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ABSTRACT: 

 

Various kinds of urban applications require true orthophotos. True orthophoto generation requires a DSM (Digital Surface Model) to 

project the photo orthogonally and minimize geometric distortion due to topographic variance. DSMs are often generated from airborne 

laser scan data. In urban scenes, DSM data may fail to deliver sharp and straight building roof edges. This will affect the quality of the 

resulting orthophotos. Therefore, it is necessary to incorporate good quality building outlines as breaklines during DSM interpolation. 

This study proposes a data-driven approach to construct building roof outlines from LiDAR point clouds by a workflow consisting of 

the following steps: given roof segments, roof boundary points are extracted using a concave hull algorithm. Straight edges may be 

difficult to find in complex roof configurations. Therefore, two ingredients are combined. First, RanSAC corner point preselection, and 

second, DBSCAN-based clustering of edge points. The method is demonstrated on an area of ±1.2 km2 containing 42 buildings of 

different characteristics. A quality assessment shows that the proposed method is able to deliver 92% of building lines with acceptable 

geometric accuracy in comparison to a building line in the base map. 

 

1. INTRODUCTION 

1.1 Background  

Many urban applications require true orthophotos as a basic 

geospatial data source to construct real-world visualizations with 

accurate positions. Buildings are one important objects to be 

presented on the map. High-elevated buildings may suffer from 

positional distortion due to relief displacement caused by the 

aerial photo acquisition geometry. True Orthophoto generation is 

one of the most reliable methods to remove distortion by 

projecting back image pixels to the correct location using a DSM. 

However, because of DSM gridding, some buildings may lose 

their sharp edges. This will introduce building boundary errors in 

the true orthophotos (the building edges looks crooked or bent in 

the image). A possible solution is to add building outlines as 

breaklines to the DSM to preserves sharp building edges. The 

suitability of true orthophotos to define object edges relies on the 

quality of the DSM. The sharper the building edges are 

represented in the DSM, the better the building edge 

representation will be in the resulting true orthophotos.   

 

In the absence of base maps or updated maps, it is required to 

extract building edges. LiDAR data is known for its high 3D 

positional accuracy and high point density for mapping. In the 

case of boundary detection, LiDAR may have a limitation in 

providing sharp edges, as LiDAR points, in general, do not 

always hit the exact building edges. 

This paper proposes and implements a semi-automated workflow 

to extract building roof edges from LiDAR data by combining an 

adapted version of RanSAC (RANdom SAmple Consensus) line 

fitting with DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) clustering of point-wise line 

parameters.  

1.2 Related Work 

Some true orthophoto refinement efforts that use breaklines for 

DSM improvement have already been conducted (Wang et al., 

2018, Hu et al., 2016, Wu et al., 2011, Kato et al., 2010).  Wu et 

al. (2011) improved building boundaries by fusing LiDAR and 

aerial photos to get 3D lines. The 3D building boundaries were 

extracted from segmented LiDAR points using a convex hull 

algorithm followed by a back-projection of 3D to 2D image 

space. However, many buildings boundaries are not as straight as 

expected.  

Hu et al. (2016) worked on orthophotos with occluded areas 

detected by elevation-buffer visibility from DSM and building 

roof model. Then, occluded areas are filled with data from 

overlapped orthophotos. This method still has limitations since 

the results may be not good along building boundaries in case of 

inaccurate building roof models. Wang et al. (2018) proposed to 

match 2D line segments to reconstruct 3D lines. The 3D end 

points of each line are then incorporated with dense image 

matching points clouds in a TIN (Triangular Irregular Network) 

processing. 

 

Automatic building roof outline extraction is still a challenging 

problem, especially when straight and accurate edges are 

required. Several types of research on automatic building edge 

extraction from either LiDAR data and images have been 

conducted (Awrangjeb, 2016, Zhao et al., 2016, Siddiqui, et al., 

2016, Yang et al., 2013, Wu et al., 2011, Awrangjeb, 2010). 

Wu et al. (2011) fused rough building lines from a LiDAR DSM 

and 2D lines from oriented aerial images to extract straight 3D 

building lines. These straight building lines are then used to 

produce true orthophotos. However, some resulting building 

boundaries were still not straight. Zhao et al. (2016) and 

Awrangjeb (2016) determined building outlines from point cloud 
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data by boundary tracing and regularization. Somehow, errors 

occur due to missing low buildings and vegetation points near to 

the buildings Zhao et al. (2016), or failures to estimate a 

dominant/principal direction Awrangjeb (2016). Siddiqui et al. 

(2016) proposed a gradient-based technique to extract building 

lines from LiDAR and images. Roof edges correspond to big 

height changes that are revealed by large gradients in a height 

intensity image. Straight lines are then extracted from the image 

using Canny and Gaussian functions. The buildings outlines were 

confirmed after color matching, shadow detection, and noise 

filtering. The proposed method is only designed for buildings 

with a flat or sloped roof. However, the paper did not address the 

possible relief displacement on the building roof may occur in the 

image space. A common problem of model-driven approaches is 

that some important lines that are not dominant may not be found. 

Moreover, the quality of geometric accuracy of these methods is 

not reported and results often seem incomplete. 

 

2. STUDY AREA AND DATA DESCRIPTION 

The chosen suburban study area is located on Maros, Sulawesi 

island of Indonesia. The total size of the study area is ±1.2 km². 

There are two main components of data used in this study:  

 

a. Main input data 

LiDAR data was acquired by a Leica ALS70 instrument. The 

average point density is 10 - 12 points/m. A Leica RCD30 

instrument captured the aerial photos with 9cm spatial resolution. 

The data use the WGS84 reference system and is projected in 

UTM Zone 50S. Aerial photos and LiDAR data are acquired at 

the same time from the same platform in 2012. The specification 

of these main input data is designed and intended for base 

mapping at a scale of 1:10.000. 

 

b. Reference data 

This study uses 1;10.000 Topographic Base Maps as a reference 

to validate the accuracy of the resulted lines and the true 

orthophotos. The topographic base map has a geometric accuracy 

better than 5 meters. The reference data consists of 3D building 

rooflines that are manually delineated from stereo-photos 

acquired at the same time as the LiDAR data. 

. 

 

3. METHODOLOGY 

The research workflow, as illustrated in Figure 1., is designed to 

extract building roof outlines to improve the quality of DSM for 

true ortho-rectification without any presence of base maps.  

 

 
Figure. 1. Methodological workflow 

This study aims to extract building roof outlines that meet 

specifications and assumptions as specified below: 

- The building is represented by the size and shape of a 2D 

representation of the roof. That is, the size and shape of the 

buildings are similar to the roof as seen from the top. 

- Small details or interior parts inside the building roof will 

not be considered. For example, in extracting the outlines, 

a building with a gable roof will be treated as a flat roof. 

- The expected result should meet the requirements of 

1:5.000 map scale. A building of an area of 2.5 m x 2.5 m 

or larger should be present in the map. 

- The minimum positional accuracy of building edges 

vectors is 2.5 meters. 

 

3.1 LiDAR Point Cloud Filtering 

LiDAR point cloud filtering is the first important step to 

guarantee the quality of the extracted buildings edges. This study 

uses a set of building points extracted by a rule-based approach 

in the TerraScan software as a starting point. In rule-based 

filtering, the first step is to separate non-ground from ground 

points. The roof points are then selected from the non-ground 

points based on their planarity and connectivity. The result 

building filtering of the study area is shown in Figure 2. 

 

  
(a) full points (b) filtered building points 

 

Figure 2. LiDAR point clouds of the study area.  

 

3.2 Building Points Clustering and Edge Point Selection 

In order to find roof edge points, roofs are identified by 

segmentation. This study uses DBSCAN, introduced by Ester et 

al. (1996), to cluster points into single buildings. Ghosh and 

Lohani (2013) performed a DBSCAN on a small subset of 

LiDAR data (100 m by 100m) with a high success rate w.r.t. 

computation time and accuracy.  

After clustering some noise or outliers (including tree points) 

may remain that will finally affect the roof edge extraction. 

DBSCAN is chosen because of its capability to detect outliers in 

the data.  

To find a cluster, DBSCAN starts with an arbitrary seed point p 

and retrieves all neighbouring points (density-reachable) from p 

that are located within a given radius distance (eps) and contains 

a given minimum number of points (minPts). Outliers are defined 

once minPts cannot be achieved within the given eps. DBSCAN 

uses region-growing to grow the cluster. The cluster will grow as 

long as nearby points within the eps distance from seed p fulfill 

the minPts threshold. In case minPts within distance eps is not 

fulfilled, a point or group of points is considered as outliers. 

During the cluster growing, outliers may change into a member 

of the cluster once they are in the eps distance from the respective 

seed. To grow the next cluster, the next seed is chosen that does 

not belong to any cluster. The clustering stops once all points are 

assigned. 

In this study, we implement DBSCAN clustering from 3D and 

2D point data. By applying a similar parameter threshold, we 

found that clustering 3D point data discovers more buildings than 

2D points as discussed in Figure 3. Therefore, we used 3D points 

as input for the edge line extraction. 
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(a) DBSCAN cluster from 3d points 

 

 
(b) DBSCAN cluster from 2d points 

 

Figure 3. The DBSCAN result using eps=1.2m and minPts=3 

 

From one building segment, ideally corresponding to a roof, a 

concave-hull algorithm is used to find the outermost points of that 

segment. This study uses a generalization of the convex hull, 

named alpha-concave hull modified by Asaeedi et al. (2003). It 

uses alpha to define the smoothness threshold. In order to 

preserve the building shape, the alpha threshold parameter of the 

concave hull may need to be adapted especially for noisy data.  

 

  
 

Figure 4. The concave hull line of the buildings 

 

Even though the building outlines obtained by the concave hull 

method somehow fit the roof lines, they still do not meet the 

requirements of producing a straight line. 

 

3.3 Building lines extraction 

The workflow design assumes that most buildings roofs consist 

of straight lines instead of curved lines. RanSAC has the ability 

to fit a mathematical primitive to set of data containing noise. 

This algorithm was introduced by Fischler and Bolles in 1981. 

 

In this study, RanSAC is employed to find the initial line models 

through all the boundary points. RanSAC typically finds the edge 

sampled by most points first. Since the RanSAC line model is 

influenced by the selection of random points, we guide RanSAC 

better to find suitable lines. Instead of using two random points, 

we use one initial point and one random point. To find the given 

initial points, we compute the mean position (centroid) of all 

points and calculate the Euclidean distance of each point to the 

centroid. The farthest point from the centroid is typically one of 

the corner points of the cluster. This is then used as one of the 

two points for line fitting in each RanSAC run.  

 

  
  

Figure 5. The centroid (blue) and corner points (red) 

 

The RanSAC parameters used in this study are minimum sample 

size (minS), distance to the model threshold (d), inlier ratio (r), 

and number of iterations (k). To initialize a line, two points are 

chosen from the given samples s to define a line model. Once the 

line model is created, the distance of each point to the respective 

line model is calculated. The final fit is obtained by fitting these 

inliers to the line model in the sense of least squares. For each 

edge, we use 100 iterations to find the potential line. The line 

model that exceeds the predefined r and has most inliers will be 

selected. The RanSAC parameters are tuned based on the 

expected requirements and input data specifications. In a normal 

case, for a point cloud with 50 cm spacing, we use an inliers ratio 

of 0.3 and a 0.6 meter model threshold distance.  

 

Procedure 1: Line Fitting using Adaptive RanSAC 

Given inliers_ratio (r), no of iterations (k), ransac_threshold 

(d), and dataset (D).  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

AdaptiveRansac Lp(D, k, d, r ) 

for  all p in D: 

for kth iteration do: 

Calculate centroid (c)  

Calculate the farthest point (f) to the (c). 

Combine random point (R) and f 

Create line models (L1) of R 

return m, c  

for any p in D: 

Find intersection point from L1 

Compute distance (dist) of p to L1 

If dist(p) to L1 < d: 

list_p = inliers of L1 

If number of inliers num > minS * r: 

Lp = L1 

return m1(L1), c1(L1), list_p1(L1)    

                          # line model1 is found 

Given optimum distance threshold (dopt) 

for any p in D: 

Compute d(p) to L1  

If d(p) to L1 <= dopt 

p = list_p2(L1) 

list_p3(L1) = list_p1(L1) + list_p2(L1) 

m2(L1), c2(L1)  = leastsquare_fit(list_p3(L)) 

return m2(L1), c2(L1) , list_p3(L1) 

D2 = D - list_p3  

Do step 2 to25 for the D2 dataset (to find edge-2) 

 

In case of noisy edge points, RanSAC may still fail to find 

enough potential points as inliers. Therefore, as an additional step 

the distance threshold is relaxed if needed. The resulting new 

inlier points are then added to the existing inliers, as already 

found by RanSAC. On the final set of inliers, we apply least-

square line fitting to get a robust first building edge. For the 

second edge, we remove all inliers points belonging to the first 

line from the dataset. Then, for the remaining points, we apply 

the same adaptive RanSAC procedure. This procedure is repeated 

until all building edge lines are found (Figure 5.). Given the 

building lines, corner points are computed based on the line 

intersections. 
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Figure 5. Adaptive RanSAC procedure for a simple roof 

 

Any edge extraction method should accommodate variations of 

building size and shape. Based on our experiments, the proposed 

adaptive RanSAC approach perfectly works for simple buildings 

(rectangular shape) with less noise but may fail to find lines for 

more complex buildings (multi-square shape) that have more 

noisy edge points also.  

To accommodate complex roofs, we further adapted RanSAC by 

combining it with DBSCAN clustering. DBSCAN is used to 

cluster 2D edge points to give direction to RanSAC to find inliers 

and create suitable lines.  

 

Procedure 2: Line Fitting combined Adaptive RanSAC and 

DBSCAN 

Given inliers_ratio (r), no of iterations (k), ransac_threshold 

(d), dataset (D), minimum cluster radius (eps), and minimum 

number of points (minSamples). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Ransac-DB Lp(D, k , d, r, eps, minSamples ) 

for  all p in dataset D: 

do AdaptiveRansac Lp(D, k , d, r ) 

return m2(L1), c2(L1) , list_p3(L1) 

D2 = D - list_p3(L1) 

for D2 dataset: 

db = dbscan(eps, minSamples) 

for i in db: 

if count(db(i)) = max: 

(db(i)) = biggest_cl 

return biggest_class 

for  all p in dataset biggest_class: 

do AdaptiveRansac Lp( biggest_cl, k , d, r ) 

return m2(L2), c2(L2) , list_p3(L2) 

D3 = D - list_p3(L2) 

 

Do step 1 to14 for the D3 dataset (to find edge-3) 

 

The second procedure is started by line fitting using adaptive 

RanSAC as described in procedure 1. In most cases, RanSAC 

will be able to find the longest edge since it has most points. Once 

the corresponding line is found, we remove its supporting inliers 

from the dataset. Then, we apply DBSCAN to cluster the 

remaining points. The biggest cluster is selected first. The 

RanSAC procedure is then applied to this cluster to find the 

second line. Again, the iteration stops once all lines are found. 

 

Figure 6. illustrates how adaptive RanSAC combined with 

DBSCAN clustering finds all the lines of a complex building 

roof. Edge line extraction is initiated from the farthest corner 

point from the centroid in the longest edge (typically has most 

points).  

 

  Figure 6. Line extraction from combined RanSAC – 

DBSCAN 

 

3.4 DSM and true orthophotos generation 

The extracted building lines are then reprojected into 3D lines by 

interpolation using the original LiDAR DSM. These 3D lines are 

then used as hard breaklines for DSM optimization. The 

breaklines are expected to represent surface discontinuities and 

enhance the height jump at building roof edges. Figure 7. shows 

the difference of a DSM without breaklines (left image) and an 

optimized DSM with breaklines (right image). The building edge 

in the right image has indeed more straight representation.  

 

  
(a) DSM without breaklines (b) DSM with breaklines 

  
(c) zoomed DSM without 

breaklines 

(d) zoomed DSM with 

breaklines 

 

Figure. 7. DSM without breaklines (left) and DSM with 

breaklines (right) 

 

Based on height information, high-rise objects like buildings, 

trees, or bridges are set back into their true location in the true 

orthophotos. Therefore, a sharp edge will preserve a correct and 

straight building representation in true orthophotos.  

  
(a) edge 1 

 

(b)  edge 2 

  
(c)   edge 3 (d)   edge 4 

  
(a)  edges 1 to 5 

 

(b)  edges 1 to 7 

  
(c)  edges 1 to 9 (d)  edges 1 to 10 
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(a) Aerial photos of respective buildings  

 

   

(b) The result of building filtering  

(Left: building without balcony roof, Middle: building with tree points as noise, Right: with small balcony) 

 

   

(c) Concave hull lines as a result of DBSCAN filtering 

 

   
(d) The adaptive RanSAC fitting 

 

   

(e) Building line result 

Figure 8. Illustration of the building outlines the workflow 

3.5 Validation 

The quality of the extracted building roof edges is validated based 

on the number of extracted buildings and the positional accuracy. 

It uses buildings from the base map as the reference data.  

Completeness of the extracted buildings resulting from our 

method is assessed by using the number of buildings, edges and 

corner points that are correctly detected. The positional accuracy 

is measured based on the corner points position. The squared root 

of the average of the squared differences of X and Y directions is 

calculated to estimate the RMSE (Root Mean Square Error).  

 

𝑅𝑀𝑆𝐸𝑥 =  √∑(𝑋𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑋𝑟𝑒𝑓)2/𝑛 

 

𝑅𝑀𝑆𝐸𝑦 =  √∑(𝑌𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑌𝑟𝑒𝑓)2/𝑛 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-1199-2018 | © Authors 2018. CC BY 4.0 License.

 
1203



𝑅𝑀𝑆𝐸𝑟 =  √𝑅𝑀𝑆𝐸𝑥2 +  𝑅𝑀𝑆𝐸𝑦2 

 

Where: 

 𝑋𝑟𝑒𝑠𝑢𝑙𝑡 , 𝑌𝑟𝑒𝑠𝑢𝑙𝑡  = Coordinates of resulting corner points 

 𝑋𝑟𝑒𝑓 , 𝑌𝑟𝑒𝑓          = Coordinates of corner points in the base map    

n                         = total number of points 

 

We use US-NMAS (United States National Map Accuracy 

Standards) to determine the circular accuracy. It specifies that 

90% of the well-defined points that are tested must fall within a 

specified tolerance. If an error is normally distributed in each the 

x- and y-component and error for the x-component is equal to and 

independent of error for the y-component, the factor 2.146 is 

applied to compute circular error at the 90% confidence level 

(Greenwalt and Schultz, 1968).  Therefore, the circular map 

accuracy is: 

 

Circular Map Accuracy = 1,5175 x 𝑅𝑀𝑆𝐸𝑟. 

 

 

4. RESULTS AND DISCUSSION 

This study focuses on the extraction of building edge extraction 

and particularly, aiming to improve the DSM. However, the 

results and discussion will focus on the results of the 

methodology for roof line extraction.  

 

The line fitting procedure is successfully implemented especially 

for simple roof buildings. Our method is also able to produce 

accurate building edges in case of many outliers due to filtering 

errors as illustrated in Figure 8. Adaptive RanSAC succeed to 

find accurate lines in a simple building roof with no outliers (left), 

a simple building roof with many outliers (centre), and a 

rectangular building with outliers (right).  

 

There are some buildings are not or incompletely detected 

(showed by the red arrow) as shown in Figure 9. This can be 

attributed to the failure of filtering in detecting building roof 

points. Another issue is that reason is that we found one building 

which has two clusters (showed by a red ellipse). The possible 

cause is that DBSCAN is sensitive to its input parameters, which 

makes it difficult to segment a point cloud of varying point 

density correctly.  

 

 
Figure 9. Base map (orange) and filtered building points (blue) 

 

Figure 10. presents the comparison of building roof lines from 

the base map and roof lines resulting from the proposed method. 

From 42 buildings in the base map, our workflow is able to find 

39 buildings. It means that the implemented workflow is able to 

detect more than 92% of the buildings in the study area. 

Nevertheless, around 18% of the result (7 buildings) have big 

geometric differences: 

 

- Five buildings are under-segmented but have a similar 

shape. Our roof lines result has a smaller size than the 

reference (showed by black arrows in Figure 10.) 

- One building has a different building shape. Our line 

result is pentagonal while the reference has a heptagonal 

shape (showed by the red arrow in Figure 10.) 

 

 
Figure 10. Base map (orange) and buildings from adaptive 

RanSAC (green) 

 

 

We provide complete results of our building roof line extraction 

in Table 1. 

 

Table 1. Completeness of Resulting Buildings 

 

 Reference Result 

Buildings (Polygon) 42 39 

Edges (Line) 235 212 

Corners (Point) 235 235 

 

Regarding positional accuracy, the average of geometric 

accuracy for a simple building roof is 0.576 meters. While for a 

successfully extracted complex building roof, it has less 

geometric accuracy, 0.819 meters. Still, in both cases, it has a 

sub-meter difference to the base map. 

 

  

(a) Concave hull (green) and 

simplified hull lines (orange) 

(b) Building line result (red) 

of the proposed method 

Figure 11. Comparison of the concave hull, a simplified 

concave hull, and adaptive RanSAC line 

 

 

We made a comparison between building lines resulting from a 

concave hull line simplification and our lines. The experiment 

shows that a concave hull simplification may still create corners 

and lines that deviate from the original position in some particular 

part in producing a straight line, while our result is able to fit to 

the corner points and preserve the roof shape as shown in Figure 

11a. 
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Due to a lack of points on the edge segments, the outlines of small 

buildings may deviate from its real shape or even fail to be 

extracted as shown in Figure 12. Another cause of errors is the 

presence of outliers on a small building roof. In the study area, a 

small balcony roof is assigned to a different segment than the 

main building roof. This small balcony has a size of 1m x 6 m, 

and it has two short edges. The boundary point distribution with 

very short edges (that only have one or two points) makes it 

impossible to find correct lines.  

 

  

(a) Concave hull line (b) Resulting line 

 

  

(c) The concave hull of a 

balcony 

(d) The resulting line of a 

balcony 

Figure 12. Incorrect results for small buildings 

 

 

5. CONCLUSION 

Our experiment shows how straight and accurate lines are 

extracted using the adaptive RanSAC technique. It outperforms 

existing methods in case of noisy edge points. The positional 

accuracy of the resulting lines is good, 92% buildings are 

detected with sub-meter accuracy, compared to the buildings in a 

reference base map. This workflow can be implemented for 

mapping activities.  

 

However, the adapted RanSAC algorithm has difficulties on 

short and noisy edges. Thus, the result depends on the quality of 

point clouds filtering and segmentation. Rather than working per-

single building, our future work will focus on how to automate 

the building line extraction for a complete area at once. 

Combining RanSAC lines from LiDAR and color information 

from aerial photos may give better performance and automation 

for building edge detection. Solutions for non-straight building 

edges (such as a dome roof) and buildings with shared-

boundaries also need to be addressed. 
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