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ABSTRACT: 
 
Acquiring photographs as input for an image-based modelling pipeline is less trivial than often assumed. Photographs should be 
correctly exposed, cover the subject sufficiently from all possible angles, have the required spatial resolution, be devoid of any 
motion blur, exhibit accurate focus and feature an adequate depth of field. The last four characteristics all determine the “sharpness” 
of an image and the photogrammetric, computer vision and hybrid photogrammetric computer vision communities all assume that 
the object to be modelled is depicted “acceptably” sharp throughout the whole image collection. Although none of these three fields 
has ever properly quantified “acceptably sharp”, it is more or less standard practice to mask those image portions that appear to be 
unsharp due to the limited depth of field around the plane of focus (whether this means blurry object parts or completely out-of-
focus backgrounds). This paper will assess how well- or ill-suited defocus estimating algorithms are for automatically masking a series 
of photographs, since this could speed up modelling pipelines with many hundreds or thousands of photographs. To that end, the 
paper uses five different real-world datasets and compares the output of three state-of-the-art edge-based defocus estimators. 
Afterwards, critical comments and plans for the future finalise this paper. 
 
 

1. INTRODUCTION 

Photography is a very subjective medium. Although an exciting 
subject, compelling illumination and attractive composition are 
common denominators of many excellent photographs, the 
rules on how to obtain these characteristics are not carved in 
stone. Even if there is some consensus on good practice (e.g. the 
“rule” of thirds in image composition), great images often result 
from simply ignoring or breaking these “rules”. For instance, 
many photographers consider the „sharpness“ of an image as its 
most essential characteristic since it tells a lot about the 
photographer’s image acquisition and post-processing skills, 
while it also reveals the use of high-end imaging hardware. 
However, adding the right amount of blur to the right portion of 
an image often makes for a very aesthetic outcome. Panning the 
camera or photographing a moving subject can result in so-
called motion blur, while a limited depth of field or a 
deliberately inaccurate focusing might yield appealing out-of-
focus blur (also known as defocus blur). 
 
However, both types of blur are often unwanted in photographs 
that serve to construct an object’s three-dimensional (3D) 
surface geometry digitally. Computer vision and traditional 
photogrammetric workflows along with the more recent hybrid 
approaches to Image-Based Modelling (IBM) all assume that the 
surface to be digitally modelled is “acceptably” sharp depicted 
throughout the whole image collection. Even though none of 
these three fields has ever properly quantified “acceptably 
sharp”, it is at least more or less standard practice in most IBM 
pipelines to mask those portions of the image that appear “not 
sharp enough” for proper extraction of 3D surface data. 
This paper will assess how well- or ill-suited the current pool of 
defocus estimating algorithms are for automatically masking a 

series of photographs. This masking automation could seriously 
speed up IBM projects with many hundreds if not thousands of 
photographs, for which the tedious and error-prone manual 
masking of out-of-focus background and unsharp object regions 
could quickly become very time-consuming.  
 

2. SOME BASIC CONCEPTS 

2.1 Sharpness and blur 

An image that exhibits many details with distinct boundaries 
between them is denoted “sharp”. Although “sharpness” is a 
perceptual term that relates to the details seen by the human 
visual system, image sharpness is usually related to the concepts 
of spatial resolution and acutance. The spatial resolution (often 
shortened to just resolution) is some distance Δx that equals the 
minimum distance between distinguishable objects in an image. 
As such, the spatial resolution of an image provides a 
fundamental limit to the information one can extract from an 
image. However, to extract that information, the contrast 
between neighbouring objects must be high enough as well. 
That gradient of the tonal change between neighbouring zones is 
referred to as acutance. Images with high acutance always 
feature sharp transitions between their tonal boundaries. For 
instance, sharpening a digital image alters its acutance, but 
leaves its spatial resolution unaltered. 
 
However, to generate a sharp image with lots of details, one 
needs an imaging system that can distinguish fine object detail. 
This characteristic is called resolving power, and it defines the 
smallest resolvable feature within the imaging system's field of 
view. The resolving power of an optical imaging system (and 
hence the sharpness of the final image) is primarily determined 
by the amount of – often unavoidable – blur produced by the 
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imaging procedure. To understand the concept of blur, it is 
essential to understand that an image is a visual representation 
of a specific physical object. Ideally, every object point is 
represented by a small point in the image. In reality, the image 
of each object point is a small blob resulting from the 
accumulated blurring that occurs throughout the imaging chain. 
 
2.1.1 Diffraction and the optical PSF 
Although all imaging systems suffer from specific lens 
aberrations, the diffractive nature of electromagnetic radiation 
would still put a physical limit on the smallest resolvable object 
even if such aberrations would be absent. Diffraction is a 
phenomenon that comes into play because wavefronts of 
propagating electromagnetic waves bend in the neighbourhood 
of tiny obstacles and spread out when passing apertures. Even 
when imaging a distant point source of electromagnetic energy 
(such as a star), the resulting image is therefore never a perfect 
point but a diffraction pattern. 
 
The spatial energy distribution of this image spot is called the 
Point-Spread Function (PSF) and describes in three 
dimensions the smear or spread in the sensor plane introduced 
by the optical chain (Jensen, 1968). If the imaging system is 
aberration-free and completely diffraction-limited, the PSF of a 
perfectly focused point is a so-called Airy diffraction pattern. 
This Airy pattern describes the best-focused spot of 
electromagnetic radiation that a perfect lens with a circular 
aperture can generate. In the XY plane, it looks like a bright 
circular central patch (the Airy disc) and a series of dimmer 
concentric rings, each ring separated by a circle of zero intensity 
(Figure 1). 
 

 
 
Figure 1. (A) shows an Airy diffraction pattern while (B) depicts 
the profile of the Airy PSF and (C) shows the Rayleigh criterion. 

The radius r of this Airy disc equals 1.22 λ f / D. The spread thus 
depends on the wavelength of the electromagnetic radiation (λ), 
the lens’ focal length (f) and the diameter of the lens aperture 
(D) (Hecht, 2002). Note that smaller wavelengths and large lens 
apertures yield smaller Airy disks and that both variables can be 
used to minimise the size of the image spot. Obviously, smaller 
Airy discs yield a higher theoretical spatial resolving power of 
the imaging system, because the Rayleigh criterion states that 
two neighbouring points can be spatially resolved as long as 
their Airy discs do not come closer than their radii (Figure 1b-c).  
 
In photography, diffraction has a direct effect on the spatial 
resolution of the final image. Even when everything is perfectly 
in focus, too small an aperture gives rise to bigger Airy disks and 
hence a lower spatial resolution. In this way, the physical nature 
of electromagnetic radiation (and more specifically the principle 
of diffraction) sets a fundamental limit by blurring the image, 
preventing an exact point-for-point copy of the real-world scene. 
In most situations, the optical PSF (PSFopt) deviates from this 

diffraction-limited Airy pattern due to a number of reasons such 
as the above-mentioned lens aberrations or erroneous focusing. 
Both phenomena blur an image spot even more.  
 
Finally, there is an optical low-pass filter positioned just before 
the imaging sensor of most cameras. By eliminating spatial 
frequencies above the Nyquist frequency to prevent aliasing, 
this filter adds a last but significant portion of optical blurring. 
The PSFopt  integrates all these blurring steps. Since a scene is a 
collection of countless point sources, each of these sources 
generates its PSFopt  with an amplitude proportional to the 
source’s radiance. Because incoming irradiance gets spatially 
sampled by the detector, every pixel results from the integration 
of many optical PSFs over the imaging sensor’s photosite.  
 
2.1.2 The imaging system’s PSF 
However, Figure 2 shows that the PSF of the optics (PSFopt) is 
not the only contribution to the camera system’s PSF (PSFsys). 
An additional blurring component, corresponding to the 
response of the sensor itself (PSFsen) also contributes to the 
overall PSFsys  of the imaging system. Finally, the image motion 
PSF (PSFmot) constitutes a third component, resulting from the 
fact that the imager might move during the exposure (e.g. aerial 
imaging but also user tremor). In this way, the imager’s PSFsys  
can be written as a convolution of the individual components: 
 

PSFsys  (x, y) = PSFopt  * PSFmot  * PSFsen                  (1) 
 
in which x and y are the spatial coordinates in two-dimensional 
image space. These spatial coordinates indicate that the PSFsys  
depends on the position in the imaging plane. It is very typical 
for a system’s PSFs to degrade and become more non-
symmetrical with increasing distance from the optical axis 
(because lens imperfections tend to be larger there). 
 
Equation (1) also makes clear that an entire image is composed 
out of different PSFs and the digital camera itself blurs the 
incoming analogue radiance signal. In scientific terms, one can 
say that the image of an object is the convolution of the object’s 
radiance and the spatially varying point spread function of the 
complete imaging system (Jensen, 1968). 
 

 
Figure 2. The complete imaging chain (including sampling and 

quantisation) and the individual blurring stages. 

 
2.2 Influencing the PSF for IBM 

When acquiring photographs for IBM purposes, one starts 
typically with a specific camera and lens. Given those and the 
requirements of the final output (e.g. a 1/100 map or a 3D 
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surface model in which 1 mm details are visible), the necessary 
image acquisition parameters are computed and kept fixed 
throughout the whole imaging sequence. This means that the 
photographer can only influence the PSFsen by opting for 
another imaging sensor. However, she/he can largely influence 
both the optical and motion PSFs. The latter can be minimised 
by using a tripod and remote shutter release (that is if the 
imaging platform itself does not vibrate) or a high shutter speed 
(when handholding the camera). In addition, a high shutter 
speed also counteracts any motion blur resulting from object 
motion. However, the majority of IBM projects deal with static 
objects, so freezing object motion should never be an issue. 
 
Finally, the lens aperture can control the optical PSF (which 
varies all over the imaging sensor). As mentioned before, smaller 
apertures (indicated by larger f-numbers such as f/16 or f/22) 
lead to more substantial blurring effects due to diffraction. So, 
one might be tempted to use the lens wide open (for instance at 
f/2.8). However, too small of an aperture is contra-productive 
when minimising lens defects. The effects of spherical 
aberration, coma, astigmatism, field curvature and vignetting can 
be reduced to a varying extent by stopping down a lens. Since a 
specific aperture thus influences both positively and negatively 
the scene rendering, every lens has one f-stop or a small range of 
apertures at which a balance between lens aberrations and 
diffraction is reached. As a rule of thumb, this ideal opening is 
found by stopping down the lens two or three stops from wide 
open. This means that an f/2.8 lens usually delivers maximum 
image quality around f/5.6, meaning that all scene points on 
which the lens was focused will be rendered the sharpest 
possible in the resulting photograph. 
 
However, ultimate quality and sharpness of the focused image 
portion is seldom the most important feature for IBM photo 
sets, but rather the Depth of Field (DoF). DoF is defined as the 
range of object distances over which objects appear acceptably 
sharp in the photograph (Figure 3 and the top row of Figure 5). 
 

 
Figure 3. The influence of aperture size on the DoF, the depth of 

focus and the far and near focus limits. 

 
2.3 Depth of field and defocus 

Since a photographic lens is unable to render an object point as 
a perfect point in image space due to several lens aberrations 
and the effect of diffraction, the terms blur circle or Circle of 
Confusion (CoC) have been coined. As described above, the 
exact dimension of every CoC is given by the PSFopt  at that 
place and thus a function of diffraction, aberrations and correct 
focus. Usually, the PFSopt  is computed for a lens that is 

perfectly focused on an object point. In such a situation, its 
corresponding image point will be conjugate and located exactly 
on the sensor plane. Although lens aberrations and diffraction 
still limit the smallest size of this image spot, it is denoted the 
circle of least confusion since it is the smallest, least blurred 
spot reproducible by that lens (Katz, 2002). For a perfect 
diffraction-limited but aberration-free lens, it equals the Airy 
disk. Object points that are distant from the plane of focus do 
not come to a perfect focus on the sensor, but before or after it. 
In both cases, their CoCs exceed the circle of least confusion. 
 
The upper part of Figure 3 shows that these objects spots are 
still perceived as sharp as long as their CoCs remain smaller than 
an established CoC threshold. The lower part of Figure 3 
illustrates how the same object points are imaged as much 
smaller spots when photographed with a smaller aperture. By 
limiting the angle of incident radiation, all the CoCs decrease. 
Moreover, objects points can lie much further from the plane of 
focus before their CoC surpasses the CoC threshold. As a result, 
there is a significant increase in the distances in object space (the 
DoF) over which objects remain acceptably sharp in the 
photograph. Stopping down the lens will thus always maximise 
the DoF. The image–space conjugate of DoF is often termed 
depth of focus. The object distances that correspond to the 
object points whose CoCs are identical to the CoC threshold are 
denoted the far and near focus limits. Any object point that lies 
before the near focus limit or behind the far focus limit will be 
perceived as an unsharp spot. In technical terms, it means that 
the PSFopt  of those defocused points is much broader. 
 
These far and near focus limits are not abrupt transition zones. 
Moreover, their exact values do not only depend on aperture, 
but also the field of view (given by the object distance and focal 
length) and the CoC threshold that is applied (Verhoeven, 2016). 
Often, one will find that the standard CoC threshold equals 0.03 
mm, an antiquated dimension specified for particular conditions 
(Figure 4). First, it assumes that a human observer with normal 
vision looks from 25 cm at a 20 cm by 30 cm print from a 35 
mm negative (i.e. full frame) (Ray, 2002). If all these conditions 
are satisfied, the observer should perceive any spot with a size 
smaller than 0.25 mm as a sharp point. This spot of 0.25 mm 
translates to the 0.03 mm threshold in the sensor plane. If an 
observer has worse than average vision, CoCs can be larger. 
When dealing with smaller viewing distances, the CoC threshold 
has to decrease. Photographs from smaller sensors also demand 
smaller CoC thresholds since their dimensions necessitate a 
larger magnification to equal a 20 cm by 30 cm print. 
 

 
Figure 4. The commonly used (but outdated) CoC threshold of 

0.03 mm is determined by human visual acuity. 
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The consensus in IBM is that an object’s surface can only be 
adequately constructed if all the object’s dimensions fall within 
the depth of field of the imaging setup (Figure 3). Proper image 
acquisition for IBM purposes, therefore, involves the 
computation of an aperture for a scene-encompassing DoF. 
Scene portions outside the DoF are out-of-focus/defocussed, 
and the constructed surface will likely be partial and inaccurate. 
However, there are many problems with this assumption simply 
because DoF is a perceptual quantity without a direct relation to 
IBM. For example: there is no agreed upon value for the CoC 
threshold when computing the DoF for IBM purposes, let alone 
how the size of an object point’s CoC impacts the accuracy and 
precision of the digitally constructed 3D surface. 
 
Finally, it remains important to note that defocus sensu stricto 
occurs as soon as the object and image-receiving surface are not 
conjugate. As the distance between the object point and the 
plane of exact focus increases, the imaged object points become 
progressively more defocused. However, as noted above, 
defocus commonly refers to the zone of unsharpness outside 
the DoF. Moreover, one should be aware that the terms focal 
plane, focus plane and plane of focus have different meanings 
in photogrammetric computer vision, photography and optics. 
Here, the plane of focus is the image–space conjugate of the 
sensor plane, equalling an imaginary 2D plane in front of the 
camera at the point of focus (Figure 3). The plane is always 
perpendicular to the optical axis and parallel to the sensor plane 
(except in bellows cameras and tilt-shift lenses). 
 
2.4 Single image defocus mapping 

Estimating the local defocus blur in still images due to the 
spatially varying PSFsys  is useful for many different applications 
such as depth from defocus or image deblurring. However, this 
paper will assess how well- or ill-suited defocus estimating 
algorithms are for automatically masking a series of photographs 
acquired for IBM purposes. The general workflow is as follows: 
the algorithm computes an image-specific defocus map, after 
which simple thresholding creates the necessary binary image 
mask (see Figure 7). 
 
In the scientific literature, two broad approaches to estimate out-
of-focus image regions can be distinguished: those that rely on 
multiple images captured with multiple camera focus settings 
and those that require just one image. Given the aim of this 
paper, only the latter methods are taken into account. Accurately 
estimating defocus blur from a single image is a challenging task 
since blur comes in so many forms and spatially varies over the 
whole image area. Back in 2012, Vu and his colleagues came up 
with a classification for single image defocus estimation 
algorithms (Vu et al., 2012). They discerned three major classes: 
1) edge-based methods that measure the spread of edges; 2) 
pixel-based methods working in the spatial domain without any 
assumption regarding edges; 3) transform-based methods 
operating in the spectral domain. More recently, Karaali 
combined the pixel- and transform-based methods since they 
both explore image patches. He contrasted these patch-based 
approaches with edge-based methods (Karaali and Jung, 2018). 
 
2.4.1 Edge-based methods 
Many single-image defocus estimation approaches involve 
measuring the spread of edges as they can often be considered 
good blur indicators. This class of methods usually consists of 
two broad steps. First, a specific algorithm extracts a sparse 

defocus map by detecting edges in the original image and 
estimating the amount of spatially varying defocus blur at these 
edge locations. Such a sparse defocus map was for the first time 
obtained by Elder and Zucker using the first- and second-order 
derivatives of the input image (Elder and Zucker, 1998). 
 
Since the pioneering work of Zhuo and Sim (2011), many edge-
based methods (Tang et al., 2013; Chen et al., 2016; Liu et al., 
2016; Karaali and Jung, 2018) rely on gradient magnitude ratios, 
obtained by reblurring the input image and computing the 
amount of defocus blur from the ratio between the gradients of 
the input and those reblurred images. This and many other 
sparse defocus estimators assume an isotropic 2D Gaussian 
PSF, although an optical or system’s PSF is never truly 
Gaussian. A single variable such as radius then parameterises 
the spatially varying spread of the PSF. 
 
Second, and using the original image as guidance, a propagation 
method is applied to the sparse data to yield a complete/full 
defocus map for the whole image. For the PSF-based methods, 
this full defocus blur map is then merely a 2D map of the PSF 
spread parameter, indicating for every image pixel the degree of 
defocus blur (Figure 5). Bae and Durand achieved the first full 
defocus map by propagating the Elder and Zucker blurriness 
measure to neighbouring pixels with a similar colour (Bae and 
Durand, 2007). The difficulty of this step lies in the preservation 
of blur discontinuities at edges while smoothly closing the gaps. 
Most existing techniques apply a slow Laplacian-based 
interpolation scheme, which makes dense defocus map 
extraction very time-consuming for images with large pixel 
counts. Faster approaches relying on superpixels (Chen et al., 
2016), the fast guided filter (Andrade, 2016; Karaali and Jung, 
2018) or sparse blur map downsampling (Kriener et al., 2013) 
have recently been introduced as well. 
 
2.4.2 Patch-based methods 
In contrast to two-stage edge-based methods, this second class 
estimates the full defocus map directly at all pixels, either in the 
spatial or frequency domain. The real pioneers of these 
approaches are Chakrabarti and his colleagues, who explored 
the convolution theorem for blur identification (Chakrabarti et 
al., 2010). Their approach estimates the likelihood of a small 
image neighbourhood being blurred by a given candidate PSF. 
To that end, the method involves a decomposition step to isolate 
localised frequency components of an image. Given that this 
approach can only detect optimal PSFs from a limited number 
of candidates, Zhu and colleagues proposed an improvement for 
estimating the PSF scale at every pixel using a more general 
local frequency component analysis in the continuous domain 
(Zhu et al., 2013). In addition, the method also takes smoothness 
and colour edge data into account. Later, machine learning 
approaches were introduced to infer the appropriate radius of 
the PSFs at every pixel (D'Andrès et al., 2016). Entirely different 
patch-based approaches have also been developed by Vu et al. 
(2012) and Yi and Eramian (2016). 
 

3. METHODS 

3.1 Defocus mapping toolbox 

So far, forty different methods for mapping defocus blur have 
been identified in the literature. Of these forty, it was possible to 
obtain the MATLAB code for only seventeen algorithms, 
although two presented unsolvable errors. Non-MATLAB code 
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could be retrieved for two other methods. The authors of the 
remaining twenty-one methods were either unable to share the 
code (one due to copyright issues and another one because he 
lost the source code) or simply unwilling (one person gave a 
written confirmation; the other eighteen developers simply 
ignored all attempts by the author to contact them). 
 
To properly test the fifteen working approaches, a bespoke 
MATLAB toolbox was programmed (freely available from the 
author). Via the graphical user interface, one can choose any of 
those fifteen defocus mapping methods to compute a single 
image mask or a whole series of masks for an extensive image 
collection. Since all possible parameters of every single method 
are accessible, users can further fine-tune every method for their 
specific image(s). In addition, the toolbox often includes more 
variety in the variables’ values than initially provided by the 
algorithm developers (e.g. the user can choose from eight 
different edge extraction methods). After (an interactive) 
thresholding yields the binary mask, the latter can be saved to 
enable its further use in many of the current IBM packages. 
 
Since it is not feasible to report on all possible methods in the 
context of this paper, only three state-of-the-art but completely 
different edge-based methods will be assessed: Andrade (2016); 
Chen et al. (2016); Karaali and Jung (2018). Despite the power 
of some recent patch-based methods, edge-based approaches 
remain a very attractive choice. Moreover, many patch-based 
methods are computationally expensive. It would have been 
appropriate to include the work of Zhuo and Sim (2011) as well 
as the later work of Tang et al. (2013). Since both algorithms rely 
on a Laplacian Matting scheme, they would need more than the 
available 24 GB of RAM to deal with 4+-megapixel images.  
 
3.2 Image sets 

Many defocus estimation algorithms perform reasonably well 
on the default sets of idealistic images (commonly smaller than 
0.5 megapixels and featuring clear out-of-focus regions). Since 
this paper wants to find out how these algorithms quantitatively 
(running time) and qualitatively (masking accuracy and 
robustness) behave on various realistic datasets, five datasets of 
four photographs have been created. These datasets encompass 
a large portion of the defocus variety one can encounter when 
dealing with (cultural heritage-related) IBM pipelines. 
 
3.2.1 DoF dataset 
This set consists of photographs captured with a Nikon D750, a 
24-megapixel full-format camera equipped with a 60 mm lens. 
The images depict Datacolor’s SpyderLENSCAL, an auto-focus 
calibration target for digital reflex cameras. Apart from the 
aperture, the exposure and white balance settings remained 
unaltered during data acquisition. More specifically, every image 
features a two-stop aperture difference with the next image: f/2, 
f/4, f/8 and f/16. The corresponding increase in DoF is easy to 
spot on the target’s ruler. Since all images feature an identical 
object, illumination and post-processing, they are suited to 
assess the accuracy of mapping aperture-specific defocus.  
 
3.2.2 Globus of Leonardo da Vinci 
Image collection two holds four images of an ostrich egg globe 
attributed to Leonardo da Vinci. These images, which were 
acquired to digitally unfold the globe into a projected map 
(Verhoeven and Missinne, 2017), were also shot with a Nikon 
D750. In this case, a prime 105 mm lens was used, and f/22 

dialled for all exposures. Although such a small aperture induces 
evident diffraction softening, it was still essential to provide 
sufficient DoF. This image series reflects a typical studio setup, 
in which an artefact is positioned in front of a neutral 
background. Since such backgrounds seldom feature many 
discernible edges and are usually thrown out-of-focus, they 
should be easily picked up by the defocus mapping algorithms. 
An element of difficulty in this series is the light-coloured egg 
surface which exhibits a rather low colour contrast with the 
background for surface portions devoid of drawings. 
 
3.2.3 Stonehenge 
The third set of images depicts some parts of the famous 
prehistoric monument at Stonehenge, England. Photographs 
were obtained using a 12-megapixel Nikon D300s using a 
variety of focal lengths, but keeping the lens aperture fixed at its 
ideal f/8 aperture. These photographs feature nicely textured 
stones against a backdrop of grass and clouds. The latter two 
also feature some edges, although much less pronounced than 
the ones of the stones. As such, the defocus mapping algorithms 
should at least be able to separate the stones from the sky.  
 
3.2.4 Monastery of Saint Peter 
The fourth dataset comprises a collection of Nikon D300s 
images depicting an old Benedictine monastery at the island of 
Sv. Petar, Croatia. As two sides of this building are in very close 
proximity to trees, the subject distance was minimal. Even 
though a 17 mm lens fixed at f/8 was used, the end of the walls 
was always thrown out-of-focus on the convergent images as 
well as the photographs of the building corners. Although the 
stone wall and the surrounding trees exhibit many great edges, it 
will be interesting to see if any algorithm can still mask those 
pixels that correspond to portions of the scene that were clearly 
outside the DoF. 
 
3.2.5 Aerial images of Montarice 
The last set of images were shot with an analogue Canon EOS 
300D camera from a low-flying Cessna 172 Skyhawk aeroplane 
to document Montarice, a hilltop plateau in central Adriatic Italy 
near Porto Recanati. The aperture and focal length are 
undocumented. After digitising the diapositives with a Nikon 
SUPER COOLSCAN 5000 ED at 4000 samples per inch, they 
have been used for an enhanced interpretative mapping of the 
buried archaeological features (Verhoeven and Vermeulen, 
2016). All four images display a defocused part of the 
aeroplane’s wing strut, something that can happen when 
photographing from the air using a wide-angle lens. However, 
such obstructions of the line-of-sight from the camera to the 
scene are often encountered in other situations (e.g. branches of 
trees in front of the camera). When such obstructing objects are 
very close to the camera, they usually fall outside the DoF and 
are rendered blurry (as is the case with the wing strut). 
 

4. RESULTS 

Any evaluation of defocus estimation is somewhat challenging. 
To make the comparison fair, all methods were run using an 
edge map computed with the Canny edge detector (with a 
threshold of 0.1 and one standard deviation). 
 
4.1 Accuracy 

Figure 5 displays the output of the selected algorithms on the 
first set of images (method-specific parameters were kept at their 
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default values). It is clear that the final defocus maps look utterly 
different amongst the three methods, although they started from 
the same set of extracted edges. However, this test with default 
parameter values is not to check the quality of the defocus map 
(which can always be optimised by fiddling around with the 
parameter values), but to assess whether or not the defocus 
estimator is accurately picking up aperture-related out-of-focus 
blur in images that feature clear edges. As can be seen, only the 
methods from Andrade and to a lesser degree Karaali and Jung 
perform satisfactorily. 
 

 
Figure 5. The upper row shows an autofocus target captured 
with four different apertures. The rows below show the output 
of three defocus mapping approaches applied to these images. 

When observing Figure 6, one gets a slightly different view. 
Here, the first and third photograph of the remaining four image 
sets are displayed along with a reference binary mask. 
Throughout all examples, one can see that the masks from 
Andrade’s approach are generally slightly too small. This results 
from the threshold value used for the binary segmentation. 
Lowering this value would generate masks that were more true 
to the real object boundaries, but they also resulted in a few 
holes on the object itself. Overall, the defocus maps from this 
method are by far the cleanest and most accurate of all three 
methods. For datasets two and three, the other two methods 
produced results that more or less approach the reference 
masks, while their output was useless for dataset four and five. 
 
4.2 Running time 

Figure 6 also marks the average time it took a specific method to 
yield a defocus map (on a Windows 7 PC with an Intel Core i7-
980X processor and running a 64-bit version of MATLAB 
R2017b). It is clear that the method of Chen et al. is noticeably 
faster than any other method, but this comes at a penalty of 
decreased accuracy. The algorithm of Karaali and Jung sits on 
the other far end of the running time spectrum. This has two 
implications. First, processing a series of photographs becomes 
impractical when the algorithm requires more than half an hour 
to mask one image. Second, it is almost impossible to fine-tune 
the parameters for this method, since one has to wait an eternity 
between every fine-tuning step. Finally, the method of Karaali 
and Jung also had the highest running time variance, both within 
the same dataset as well as between different pixel counts. 
 
4.3 Robustness 

Thanks to the MATLAB toolbox, it was straightforward to test 
the influence of most function-specific parameters, even if the 
original coding did usually not foresee this. Once a good set of 
parameter values was found for the first image of every series 
(which always equals the first image of the pair displayed in 
Figure 6), the algorithm was run on the remaining three images 
without altering any value. In this way, the defocus approach 
was tested for robustness while also assessing its invariance to 
changing camera viewpoints or object distances. Here, only the 
method of Andrade yielded satisfactory results, whereas the 
other two methods often failed to perform reliably with the 
initial settings. 
 
However, even the settings of Andrade’s method had to be fine-
tuned separately for every image collection. Although this was 
done on one image, a few fine-tuning iterations might easily take 
one hour. As mentioned above, this time aspect made it 
impossible to properly fine-tune the parameters values of the 
Karaali and Jung approach. Working on versions with a lower 
pixel count does not make sense, as edges change in 
subsampled images. Maybe an initial subsampling of the image 
followed by edge-aware upsampling of the defocus map – as 
was presented by Kriener et al. (2013) – could be a solution. 
 

5. DISCUSSION 

5.1 Critical observations 

Writing this paper has been a frustrating experience because of 
many factors. First, some defocus mapping approaches have an 
enormous memory footprint. As an example: even after clearing 
many unnecessary temporary variables in the code, the method
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Figure 6. Comparison of the automatically generated binary image masks with a reference mask across four image sets. The masks 
were generated after thresholding a full defocus map that was computed by three different methods (mentioned on the left). The 

average running time for one type of image is displayed for every method. Finally, black means masked, white means not masked. 

by Zhuo and Sim (2011) consumed all of the 24 GB of computer 
RAM when ran on a 4-megapixel image. Although it is fair to 
say that these authors mentioned this issue in their code, most 
developers do not. They might not even be aware, because these 
algorithms have never been tested on proper images. Most 
defocus mapping papers showcase their results on images of 
either 360 pixels by 360 pixels (0.13 megapixels) or 800 pixels 
by 600 pixels (0.48-megapixels). However, the use of such 
unrealistically small images is something that plagues most of 
the academic image processing community. 
 
Second, it is also apparent that those developing a new image 
processing algorithm usually stick to images (and metrics) that 
support their claims. In the case of these defocus mapping 
algorithms, it was often observed that photographs other than 
the ones used in the initial paper completely undermined the 
claims made of the supposed superiority of that specific 
algorithm. Most likely, this is the reason why so many authors 
refuse to share their code. 
 
Apart from those issues, the paper also highlighted what seems 
to be the main limitation of edge-based defocus methods. These 
approaches map out-of-focus areas by determining the amount 
of local defocus blur at edge locations and propagate these 
estimates to the whole image. Obviously, the accuracy of the 
defocus mapping output is heavily dependent on the extracted 
edges. To accomplish this, the image processing community 
offers a variety of edge detectors, each of them with one or more 
tuneable parameter. However, most developers of edge-based 
defocus mapping methods stick by default to the Canny or 
Sobel edge detector; empirical parameter values should then 
find many edges in every region of a specific image collection 
and produce a (visually) good result. However, even if one finds 
optimal parameter for one set of images, that approach might 
fail when the pixel count is changed (e.g. the method is applied 
on another photograph with much more/fewer pixels and thus 

better/worse defined edges). Moreover, not all extracted edges 
are reliable locations to estimate defocus blur. Third, edge-based 
methods are sensitive to image noise and edge interference. 
 
Given this, it is striking that so little research has gone into the 
edge detection part of these edge-based defocus mapping 
algorithms? Only recently, some authors started to address the 
importance of estimating reliable edges and re-blurring scales 
(Karaali and Jung, 2018), although their method has here been 
shown to be a poor performer on large, real-world images. The 
approach taken by Andrade (2016) is also somewhat unique in 
the defocus mapping community. He included edge pruning to 
remove wide edges in blurred regions with a follow-up edge-
diffusion step – based on the heat diffusion principle. Given the 
accuracy and consistency of his approach, it is striking that none 
of the other defocus mapping papers mentions his work. The 
reasons for this might range from never having encountered the 
paper (which is sloppy research), never obtained the source 
code (although it was received after mailing the author) or 
neglecting his algorithm because it usually outperforms most 
other methods (which is academic cheating). 
 
5.2 Usability and future research 

On a positive note, this paper has shown that some edge-based 
methods might be very well suited for masking homogenous, 
edge-free regions such as skies and studio backgrounds. To a 
lesser extent, they could even be applied to mask parts of an 
object that fell outside the camera’s DoF or items obstructing 
the line-of-sight from the camera to the scene of interest. If 
developers manage to code slightly more accurate, robust and 
speedier defocus algorithms, it seems likely that they can in the 
near future assist the user in masking specific areas in extensive 
image collections. One could argue that these zones are also 
easy to mask out manually (or why one should mask them in 
the first place), but running such an algorithm at a time the 
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computer sits idle might still save many hours when dealing 
with large sets of images. Even in suboptimal cases, the right 
algorithm can at least provide a base mask to work from. In all 
fairness, this view might be altered once a more in-depth review 
of all edge- and patch-based methods is undertaken. 
Nonetheless, Figure 7 indicates that Andrade’s edge-based 
method is at least as accurate (if not more) than the state-of-the-
art patch-based method by Golestaneh and Karam (2017).  

 
 
Figure 7. Defocus map estimation of two different images using 
an edge-based and a recent patch-based approach. 
 

6. CONCLUSION 

Many defocus blur estimation methods claim a good trade-off 
between accuracy and runtime. However, these claims often go 
unchallenged and are usually based on an unrealistic image set. 
In this paper, three state-of-the-art edge-based algorithms have 
been tested on large, real-world images for automatically 
masking out-of-focus areas. These tests revealed the issues that 
most of these algorithms face. However, at least one method 
showed a level of accuracy and robustness which could render it 
useful for future application. 
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