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ABSTRACT:

Urban trees are an important component of our environment and ecosystem. Trees are able to combat climate change, clean the air and
cool the streets and city. Tree inventory and monitoring are of great interest for biomass estimation and change monitoring. Conven-
tionally, parameters of trees are manually measured and documented in situ, which is not efficient regarding labour and costs. Light
Detection And Ranging (LiDAR) has become a well-established surveying technique for the acquisition of geo-spatial information.
Combined with automatic point cloud processing techniques, this in principle enables the efficient extraction of geometric tree param-
eters. In recent years, studies have investigated to what extend it is possible to perform tree inventories using laser scanning point
clouds. Give the availability of a city of Delft Open data tree repository, we are now able to present, validate and extend a workflow to
automatically obtain tree data from tree location until tree species. The results of a test over 47 trees show that the proposed methods
in the workflow are able to individual urban trees. The tree species classification results based on the extracted tree parameters show
that only one tree was wrongly classified using k-means clustering.

1 INTRODUCTION

Trees play an indispensable role in the recycling of material and
energy between vegetation and the physical environment through
photosynthesis and transpiration (Parker, 1995, Brunner, 1998).
Tree inventory and management are of great interest for preserv-
ing ground biomass, monitoring environmental changes and as-
sessing carbon sequestration for sustainable development (Cot-
tone and Ettl, 2001, Zheng et al., 2007, Van Deusen, 2010, Moskal
and Zheng, 2012, Baldocchi, 2013). Urban trees contribute to hu-
man health and well-beings in a variety of ways, such as remov-
ing pollutants and particulate matter (PM) from the air (Weber,
2013). Urban tree parameters, such as location, height, canopy
projected area (CPA), diameter at breast height (DBH) and trunk
length are important characteristics for tree management and mon-
itoring in an increasingly urbanized world. However, manually
measuring those parameters is inefficient regarding labour and
cost.

Light Detection And Ranging (LiDAR) is able to quickly obtain
3D geometry and highly accurate point cloud data. A typical
LiDAR system integrates a Global Navigation Satellite System
(GNSS), an Inertial Measuring Unit (IMU) and laser scanning
system. Point clouds acquired by LiDAR systems have been ap-
plied in a variety of applications. Examples are generating Digital
Elevation Models (DEM) and Digital Terrain Models (DTM) (Vos-
selman, 2000, Pfeifer, 2001), 3D building reconstruction (Maas
and Vosselman, 1999, Vosselman and Dijkman, 2001, Rutzinger
et al., 2009, Xiong et al., 2014), land cover classification (Rutzinger
et al., 2008, Guo et al., 2011, Mallet et al., 2011). Notably forest
inventories and tree parameter estimation were performed based
on point clouds obtained by ALS (Hyyppä et al., 2001, Persson
et al., 2002, Gorte and Pfeifer, 2004, Morsdorf et al., 2006, Hu
et al., 2017). However, due to the laser illuminating direction of
ALS, point densities of the acquired point clouds are inadequate
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and tree trunks are not sampled well. It therefore hard to perform
detailed tree parametrization.

However, a Mobile Laser Scanning (MLS) system has the afore-
mentioned components to sample its surrounding environment
and obtain highly accuracy and dense point clouds. Point clouds
acquired by MLS have a variety of applications. A majority of the
applications of MLS point cloud data focus on urban scenarios,
such as road environment management (Pu et al., 2011, Puente et
al., 2013, Cabo et al., 2014, Rodrı́guez-Cuenca et al., 2015, Wang
et al., 2017) and urban roadside tree segmentation and classifica-
tion (Jaakkola et al., 2010, Rutzinger et al., 2011, Puttonen et
al., 2011, Sirmacek and Lindenbergh, 2015, Zhang et al., 2015,
Weinmann et al., 2016).

In 2011, a low-cost system was developed and tested on tree mea-
surements (Jaakkola et al., 2010). DBH and tree height were
extracted but further classification and updating tree inventories
was not conducted. In (Rutzinger et al., 2011), a method to con-
struct tree models was proposed. Tree points were first classified
in MLS point clouds and were further simplified. Then, model
parameters such as stem diameter, lower crown diameter, mid-
dle crow diameter and upper crow diameter were extracted to
model trees. However, tree species were not considered. In (Put-
tonen et al., 2011), a method for tree classification based on MLS
point clouds and hyperspectral images was proposed. Experi-
ments showed promising results on the classification, however,
tree parameters were not extracted. An individual tree segmenta-
tion algorithm was presented in (Zhang et al., 2015). The method
first segmented the raw MLS point cloud into ground and non-
ground points. Then, together with NDVI obtained from hy-
perspectral image, vegetation points were extracted. Next, tree
points were obtained and the top of trees were extracted. To-
gether with the crown diameter, the MLS points were labelled.
Still, further tree parameters were not extracted and species were
not considered.
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In this work, a workflow for tree inventory updating with 3D point
clouds obtained by MLS is presented. The workflow first extract
non-ground points from raw MLS point clouds and tree points
are classified in the non-ground points. Consecutively, individ-
ual trees are delineated using a voxel-based method to acquire
points of individual trees. Next, parameters of trees are estimated.
Based on the extracted parameters, trees of different species are
classified. The final step is to validate the obtained results and
update an existing tree database.

2 METHODOLOGY

The methodology described in this works consists of five steps.
(1) segment non-ground points from raw MLS point clouds. (2)
classify tree points. (3) individual tree delineation. (4) tree pa-
rameter estimation. (5) parameter normalization and (6) validate
results and update the existing database. The steps are described
in detail in the following sections.

2.1 Segment non-ground points

The first step is ground and non-ground points separation. This
procedure is also known as filtering of point clouds. In this work,
the separation of non-ground points was conducted by using an
existing algorithm (Kraus and Pfeifer, 1998). The algorithm is
originally designed for filtering point clouds obtained by airborne
laser scanners. It iteratively computes a weight function and by
a pre-set threshold, the terrain is obtained and ground and non-
ground points are separated. Due to the huge number and high
density of points obtained by mobile laser scanners, it is consid-
ered to design a computationally more efficient alternative.

2.2 Classify tree points

Tree point classification in this work is conducted by the algo-
rithm presented in (Sirmacek and Lindenbergh, 2015). The algo-
rithm takes the non-ground points as input and projects all non-
ground points onto a horizontal plane. Then, by estimating the
2D density of the projected points, local maxima are acquired
that correspond to the locations of trees. Afterwards, tree points
are assigned to each tree in the neighbourhood. Although some
façade points are wrongly classified as tree points, the algorithm
works well for point clouds that are re-tiled with regard to a dis-
tance across and along the scanning trajectory.

2.3 Individual tree delineation

Individual tree delineation is performed using a voxel based al-
gorithm presented in (Wang, 2017). The algorithm takes the tree
points obtained from the previous step as input. Then, the tree
points are re-sampled using voxels with pre-set voxel sizes in the
three coordinate axes. Next, seed voxels are identified by the
second input parameter, minimum tree diameter. The algorithm
traverses the voxels either from the top voxel layer downwards or
from the bottom layer upwards to assign voxels to the designated
voxel clusters. Finally, tree points are obtained from the voxel
clusters. Notably, the traversing direction in this work is from the
bottom layer upwards since the trunk of trees near the scanning
trajectory are well sampled.

2.4 Tree parameter estimation

In this work, tree parameters are estimated using a novel voxel
based method. In this work, the estimated parameters for each
tree consist of the location of trees, tree height, trunk length and
canopy projected area on the ground, as illustrated in Figure 1.

Figure 1: An illustration of tree parameters extracted in this study.

Location and height are estimated by determining the position of
the points at the bottom of each trunk and the vertical extend of
the tree points respectively. Notably, the length of trunks was
estimated by determining the maximum gradient of the number
of voxels at each vertical layer. Figure 2 shows an example of a
voxelization of one tree. Figure 2 (a) and (b) are projections on
plane XOZ and Y OZ respectively. There are 30 vertical layers
and tree points are colored from blue to red by height.

Figure 2: Strategy to estimate the location and trunk length of a
tree.

The tree trunk starts at the bottom layer. First the voxel cells
are projected on plane xoz and yoz, as shown in Figure 2 (a)
and (b). Then the number of cells in each layer is calculated as
f(i) and g(i) respectively, where i = 1, 2, ..., n denotes the layer
index. In this study, the trunk length ends at the k − th layer, in
which there is a dramatic increase in the number of voxel cells.
k is determined by Formula 1, where h(i) = f(i) + g(i) refers
to the total total number of cells in the two projected planes in
each layer. Then the trunk length is determined by Ltrunk =
k × Zsize.
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k = argmax
i

h′(i) = argmax
i

{f(i) + g(i)} ′ (1)

Figure 3: Number of cells in each layer.

Figure 4: Fist degree differential of the number of cells in each
layer.

Figure 3 shows the number of cells in each layer for the scenario
shown in Figure 2. The number of cells in each layer of the sce-
nario illustrated in Figure 2 is plotted in Figure 3, where f(i),
g(i) and h(i) are the same as in Equation 1. Figure 4 is the illus-
tration of the differential of f(i), g(i) and h(i), the layer which
has maximum value is the the highest point of the tree trunk. In
this specific scenario, the 7 − th layer is estimated as the top of
the trunk of this tree.

The canopy projection area is estimated by first projecting points
onto a horizontal plane. Then, the boundary of the points is esti-
mated by alpha shape (Edelsdrunner and Kirkpatric, 1983) with
an alpha value of 0.8. Although the further part of tree canopy
is not well sample due to occlusions, the point density is enough
to represent the shape of a tree canopy. The DBH is the diameter
of the trunk at a height of 1.3 meter above ground. In this work,
trunk points that have a local height between 1.2m and 1.4m are
used and projected onto horizontal plane. Then a circle fitting

step is performed to obtain the diameter of the best fit circle. As
shown in Figure 5, the blue points are the tree trunk points and
the red circle is the best fit circle. The green dot is the estimated
centre of the circle.

Figure 5: Estimating the DBH of a tree.

2.5 Normalized tree parameters

The tree parameters extracted in Section 2.4 are used to classify
the species of trees. To avoid the influence of the size of a tree
on a specific parameter, the estimated parameters are normalized.
That is, the normalized CPA, i.e. CPAN , is calculated by di-
viding the extracted CPA with the estimated tree height, as given
in Equation 2. The normalized trunk length LengthN is deter-
mined by dividing the estimated trunk length with the tree height.
The same procedure are applied to the obtained DBH.

CPAN =
CPA

Height

LengthN =
Length

Height

DBHN =
DBH

Height

(2)

2.6 Validate results and update the existing database

The final step of this work is to validate the obtained results and
update the existing tree database. To validate the results, trees
along an urban roadside around TU Delft campus were selected
and scanned by a MLS system, the Fugro Drive-Map system.
There is also an open database of the trees that are owned by the
Delft municipality and are therefore documented. Other trees be-
long to TU Delft and thus were not included yet in this database.
Validation of the extracted tree parameters will be conducted for
the trees in the cadastre database. The results will also be used to
update the database.

3 RESULTS AND DISCUSSION

3.1 Data description

The point cloud data analysed in this work is acquired by the Fu-
gro Drive-Map MLS system. In this work, three species of trees
were considered. Figure 6 shows the 47 studied trees. The num-
ber of trees corresponding to Figure 6 (a), (b) and (c) are 14, 15
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and 18 and the species of the trees are Aesculus hippocastanum
’Baumannii’, Acer saccharinum and Platanus x hispanica respec-
tively.

Figure 6: Three species of trees are studied in this work.

3.2 Results of tree parameter estimation

Figure 7: Individual tree delineation results of the studied 47
trees.

The estimation of tree parameters starts with the separation of in-
dividual trees. In this work, the voxel size was set to 50cm in the
three coordinate directions. The minimum tree diameter was set
to 8.5m, 3.5m and 2.5m corresponding to the trees in Figure 6
(a), (b) and (c) respectively. Figure 7 shows the individual tree
delineation results.

Table 1, Table 2 and Table 3 are the estimated tree parameters.
Note that normalized CPA and normalized DBH are the extracted
CPA and DBH divided by the tree height.

The results in Table 1 to Table ?? show that for example the Aes-
culus hippocastanum ’Baumannii’ is quite compact tree. This is
reflected by a bigger normalized DBH and a bigger normalized
CPA. The trees of the other species are more alike, but still have
distinguishable normalized tree parameters.

The next step is to perform automatic tree classification based on
the extracted tree parameters. In this work, k-means clustering is
employed to classify the trees. The number of classes is set to 3
and the implementation in MATLAB is employed. The classifi-
cation results are shown in Figure 8.

In the figure, the circles are the ground truth of tree species and
the colors of the triangles are the automatically clustered trees.

Table 1: Tree parameter estimation results from the trees of
species Aesculus hippocastanum ’Baumannii’ in Figure 7 a

Tree ID Height Trunk length CPA DBH Norm. CPA Norm. DBH
0 15.94 2.27 162.65 0.74 10.21 0.047
1 14.06 1.92 119.99 0.63 8.54 0.045
2 16.67 2.31 130.98 0.81 7.86 0.048
3 16.37 2.96 129.11 0.70 7.89 0.043
4 14.60 2.08 133.45 0.79 9.14 0.054
5 17.28 2.47 149.74 1.04 8.67 0.060
6 16.18 2.80 157.83 0.97 9.75 0.060
7 16.41 2.82 157.35 0.96 9.59 0.059
8 15.52 2.67 113.79 0.80 7.33 0.052
9 14.74 2.62 128.34 0.62 8.71 0.042
10 17.19 2.55 173.50 0.87 10.10 0.051
11 13.40 2.62 70.04 0.66 5.23 0.049
12 15.60 2.90 123.46 0.80 7.91 0.051
13 16.03 2.67 149.03 0.98 9.30 0.061

Mean 15.71 2.55 135.67 0.81 8.59 0.0515
std.dev. 1.15 0.13 26.02 0.14 1.31 0.0065

Table 2: Tree parameter estimation results from the trees of
species Acer saccharinum in Figure 7 (b)

Tree ID Height Trunk length CPA DBH Norm. CPA Norm. DBH
0 14.27 3.34 57.62 0.39 4.04 0.027
1 14.71 3.36 52.78 0.45 3.59 0.030
2 15.03 3.50 70.84 0.48 4.71 0.032
3 14.87 3.26 60.01 0.37 4.04 0.025
4 14.71 3.42 70.62 0.57 4.80 0.039
5 15.87 3.75 63.16 0.43 3.98 0.027
6 15.04 3.32 63.78 0.47 4.24 0.031
7 14.60 4.11 49.58 0.37 3.40 0.025
8 12.37 2.88 48.53 0.38 3.92 0.030
9 13.66 3.43 45.71 0.35 3.35 0.025
10 13.46 4.02 50.53 0.34 3.76 0.025
11 14.08 4.49 41.26 0.31 2.93 0.022
12 15.21 3.94 56.45 0.34 3.71 0.022
13 16.41 3.98 58.25 0.35 3.55 0.021
14 15.91 4.16 67.14 0.43 4.22 0.027

Mean 14.68 3.67 57.08 0.40 3.88 0.027
std.dev. 1.03 0.44 9.00 0.07 0.50 0.0046

Table 3: Tree parameter estimation results from the trees of
species Platanus x hispanica in Figure 7 (c)

Tree ID Height Trunk Length CPA DBH Norm. CPA Norm. DBH
0 10.32 3.23 38.90 0.27 3.77 0.026
1 9.68 3.28 26.47 0.20 2.74 0.020
2 11.03 3.22 42.27 0.21 3.83 0.019
3 10.12 3.11 35.83 0.22 3.54 0.022
4 10.65 3.49 35.54 0.20 3.34 0.019
5 10.13 3.13 31.41 0.19 3.10 0.019
6 10.40 3.32 43.44 0.23 4.18 0.022
7 10.06 3.31 36.06 0.23 3.59 0.023
8 9.83 2.76 38.03 0.20 3.87 0.020
9 8.62 2.22 15.20 0.13 1.76 0.015
10 10.58 3.09 37.00 0.20 3.50 0.019
11 10.06 3.00 31.40 0.19 3.12 0.019
12 10.38 3.26 34.12 0.21 3.29 0.020
13 9.68 2.61 30.25 0.20 3.12 0.020
14 10.68 4.20 28.92 0.19 2.71 0.018
15 11.34 3.52 28.16 0.17 2.48 0.015
16 9.76 3.27 21.15 0.19 2.17 0.019
17 9.78 3.94 26.37 0.21 2.70 0.021

Mean 10.17 3.22 32.25 0.20 3.15 0.0198
std.dev. 0.60 0.44 7.00 0.03 0.63 0.0026

By comparing to the ground truth, there is only one tree of type
Aesculus hippocastanum ’Baumannii’ that was wrongly classi-
fied to tree type Acer saccharinum, which is noted in Figure 8 by
the green rectangle.

4 CONCLUSIONS

In this work, a workflow for tree parameter estimation and tree
cadastre database updating is presented and validated based on
point clouds obtained by mobile laser scanner. The validation was
conducted with respect to an existing open tree cadastre database.
Then, updating of the tree cadastre database was performed based
on the extracted results. A possible further application scenario
is to automatically identify the species of trees based on the ex-
tracted tree parameters, as all the trees in the cadastre database
also have species information.
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Figure 8: Automatic k-means unsupervised classification of trees, using normalized tree parameters.
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Hyyppä, J., Kelle, O., Lehikoinen, M. and Inkinen, M., 2001.
A segmentation-based method to retrieve stem volume estimates
from 3-D tree height models produced by laser scanners. IEEE
Transactions on Geoscience and Remote Sensing 39(5), pp. 969–
975.
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classification with fused mobile laser scanning and hyperspectral
data. Sensors 11(5), pp. 5158–5182.

Rodrı́guez-Cuenca, B., Garcı́a-Cortés, S., Ordóñez, C. and
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