
ROOFN3D: DEEP LEARNING TRAINING DATA 

FOR 3D BUILDING RECONSTRUCTION 
 

 

Andreas Wichmann, Amgad Agoub, Martin Kada 

 

Institute of Geodesy and Geoinformation Science (IGG), Technische Universität Berlin, 

Straße des 17. Juni 135, 10623 Berlin, Germany 

firstname.lastname@tu-berlin.de 

 

Commission II, WG II/6 

 

 

KEY WORDS: 3D Database, Machine Learning, 3D Building Models, Classification, Segmentation, Reconstruction 

 

 

ABSTRACT: 

 

Machine learning methods have gained in importance through the latest development of artificial intelligence and computer 

hardware. Particularly approaches based on deep learning have shown that they are able to provide state-of-the-art results for various 

tasks. However, the direct application of deep learning methods to improve the results of 3D building reconstruction is often not 

possible due, for example, to the lack of suitable training data. To address this issue, we present RoofN3D which provides a new 3D 

point cloud training dataset that can be used to train machine learning models for different tasks in the context of 3D building 

reconstruction. It can be used, among others, to train semantic segmentation networks or to learn the structure of buildings and the 

geometric model construction. Further details about RoofN3D and the developed data preparation framework, which enables the 

automatic derivation of training data, are described in this paper. Furthermore, we provide an overview of other available 3D point 

cloud training data and approaches from current literature in which solutions for the application of deep learning to unstructured and 

not gridded 3D point cloud data are presented. 

 

 

1. INTRODUCTION 

In recent years, machine learning has been extensively studied 

with the aim of automatically generating models from data. For 

this purpose, several machine learning methods have been 

developed that do not simply memorize examples but are able to 

automatically recognize patterns and rules in the training data. 

Particularly approaches based on deep learning have achieved 

excellent results for different applications. For classification 

tasks of images, for example, deep learning methods using 

convolutional neural network (CNN) architectures have become 

a standard framework in the last few years, as their results are 

already comparable or even better than from human experts 

(Cireşan et al., 2012; Krizhevsky et al., 2012). 

 

While CNNs have been a great success for images, they have 

been, however, less successful for 3D point clouds. The reasons 

for this are manifold, but they can be mainly attributed either to 

the lack of publicly available training data or to the specific 

properties of point clouds: (i) Point cloud data is unstructured 

and not gridded with varying point density; (ii) The volume of 

three-dimensional point cloud data is often significantly higher 

than that of two-dimensional images; (iii) Besides intensity, 

there is often no radiometric information (e.g., color) available. 

 

Although many different solutions have been already proposed 

in recent years to apply deep learning to 3D point clouds, a 

major drawback that still remains is the lack of publicly 

available training data that can be used to train neural networks. 

Since machine learning techniques usually require a large 

amount of training data, this issue is very crucial for carrying 

out research in this area. While there is a large amount of 

training data for images available (e.g., ImageNet (Deng et al., 

2009), MNIST (Deng, 2012), CIFAR10/CIFAR100 

(Krizhevsky, 2009)), the amount of training data for 3D point 

clouds is comparatively small. 

By evaluating a large number of publicly available 3D point 

cloud training datasets for machine learning, it became clear 

that a good basis for traditional classification tasks is already 

available but that the number of classes is generally still quite 

limited. Particularly for buildings, which play for most 

applications in urban areas an essential role, we discovered a 

shortage in the set of available datasets. According to our 

knowledge, there is currently no 3D point cloud training dataset 

publicly available that provides distinct classes for buildings. 

However, many applications require a fine subdivision of the 

building class, for example, to distinguish between different 

roof types or to recognize certain roof structures. In order to 

close this crucial gap, we have developed an automatic 

workflow in which building points of an aerial LiDAR dataset 

are processed so that they can be used to train deep neural 

networks in the context of 3D building reconstruction. 

 

The proposed workflow has been applied to the publicly 

available New York City (NYC) dataset which consists of over 

one million buildings. The resulting training dataset is made 

available through RoofN3D and provides not only geometric 

information but semantic information as well. Note, RoofN3D 

provides only training data and is not a benchmark dataset at the 

moment. The training data is publicly available at 

https://roofn3d.gis.tu-berlin.de. 

 

The remainder of the paper is organized as follows: First, recent 

deep learning methods from literature are summarized in which 

solutions are proposed to overcome the aforementioned issues 

related to the specific properties of point clouds. In this context, 

general trends for current and future research directions are 

pointed out. Afterward, an overview of publicly available 3D 

point cloud training data for machine learning is presented. 

Since machine learning methods usually require a large amount 

of training data, their availability is of great importance. 

Subsequently, details of the developed workflow and the 
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training data provided through RoofN3D are described. Finally, 

a conclusion and potential future enhancements concerning 

RoofN3D are presented. 

 

2. DEEP LEARNING FOR 3D POINT CLOUDS 

The automatic recognition of objects is a fundamental task in 

computer vision. It has recently attracted again the interest of 

many researchers due to the advancements in artificial 

intelligence and the development of hardware which enables the 

implementation and the application of deep neural networks. 

The results that can be achieved with deep neural networks have 

already reached a new level for 2D images. Particularly CNNs 

have proven to be capable of providing state-of-the-art results; 

see, for example, (Krizhevsky et al., 2012), (Simonyan and 

Zisserman, 2015), (Szegedy et al., 2015), and (He et al., 2016). 

Therefore, current research is carried out to apply CNNs not 

only on 2D data but also on 3D data such as point clouds. The 

essence of a CNN is, however, the convolutional layer whose 

parameters consist of a set of kernels (also called filters). These 

convolutional kernels enable, on the one hand, to share weights 

in convolutional layers and thus significantly reduce the total 

number of parameters in a CNN. On the other hand, 

convolutional kernels always require data in a regular structure 

as their layer input. Therefore, CNNs cannot be directly applied 

to 3D point cloud data which consist of a set of unordered 

points. For further information about CNNs, see, for example, 

(Goodfellow et al., 2016). 

 

To overcome this issue and to adequately deal with the high 

volume of three-dimensional point cloud data, solutions have 

been developed that are based on the conversion of the irregular 

point cloud data structure to a regular data structure. Some 

proposed regular representations in the context of CNNs with 

respect to 3D point cloud data are described in section 2.1. In 

addition to approaches based on regular representations, further 

approaches for neural networks have been developed that are 

able to directly process data represented in an irregular data 

structure. Thereby, issues that accompany regular data 

structures are automatically avoided. Some details of these 

irregular representations are summarized in section 2.2. 

 

2.1 Regular Representations 

A solution that has been proposed to represent 3D point cloud 

data in a regular structure, so that they are suitable for CNNs, is 

the multi-view representation. In this approach, multiple 2D 

views (i.e., images) of a 3D object are generated from different 

viewpoints. Thereby, the dimension of the 3D input data is 

reduced for each viewpoint to 2D. An important aspect in this 

context is how the viewpoints can be determined. Different 

approaches have been developed for multi-view CNNs in which 

they are either set empirically (Su et al., 2015) or automatically 

(Huang et al., 2018). Once a set of 2D images has been captured 

from different viewpoints, each image is passed through a 

convolutional network and the results of these networks are 

subsequently aggregated using a view-pooling layer. Further 

examples of different multi-view CNNs are presented in (Qi et 

al., 2016) and (Yi et al., 2017).  

 

Multi-view representations provide the advantage that 

traditional neural networks for images can be applied with only 

minor adaptions. However, it needs to be considered that the 

conversion is usually accompanied by loss of information due to 

the limited number of viewpoints and the fact that each 

viewpoint can only partially represent a 3D object. Particularly 

occlusions can exacerbate this problem. All this might result in 

inconsistencies during the reconstruction of surfaces in 3D 

space. 

 

Another group of regular representations, which keep the 

dimensions of the input data, is the volumetric representation. In 

the last years, different variants of volumetric representations 

have been proposed for CNNs. A well-known representative is, 

for example, the voxel grid. In a voxel grid, the three-

dimensional space is discretized into a regular grid and each 

resulting voxel is assigned a value based on the points within 

the voxel. Depending on the object to be detected, the resolution 

of the voxel grid needs to be adjusted. A special type of a voxel 

grid, which is commonly in use, is the occupancy grid (Thrun, 

2001). The special characteristic of an occupancy grid is that 

each voxel is assigned only the value occupied or unoccupied, 

depending on the presence or absence of data. Some examples 

in which different variants of voxel grids have been used as 

input for CNNs are VoxNet (Maturana and Scherer, 2015), 3D 

ShapeNets (Wu et al., 2015), volumetric CNNs (Qi et al., 2016), 

and SEGCloud (Tchapmi et al., 2017). 

 

A major advantage of representing 3D point clouds in a voxel 

grid is that already existing CNN architectures for images can 

be generally applied with only few adaptions. However, since 

objects are represented in 3D point cloud data only on their 

surface, the input data easily become unnecessarily voluminous 

due to the large number of unoccupied voxels. An illustration of 

this so-called sparsity problem of 3D data in occupancy grids is 

shown in Figure 1 for different resolutions. In order to 

overcome this problem, while keeping the spatial information 

about the 3D shape, other regular data structures have been 

developed such as deep data structures and convolutional filters 

that can work on them. 

 

 
 

Figure 1. The percentage of occupied grids in different grid 

resolutions. The percentage at resolution 303 is 10.41% and 

reduced to 5.09% and 2.41% at resolution 643 and 1283, 

respectively. (Li et al., 2016) 

 

In deep data structures, special focus is placed on the 

representation of unoccupied voxels. For this, only occupied 

voxels are recursively divided up to a certain limit. Thereby, the 

amount of data to represent unoccupied voxels is significantly 

reduced. To illustrate the impact, a comparison between a voxel 

grid and a deep data structure is shown in Figure 2. Thus, deep 

data structures enable in practice the use of a higher grid 

resolution compared to occupancy grids. Some examples in 

which deep data structures have been used are given in (Riegler 

et al., 2017), (Klokov and Lempitsky, 2017), and (Wang and 

Posner, 2015).  

 

A general drawback of regular data structures is that the 

resolution to represent 3D data is generally limited. Therefore, 

the conversion of irregular to regular 3D data structures is 

usually accompanied with loss of information. Furthermore, 

some information in the input data such as symmetry and 

roundness cannot simply be captured when regular data 
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structures without very high resolutions are used. Designing 

machine learning architectures that can directly process 

irregular 3D data can help to overcome these challenges and 

also the data sparsity problem. 

 

 
 

Figure 2. An object displayed in voxels in different resolutions 

(top row) once represented in a voxel grid (middle row) and 

once represented in a deep data structure (bottom row). 

Occupied cells are colored and indicate activation, while 

unoccupied are colored white. (Riegler et al., 2017) 

 

2.2 Irregular Representations 

In addition to regular representations, other solutions have been 

proposed for deep learning with respect to 3D point clouds 

based on irregular representations. In (Fang et al., 2015), for 

example, shape descriptors are used which enable the 

identification of a 3D object as a member of a category based on 

a concise and informative representation. Thereby, 3D input 

meshes are represented in 2D without losing relevant 

information. Figure 3 shows the proposed workflow for the 

automatic derivation of shape descriptors using deep learning.  

 

 
 

Figure 3. The automatic extraction workflow of shape 

descriptors presented in (Fang et al., 2015). 

 

In (Guo et al., 2015), a compact mesh representation is learned 

by extracting multiple geometric low-level features. Based on 

the extracted features, a 2D tensor is constructed that serves as 

input for a CNN model. Using a 2D tensor as input for the 

network instead of combining features by concatenation enables 

hierarchal aggregation and interaction of the extracted features 

through the CNN network weights. 

 

Another approach that enables the use of 3D point clouds as 

input for a neural network has been proposed in PointNet (Qi et 

al., 2017a). For this, it has the following two special 

components: (i) a permutation invariant module and (ii) a 3D 

spatial transformation module. A permutation invariant module 

can be considered in PointNet as a shared weighted multi-layer 

perceptron with max pooling aggregation. An advantage of 

using symmetric functions such as max functions is that 

networks are able to be invariant to permutations of their input 

members. A spatial module is a deep learning network in which 

the input is spatially transformed to a canonical form. The 

canonical form can be considered in this context as the spatial 

pose of an object which improves the performance of the deep 

learning network. The transformation into the canonical form 

enables the network to be invariant to spatial translations. 

 

Compared to traditional CNNs or 3D CNNs that benefit from 

hierarchical feature learning, global feature learning 

embeddings for one point and a global vector for all the points 

are used in PointNet. Therefore, the effect of a local context is 

generally weak when applying PointNet. However, the positive 

effect of leveraging neighborhood relations in a deep learning 

model have already been shown in some approaches such as 

(Gressin et al., 2013) and (Weinmann et al., 2015). In order to 

address this issue, a successor of PointNet called PointNet++ 

(Qi et al., 2017b) has been developed. In this deep learning 

architecture, spherical point neighborhoods of large scenes are 

extracted and the PointNet architecture is applied on each part 

in a hierarchical way. Thus, PointNet++ can be considered as a 

hierarchical version of PointNet, which takes neighborhood 

information in its deep learning architecture into account. 

 

A group of machine learning models that can be used to derive 

irregular 3D data from different 2D and 3D data is the 

generative adversarial network (GAN) (Goodfellow, 2016). In a 

GAN architecture, point sets are encoded and decoded using 

machine learning techniques. For this, some recent approaches 

follow the concepts of PointNet by designing an autoencoder 

that is invariant to permutations and spatial transformations. In 

(Achlioptas et al., 2018), for example, such an autoencoder is 

used in a GAN to derive 3D point sets according to thematic 

classes based on a 3D point set. 

 

3. AVAILABLE 3D POINT CLOUD TRAINING DATA 

In machine learning, massive training data is usually needed for 

learning a model such as a neural network. Thus, their 

availability is nowadays of high importance. A challenge for the 

provision of such training data is that a sufficient amount of 

training data needs to be provided. Otherwise, the trained model 

would tend to overfit the data in the sense that specific 

relationships in the training data are identified that do not hold 

in general. Another important aspect of the availability of 

training data is that it can be also used to evaluate machine 

learning models. Many machine learning models are 

constructed as very complex mathematical models, which can 

make a theoretical evaluation of their performance very 

challenging and controversial. However, a practical approach to 

address this challenge is to empirically evaluate machine 

learning models within a common framework based on publicly 

available data. Empirical evaluations provide researchers the 

ability to compare and evaluate the performance of their models 
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according to set standards. Early publicly available datasets 

have been proven to be of great value to research. In (Sabour et 

al., 2017), for example, the MNIST (Deng, 2012) dataset was 

used to prove the effectivity of dynamic routing between 

capsules. Generally, it is noticeable that many research 

communities are nowadays interested in acquiring and 

producing such data in 3D. With ShapeNet (Chang et al., 2015) 

and ModelNet (Wu et al., 2015), for example, datasets of 3D 

models from common 3D objects are publicly available. Some 

further publicly available 3D datasets are listed in the following 

paragraph. 

 

There are, nowadays, many 3D data available that were 

captured in urban areas with the help of mobile laser scanning. 

This includes, for example, data from street sections such as the 

Paris-rue-Madame dataset (Serna et al., 2014), which consists of 

about 10 million points and 27 classes, or the Paris-rue-Soufflot 

dataset (Hernándes and Marcotegui, 2009), which consists of 

about 20 million points and 6 classes. But also data of larger 

urban areas are available such as the IQumulus & TerraMobilita 

Contest dataset (Vallet et al., 2015), which consists of about 300 

million points and about 80 classes, and the Semantic3D.Net 

dataset (Hackel et al., 2017), which consists of over four billion 

manually labelled points and 8 classes. 

 

The provided datasets listed in the previous paragraph are 

generally suitable for traditional tasks such as recognition and 

classification in the urban context. However, for the purpose of 

3D building type classification and reconstruction, these 

datasets would be not sufficient because they do not provide 

distinct subclasses within the building class which indicate the 

building parts. The Oakland dataset (Munoz et al., 2009), which 

consists of about 1.6 million points and 44 classes, can also only 

partially overcome this issue. It contains classes for building 

parts and a specific label for roofs but it does not provide an 

explicit class distinction between different roof types. 

 

To the best of our knowledge, there is currently no publicly 

available dataset with semantic roof types for the purpose of 

learning different roof types and 3D building reconstruction 

based on machine learning models. By presenting an automatic 

workflow that can provide such training datasets and by 

providing the results of already processed data on RoofN3D, we 

aim to close this crucial gap and we would be pleased about the 

use of this data in other research work. 

 

4. TRAINING DATA PREPARATION FRAMEWORK 

For the provision of massive 3D data and further information 

that are needed to train deep neural networks in the context of 

3D building reconstruction, an automatic framework has been 

developed. The automatic framework has been designed to be 

capable of efficiently processing very large point clouds with 

billions of points. Thereby, huge training datasets consisting of 

different building classes and a large number of instances for 

each class can be generated in fairly short time. An overview of 

the whole framework is illustrated in Figure 4. It consists of the 

following two major steps: (i) extraction of building points and 

(ii) derivation of building information. 

 

In the building point extraction step, aerial point clouds and 

building footprints are used as input data for the developed 

framework. Both types of data are nowadays already publicly 

available for several cities, states, and countries around the 

world (e.g., New York City (USA), Philadelphia (USA), 

Toronto (Canada), Vancouver (Canada), Cambridge (UK), 

North Rhine-Westphalia (Germany), Thuringia (Germany), The 

Netherlands, etc.). Due to the large number of points in the 

provided point clouds, a direct extraction of building points is 

usually not feasible in a reasonable time if, for example, only 

building footprints in combination with a ray casting algorithm 

are used to solve the point-in-polygon problem. Therefore, point 

clouds and building footprints are not directly intersected with 

each other to determine the building points but multiple patches 

are first generated for each point cloud. The resulting patches 

are then intersected with those building footprints that are 

located in the area of the point cloud. In this way, all patches are 

identified that feature an overlap with a building. Afterward, the 

relevant patches are exploded and all those points are classified 

as building points that are located within a building footprint of 

the processed area. The classified points and the building 

footprints are finally stored in the RoofN3D database. 

 

The derivation of building information based on building points 

follows the principles of common data-driven building 

reconstruction approaches and consists of the following three 

Figure 4. Framework for the automatic preparation of data that is needed to train neural networks in deep learning methods. 
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sub-steps: (i) segmentation of roof surfaces, (ii) shape 

recognition, and (iii) 3D building model construction. Since the 

results of each sub-step can be used to train neural networks for 

different tasks, they are stored in the RoofN3D database. 

 

For the segmentation of roof surfaces on the basis of building 

points, sub-surface growing as introduced in (Kada and 

Wichmann, 2012) is applied with some extensions. In contrast 

to the well-known surface growing method, segments are 

enabled during the sub-surface growing procedure to grow 

below the surface. As a result, segment patches that belong to 

the same roof surface, but are disconnected by roof 

superstructures, are merged together. Consequently, symmetries 

are implicitly modeled and the number of primitives is reduced 

of which a building with complex roof structure is comprised 

of. Furthermore, segments of connected building components 

(e.g., dormer and base roof) feature actual intersections so that 

gaps between them are automatically closed. The advantages of 

sub-surface growing support the identification of roof structures 

in the subsequent shape recognition step and make their 

detection more robust than with conventional surface growing. 

 

In order to further improve the segmentation results, sub-surface 

growing has been extended by a reassignment method. In this 

method, all points assigned to a segment are reassigned to a 

neighboring segment in cases where they would better fit the 

neighboring segment in terms of distance and normal vector 

direction. The reassignment process is carried out once after 

surface growing and once after sub-surface growing. In addition 

to the improved assignment of points that already belong to a 

segment, sub-surface growing has also been extended in such a 

way that already segmented roof surfaces are further enriched 

with points not previously assigned to any segment. For this, a 

point in the set of unassigned points is assigned to its closest 

segment after the reassignment process has been completed if 

its distance to the segment is within a certain tolerance. Both 

described extensions are suitable to improve the segmentation 

result of sub-surface growing. 

 

Once planar roof surfaces have been determined, all segments 

are represented as nodes and their adjacency relationships as 

connecting edges in a so-called roof topology graph (RTG). For 

the recognition of certain roof shapes in the RTG, a graph 

grammar has been developed in which production rules are 

defined that represent possible graph transformations. Thereby, 

the search for predefined roof shape models does not need to be 

performed directly on the input data but it can be carried out on 

higher-level information in the so-called topology space. Thus, 

the robustness of traditional model-driven recognition 

approaches is maintained while reducing the search effort and 

the computational time. 

 

Each production rule of the developed grammar consists of two 

graphs representing its left-hand side (LHS) and its right-hand 

side (RHS). If a production rule is applied to the RTG, all 

occurrences of the LHS in the RTG are first identified by a 

labeled graph matching algorithm and then replaced by its RHS. 

The production rules have been essentially designed in such a 

way that adjacent nodes and their connecting edges, which 

represent lower-level information, are aggregated to a single 

node which represents higher-level information about the 

building. For example, two connected nodes that both represent 

sloped segments, whose segment normals point in the horizontal 

plane in the opposite direction, and which have an intersection 

line of a certain minimum length are aggregated to a single node 

that represents the semantic information of a saddleback roof. 

With each aggregation, semantic information is added to the 

RTG. By applying several production rules of the graph 

grammar to the RTG, higher-level information about the 

building to be reconstructed is derived. Thereby, the knowledge 

of the building structure including the building parts becomes 

available. To ensure that unnatural shapes are automatically 

discarded, already derived building knowledge is incorporated 

during the application of production rules. Due to the expressive 

power of the applied grammar, not only geometric information 

but also extensive semantic information can be provided.  

 

Finally, 3D building models are constructed based on half-space 

modeling as introduced in (Kada and Wichmann, 2013) and 

adjusted based on the divisive clustering techniques introduced 

in (Wichmann and Kada, 2014) to support natural building 

characteristics (e.g., symmetry, co-planarity, orthogonality). By 

utilizing half-space modeling, buildings are represented within 

the proposed framework as closed solids to guarantee that all 

building models are topologically correct and that they do not 

feature any unwanted gaps or intersections. 

 

5. ROOFN3D 

In order to close the lack of publicly available 3D point cloud 

data that are suitable to train neural networks for different tasks 

in the context of buildings, we present RoofN3D. It provides a 

platform for the distribution of 3D training data that result from 

the application of the presented training data preparation 

framework to various data. As a first step, the publicly available 

New York City dataset of the NYC Open Data Portal 

(https://opendata.cityofnewyork.us) has been processed and 

suitable parts of the resulting training data are made available 

via RoofN3D. Some information about the New York dataset 

are summarized in section 5.1 and further details about the 

provided data on RoofN3D are given in section 5.2. Note, 

further datasets will be processed in the future and their results 

will be added to RoofN3D. The training data is available at 

https://roofn3d.gis.tu-berlin.de. 

 

5.1 New York Dataset 

The building footprint dataset of New York is part of the 

planimetrics geodatabase and used by the NYC Department of 

Information Technology and Telecommunications (DoITT) GIS 

group to maintain and distribute an accurate base map for NYC. 

They are derived from images of the 2014 New York Statewide 

Flyover, which includes raw imagery collected to support the 

generation of 0.5 feet ground sampling distance natural color 

imagery. The provided building footprints represent the 

perimeter outline of each building. Divisions between adjoining 

buildings are determined by tax lot divisions. The estimated 

positional accuracy for 95% of the data is ± 2 feet. The whole 

dataset consists of more than one million building footprints. 

 

The LiDAR point clouds of New York are provided by the U.S. 

Geological Survey (USGS). They have been captured from 

08/2013 to 04/2014 and cover an area of 1,009.66 km². The 

average density of the point clouds is about 4.72 points/m². 

 

5.2 RoofN3D Data 

The available data from RoofN3D currently consist of the 

results of the presented training data preparation framework that 

has been applied to the New York dataset. The New York 

dataset has been selected because it covers a large area, which 

can help to avoid an overfitting of classifiers. An overview of 

the underlying architecture of RoofN3D and the available 

information about the buildings are shown in Figure 5. As 
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illustrated, for each building in RoofN3D, a building footprint, 

all building points therein, segmentation results, semantic 

information, and geometric information are provided. Please 

note, the structure of RoofN3D is not fixed and might be 

adapted according to future needs. 

 

 
 

Figure 5. The architecture of RoofN3D and the provided 

information about a building. 

 

The provided data can be used in various ways. For example, 

data resulting from the segmentation process can be used to 

train semantic segmentation networks. For this, each extracted 

segment provides the information about its assigned points, the 

outline, and the plane equation which best fits the assigned 

points. We have limited the segmentation process to planar 

areas because most roof surfaces can be described with 

sufficient accuracy by planar faces. This is for most buildings, 

particularly in residential areas, the case and useful because 

arbitrary shapes usually require computationally intensive 

surface fitting procedures (Wang, 2013). Since sub-surface 

growing has been implemented as an extension of the well-

known surface growing method, segments of both surface 

growing and sub-surface growing are provided. For the latter, a 

distinction is made between surface points and virtual sub-

surface points which have been not initially captured but 

introduced to close unwanted gaps in a roof surface. In addition 

to the points that have been assigned to a segment, also all 

unassigned building points are provided which do not belong to 

any segment according to the applied surface growing and sub-

surface growing method. The outline of a segment has been 

determined by projecting all segment points onto the plane of 

the segment and by performing the alpha shape algorithm 

presented in (Edelsbrunner et al., 1983). 

 

To learn the structure of buildings with deep learning methods, 

the applied grammar of the shape recognition step has been 

designed in such a way that structural information about the 

buildings are derived. This includes the information about the 

building parts that compose the building. Depending on the 

complexity of the building, the number and the shape of the 

building parts can be very diverse. In order to provide further 

information about those building parts that have a concave 

shape, information about convex components that compose the 

concave building part are provided. To reduce the processing 

effort for training a deep neural network, also information about 

the orientation of building parts and their convex components 

are provided. 

 

Another important task that can be approached by means of 

neural networks and the provided training data is the learning of 

the geometric construction of 3D building models. For this, 

RoofN3D provides boundary models not only for the whole 

building but also for its building parts. These boundary models 

are derived from the conversion of the closed solid that results 

from the applied automatic reconstruction method. Thereby, it 

can be guaranteed that the boundary models are always closed 

and represented as 2-manifold polyhedrons. Note, due to the 

lack of ground level height information, all building models 

have been extruded to the same ground height (i.e., 0 m). In 

addition to boundary models, information about half-space 

models are provided via RoofN3D. For this, the plane equations 

of the hyperplanes that define the half-spaces of the roof of a 

convex building component are provided. By applying the 

Boolean intersection operator to these half-spaces, the roof 

shape of the convex component is defined. Furthermore, the 

roof shape of a building part can be derived by applying the 

Boolean union operator to the half-space representations of all 

convex components that compose the building part. Analogous, 

the roof shape of the whole building is given by uniting all half-

space models of those building parts that compose the building. 

If the shape of the whole building with extruded facades is 

needed, the latter half-space model needs to be intersected once 

with a half-space having a horizontal hyperplane whose normal 

vector is pointing downwards and once with the provided 

building footprint formulated as a half-space model. 

 

The aforementioned information are offered via RoofN3D for 

different types of roofs. First, the number of different roof types 

is limited and only cover simple shapes such as gable roofs, 

two-sided hip roofs, pyramid roofs, etc. However, more 

complex roof types will be added over time. 

 

6. CONCLUSION AND OUTLOOK 

The training dataset available on RoofN3D provides aerial 

LiDAR data and building information that can be used to train 

deep neural networks for different tasks in the context of 3D 

building reconstruction. The training dataset has been recently 

published and will be extended in the future according to the 

needs of the research community. This includes, for example, 

the addition of further buildings with the same or other roof 

shapes. For the latter, buildings with complex roof shapes are of 

particular interest. Furthermore, it is planned to carry out a 

quality assessment and to continuously improve the offered 

data. This is necessary because the training data was generated 

with an automatic process. We hope that the 3D training data on 

RoofN3D can be used in the future to further improve automatic 

3D building reconstruction approaches and their results with 

various methods of machine learning. 
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