size

AHN2 35 997 640 billion 988 GiB

AHN3 16 249 252 billion 1.1 TiB

Combined 1.7 TiB

Table 2. Coverage, point count and dataset size of AHN2,

AHN3 and a combination of both.

AHN is defined in Rijksdriehoekscoördinaten with height rela-

tive to NAP, ’RDNAP’, the Dutch national coordinate system

(EPSG:7415). This Cartesian coordinate system is used as the

basis for this project.

To ease navigation in the web application (section 3.1) the point

cloud is coloured based on the publicly available aerial photo-

graph of 2016 (Kadaster and Geonovum, 2018). This photograph

shows small differences to the point cloud, as it was not recorded

simultaneously.

2.2.1 Error model For AHN (iteration 2 and 3) the accuracy

is defined as maximum 5 cm systematic (1σ) and a 5 cm stochas-

tic error (1σ) in the vertical direction. Requirements for hori-

zontal accuracy are 50 cm (1σ, both x and y) for objects larger

than 2× 2 m. In reality this is often outperformed (van Meijeren,

2017).

The large standard deviation and the infrequent acquisition make

AHN itself unsuitable for deformation monitoring at the milime-

tre level that is obtained by InSAR monitoring (van Meijeren,

2017).

2.3 Data preparation

For the massive visualisation a combined dataset of AHN3 and

AHN2 is created, AHN3 is used whenever available (figure 3).
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Figure 1. Left: PS-InSAR data from both ascending and descending orbits. The city of Delft is hidden below the points. The Hague

can be seen in the north and the northern part of Rotterdam in the south. (Backgroud: OpenStreetMap) Right: digital surface model

extracted from AHN3 of the same region.

Figure 2. Traditional PS-InSAR deformation map, showing the

TU Delft campus. Misalignment can be seen at the building

facades. (Background: OpenStreetMap.)

AHN data is delivered in LAZ-tiles of 5 × 6.25 km, based on the

standard national tiling scheme. Both datasets are tiled in tiles of

approximately 1 km2 (1× 1.25 km, 1

25
of the original tiles). For

each LiDAR tile a buffer of 25 metres on all sides is included,

this is to allow radar measurements on the border of two tiles to

match. Given the radar error model, such a buffer is large enough

to accommodate points on the border between tiles.

This process is done using pdal (colouring and clipping) and

las2las of LASTools (tiling) (Bell et al., 2018, Isenburg, 2018).

It created 30137 LAZ-files (tiles), with an average filesize of 58

MiB and 21 million points (average point density of 15 points

per square metre). These tiles are small enough to be processed

in memory, and large enough for regular file storage. Queries on

the LAZ-files are elementary (axes aligned bounding boxes) and

do not require a point cloud database (van Oosterom et al., 2015).

Due to the 25 metre overlap between tiles, the method may be run

for each tile independently, horizontal scaling of the algorithm is

possible. That is, each tile can be processed independently, on

25 0 25 50 75 100 km
Study area

AHN Availability

AHN2

AHN3

Legend

Figure 3. Map of the Netherlands, showing the availability of

AHN2 and AHN3 respectively. Shown in red is the extent of the

TerraSAR-X data available to this study.

a separate CPU or even separate node. This enables us to com-

bine the PS-InSAR points with massive numbers of LiDAR mea-

surements in a distributed manner, reducing the execution time

required.

Due to the small size, the radar dataset is not tiled. Small datasets

(such as the TerraSAR-X dataset discussed here) are tiled in

memory. Larger datasets are converted to HDF5 first, which al-

lows efficient querying during processing.

3. METHOD

To aid the interpretation of the deformation signal contained in

the PS-InSAR data we want to visualise the available data and

link the data to the geometry known from the LiDAR point cloud.

The following five steps to achieve this will be discussed here:
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1. Common visualisation of InSAR and LiDAR data

Interpretation is left to the operator, just as with traditional

(online) maps (such as figure 2). Unlike traditional 2D maps

the geolocation estimation is shown with the error ellipsoid

in 3D. This enables improved interpretation of the radar sig-

nal and scene geometry.

2. First Nearest Neighbour linking

The Nearest Neighbour in the LiDAR point (single point),

with respect to the radar geolocation estimate, is expected

to govern the scattering behaviour. This method is compu-

tationally efficient, but may overestimate the distance on low

density surfaces, as illustrated in figure 4.

3. Linking to a single surface

After Nearest Neighbour search, either up to a predefined

number of points or all points up to a maximum radius, a

single plane is fitted on the points found. This plane approx-

imation of e.g. a facade makes the matching algorithm more

robust in areas of low point density.

4. Linking to multiple surfaces

For complex geometries the previous approach can be ex-

tended. Multiple locally linear (’flat’) surfaces may exist in

the neighbourhood of the scatterer.

5. Linking to dihedral of trihedral geometries

Dihedral and trihedral surface configurations are known to

act as better radar reflectors. These geometric configura-

tions might be extracted from the scene. This is currently

not implemented.

The difference between the methods is sketched in figure 4. Ap-

proximating locally linear surfaces as 2D planes adds robustness

in case of point density differences. On rough surfaces, or non

flat surfaces this approximation may not hold. Rough surfaces

are approximated by an ’average’ surface and it might be possi-

ble to approximate non-flat surfaces as linearly close to the point

of intersection.

A B

Figure 4. Sketch of the effect of surface reconstruction on

matching between a LiDAR point cloud (black/red dots) and a

PS-InSAR geolocation estimation (blue dot, including error

ellipsoids). The match with Nearest Neighbour in the point

cloud, shown in red, is much further away than the actual surface

(thin black line). Shown in a simple situation A; and a complex

situation B. Although the horizontal surface is further away, it

could be considered a candidate match.

After matching, the resulting matching distances may be used to

analyse the geolocation quality, for example detection of biases

and trends in the geolocation.

3.1 Common visualisation of InSAR and LiDAR data

Web based visualisation is built around Potree (Schütz, 2016,

Schütz, 2018) and Three.js. Potree is a WebGL based renderer for

large point clouds in the web browser, built on top of Three.js 3D

library. Previously the full (nationwide) AHN2 dataset has been

successfully converted to be used in the Potree viewer (Martinez-

Rubi et al., 2015). Other visual aids (such as the error ellipsoids

and plane estimates) can be implemented using Three.js.

Potree ensures a smooth viewing experience by loading the point

cloud from a pre-processed octree structure. Only the points in

view at the client are downloaded and never more than a user-

defined maximum. Due to the 2
1

2
D nature of the radar dataset

this data is distributed using a quadtree tiling scheme, loading

only the tiles in view and removing those no longer in view from

memory.

3.2 First Nearest Neighbour linking

Nearest Neighbour search should take this covariance into ac-

count. Use of the Whitening Transform will allow any (conven-

tional) Nearest Neighbour algorithm to be used on this problem

(Stansbury, 2013).

The viewing geometry of the radar satellite can be expressed as a

rotation matrix relative to the world coordinates (RDNAP). This

rotation (RSAR) can be combined with the quality model of the

radar geolocation (σr , σa, σcr) to a covariance matrix relative to

world coordinates:

QSAR = RSAR





σr

σa

σcr



R
T

SAR (1)

Using the Whitening Transform all points (LiDAR and radar)

are projected on the eigenvectors of the covariance matrix of the

radar point (QSAR) and scaled by the eigenvalues. This creates

a new coordinate system where the Euclidean metric represents

distances in σ rather than metres. All errors are now standard

normal distributed, as can be seen in figure 5.

The transformation found works for a single, constant, error

model only. As a consequence the transformation has to be cal-

culated and applied for each unique viewing geometry (ie. or-

bit). This includes construction of a new search structure for

each viewing geometry and/or error model. The Multiple Spa-

tial Transformation Technique by (Sakurai et al., 2001), based on

pre-processed search structures and approximate transformations

may be used to speed up this process if required.

This transformation, based on the eigenvalues (E) and a diagonal

matrix of the eigenvectors (D) of the covariance matrix of the

radar measurements (QSAR), can be found using:

W = E
−1

D
−

1

2E
T

(2)

The correctness of this transformation can be checked by trans-

forming the covariance matrix using the Whitening Transform to

the identity matrix:

WQSARW
T
= I3 (3)
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Figure 5. Effect of the Whitening Transform.

In this coordinate system, Nearest Neighbours are nearest in a

statistical sense. This search is optimal with respect to the radar,

considering AHN the ground truth, without any statistical vari-

ability. This assumption is justified due to the (relatively) small

error of the LiDAR point cloud.

This search is implemented using pykdtree, a kD-tree imple-

mentation in Python (Python Development Team, 2017, Nielsen

et al., 2017).

3.3 Linking to a single surface

The surface is locally approximated as a single, three dimen-

sional, plane of the equation:

ax̂+ bŷ + cẑ = d (4)

Coefficients (a, b, c) equal a normal vector of the plane and d is

a constant.

Two approaches were chosen to approximate the surface:

• Using three LiDAR points, the coefficients are defined by

the cross-product of the coordinates of these points.

• Using all Nearest Neighbours found, employing Principal

Component Analysis (PCA) to find the coefficients of the

plane.

The first method (cross-product) is computationally light but the

plane is based on three points only and does not exploit the redun-

dancy in the LiDAR point cloud and does not provide a quality

metric for the fit. PCA requires more computational effort but

exploit the redundancy in the data and provide a quality metric

for the fit.

The error model of both datasets is taken as the starting point

of the fusion. To estimate the plane, first the covariance matrix

of the coordinates is calculated for the LiDAR points found. This

covariance matrix is then transformed using the Whitening Trans-

form based on the covariance matrix of AHN (QAHN , formula

2). The eigenvector corresponding to the smallest eigenvalue of

the covariance matrix represents the normal vector. The ratio be-

tween the eigenvalues is an indicator for the quality of the fit,

for flat surfaces the smallest eigenvalue is much smaller than the

other two. The constant d of the plane equation (4) is found by

solving the equation for the mean point.

To determine the point of intersection, the PS-InSAR Whitening

Transform is applied to the PS-InSAR point and the surface nor-

mal found. The PS-InSAR point is projected orthogonal on the

surface, the distance found is the distance in σ. After the applica-

tion of the inverse Whitening Transform the point of intersection

in world coordinates is found.

3.4 Linking to multiple surfaces; dihedral and trihedral ge-

ometries

Detection of multiple surfaces can generate a top-3 list of candi-

date intersections, such as the horizontal surface slightly further

away in figure 4B. Detection of surfaces is based on RANSAC

(random sample consensus) and is only applied if the surface es-

timated using the single surface estimating technique indicates

the area as non-flat.

Furthermore it will allow the detection of more advanced struc-

tures, such as dihedral and trihedral configurations of multiple

surfaces. To respect the radar scattering behaviour of dihedral and

trihedral structures the source of the deformation signal should be

placed at the intersection of the surfaces rather than at the surfaces

themselves (Richards et al., 2010).

4. RESULTS

4.1 Webviewer

A screenshot is shown in figure 6. A live demonstration can be

found at http://dev.fwrite.org/radar/.

4.2 Matching

A comparison between the various matching techniques can be

seen in the histograms of figure 7. Local reconstruction of the

geometry, by surface approximation, leads to lower distances be-

tween the original geolocation estimation and the surface found

(orange), as sketched in figure 4. The intersection with the sur-

face is on average 1

2
σ closer than the first Nearest Neighbour

(blue).

Over the whole dataset biases are in the order of decimetres, with

standard deviations of multiple metres, as can be seen in figure

8. When expressed in radar coordinates the uncertainty in match-

ing corresponds to the expected geolocation error. The expected

geolocation standard deviation was 0.128/0.256/2.816 metre in

range/azimuth/cross-range (section 2.1.1). As scan be seen in fig-

ure 9, the standard deviations are of the same order of magnitude

as the original estimations. In range and azimuth it is overesti-

mated, while the cross-range estimate is of the same order as the

original estimate. This is all under the assumption that the first

Nearest Neighbour is the origin of the backscattered signal.

The improvement in location can be seen in figure 10. Compared

to figure 2 stable points are now attributed to the facade while

subsiding points remain on the street. This subdivision is to be

expected given the stable foundations of the building but had to

be made by a skilled operator on traditional maps.

Of the total of 3.1 million PS-InSAR points, less than 20% of

the points did not match a Nearest Neighbour within 2
1

2
σ. For

surfaces the results are slightly better: 85% of the points was

linked to a nearby surface within 2
1

2
σ. Results further away are

very unlikely, given the validity of the error model. Missing links

are generally due to occlusions in the point cloud, for example on

facades and in narrow streets, resulting from the different viewing

geometries between the sensors. Some of them are due to faulty

interpretation of the geometry, leading to plane estimates that do

not provide a realistic point of intersection.
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Figure 6. Delft University of Technology campus, shown using an adapted version of Potree, as a coloured point cloud (AHN3)

overlaid with TerraSAR-X PS-InSAR trend estimates (shown as 1σ error ellipsoids around the expected position, coloured by their

deformation signal).
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estimation. Nearest Neighbour search is stopped at 2 1

2
σ.

4.2.1 Quality estimation Various quality estimates result

from the matching procedure. For each point the distance from

the original estimation is known, both measured in standard de-

viation (σ) and in world coordinates (metres). Furthermore for

the surface estimation quality metrics are available, such as the

flatness of surface (quality of the approximation). Indicating the

quality of the fit for each individual surface.

4.3 Regional trends

Although the average offset is almost zero (figure 8), subsets of

the data may be biased. By comparing the difference between the

point of intersection or Nearest Neighbour and the original geolo-

cation estimate with respect to location, trends become visible.

In figure 11 the median offsets between the geolocation estima-

tion and Nearest Neighbour are shown (NN - estimation), binned

in 100× 100 metre bins. A clear north-south trend can be distin-

guished in the descending orbit, while in the geolocation of the

ascending track the offset increases in the southern part. Due to
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Figure 8. Offsets (biases) in matching, based on the first Nearest

Neighbour.

this trend geolocation estimates are off by 2 to 3 metres at the

borders of the radar image.

These offsets and trends, that can be converted to radar coordi-

nates too, may help to improve the radar processing.

4.4 Processing

Matching 1.4 million SAR points to 3 billion LiDAR points (122

tiles) using the Nearest Neighbour approach takes 15 minutes

with three threads on a quad-core Intel i7-3630QM 2.4 GHz lap-

top computer with 24 GB of RAM. This includes opening the

compressed LAZ-files and building of the transformed kD-tree.

As the current script is written in python 3.5, higher performance

is expected to be achieved by using more optimised programming

languages.
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Figure 9. Offsets (biases) in matching, based on the first Nearest

Neighbour, in radar coordinates.

Figure 10. Point locations (mapped in 2D), after matching

between the datasets. Compare to figure 2. (Background:

OpenStreetMap)

With the research area spanning 122 tiles of a total of 30137 tiles,

processing the nationwide dataset will take around sixty hours

on this laptop. Given that the program can be scaled over many

nodes the computation time can be reduced to the duration de-

sired by adding more computing power.

5. DISCUSSION

In this article the geolocation error model is taken as constant

over the whole region of the of the radar image and for all dif-

ferent scatterer types. This assumption is likely incorrect, as in-

dicated by (Dheenathayalan et al., 2016). The incidence angle

ranges from 20 to 45 degrees over the image and reflectors vary

in type: from (round) lamppost to trihedral reflector. Each with

different properties and likely different geolocation error estima-

tions. When parameterised, regional variations in the error model

can be included.

To improve the matching results the algorithm could be re-run

with the biases obtained from the first run after initial matching.

After correcting for the bias or trend in the initial geolocation the

results of the second geolocation matching algorithm may find a

different point of intersection. Quality assessment for this itera-

tive process will be difficult, as the new geolocation will be the

result of multiple transformations of the original dataset.

Given the classification provided with the LiDAR point cloud and

the free availability of topographic maps in the Netherlands, it is

possible to link deformation behaviour to outlines of buildings.

Allowing the detection of differential deformation and the con-

version from coordinate to addresses (geocoding).

Currently no single error model is implemented. The quality of

the surface fit and the quality of the intersection are defined and

estimated independently as two separate metrics. An integrated

metric could provide, for example, a new quality metric for the

point of intersection found.

6. CONCLUSION

The techniques introduced enable the efficient attribution of the

InSAR deformation signal to real-world objects and features, al-

lowing the next spatial join at a higher scale: linking individ-

ual signals to objects. The 3D visualisation will allow for better

communication with the greater public, as less interpretation is

required with respect to the traditional deformation maps.

Various options exist for the geometric linking of the two

datasets. Implemented methods are based on the geometry and

may not represent the underlying (physical) radar processes.

Nevertheless they improve the geolocation estimate and aid in

the attribution of the radar signal to real world objects.
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