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ABSTRACT:

Different platforms and sensors are used to derive 3d models of urban scenes. 3d reconstruction from satellite and aerial images
are used to derive sparse models mainly showing ground and roof surfaces of entire cities. In contrast to such sparse models, 3d
reconstructions from UAV or ground images are much denser and show building facades and street furniture as traffic signs and garbage
bins. Furthermore, point clouds may also get acquired with LiDAR sensors. Point clouds do not only differ in the viewpoints, but also
in their scales and point densities. Consequently, the fusion of such heterogeneous point clouds is highly challenging. Regarding urban
scenes, another challenge is the occurence of only a few parallel planes where it is difficult to find the correct rotation parameters. We
discuss the limitations of the general fusion methodology based on an initial alignment step followed by a local coregistration using
ICP and present strategies to overcome them.

1. INTRODUCTION

Urban environments can efficiently get reconstructed in 3d from
images by photogrammetric computer vision technologies such
as research prototypes (Furukawa and Ponce, 2010, Irschara et
al., 2012, Kuhn et al., 2017) or commercial products, e.g., Pix4D,
nFrames, Agisoft or Acute3D. Depending on the image source,
the reconstructed point clouds show different building parts and
have different point densities and accuracies. For instance, (Rup-
nik et al., 2018) derive digital surface models from very high res-
olution satellite images with a ground sampling distance of 0.3 m.
I.e., their landscape model may have a point density of 9 points
per m2 only. In contrast, we derive point clouds from terrestrial
images or low-flying UAVs with several thousand 3d points per
m2. Alternatively to reconstructed point clouds, they also can be
acquired by (mobile) laser scanning systems as used in (Munoz et
al., 2009), (Lauterbach et al., 2015) or (Vosselman et al., 2017).

Fusing such heterogeneous point clouds is a very active and very
challenging research topic. Motivation can be to improve 3d
models by combining different sources (ground and aerial per-
spective) or to insert a dense building model as point of inter-
est into a sparser landscape model. This problem can be solved
in three different ways. First, if images are available, the joint
orientation of images from different sensors can be employed.
(Koch et al., 2016) and (Roth et al., 2017) propose strategies to
combine images with large scale differences and large perspec-
tive changes, respectively. Second, 2d features in the images and
3d features in the point clouds can be analyzed to find correspon-
dences for fusing different models, cf. (Schenk and Csathó, 2002)
or (Mishra and Zhang, 2012). Third, the point clouds are coregis-
tered based on 3d information of the points themselves. A review
on recent approaches in this field is given in (Pomerleau et al.,
2015).

To be as general as possible with respect to the nature of point
clouds, we are interested in the third way: fusing on the basis of
point cloud coregistration. Thereto, a standard fusion methodol-
ogy exists, and it consists of three steps: first initial alignment,
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second local coregistration, and third surface smoothing and de-
tection of artifacts. We discuss this workflow regarding challeng-
ing heterogeneous point clouds of urban scenes. Hence, the fol-
lowing technical problems have to be solved:

1. Point clouds can be very large. We obtain point clouds
from reconstruction with more than 10 million points. Such
amounts of data bring difficulties with manipulation in a
viewer. This open issue remains untouched by us. Further-
more, we remark that all calculations are time and memory
intensive, if the input datasets are very large.

2. Point clouds potentially have very large differences in ex-
tension and scale. On the one hand we have reconstructed
point clouds from a satellite scene which may cover an en-
tire city, i.e., their range is in kilometers. On the other hand
we have close range reconstructions of scenes of few meters
only. Scale differences may occur due to reconstruction out-
put in absolute and relative coordinates. We overcome these
difficulties by cropping point clouds to the area of interest
and by manually performing an initial alignment step.

3. Urban scenes often show many parallel planes. Small trans-
lations and rotations do not change significantly the overlap
region, which makes the search for an optimal fusion diffi-
cult. We address this problem in sec. 3.1.

4. Point clouds vary strongly in their point densities and their
accuracies. This is due to, e.g., the sensor size or the dis-
tance between sensor and object, which are usually larger
for acquisitions with airplanes or satellites. We address this
problem in sec. 3.2.

5. Point clouds have only small overlaps. Point clouds from
aerial data acquisitions only show ground and roof surfaces,
while point clouds derived from campaigns on the ground
show only building facades and street furniture. Hence, such
point clouds only overlap around the buildings’ footprints
and eaves.
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This paper is structured as follows. In the next section, we intro-
duce and discuss the standard fusion methodology. Furthermore,
we present strategies to overcome its limitations for challenging
datasets. In sec. 3, we demonstrate the success of our proposed
strategies in experiments with difficult datasets. Last, we con-
clude with a short summary and give an outlook on future work.

2. STANDARD FUSION METHODOLOGY

Generally, the fusion of two point clouds consists of three steps.
First, both point clouds must be initially aligned to get a rough ap-
proximation for a common coordinate system and scale. Second,
the local coregistration is performed. In the third step, surfaces
are smoothed and outliers are reduced, and artifacts are removed
or highlighted. We realized this general fusion strategy, and we
discuss each step in this section. In our implementation, the ini-
tial alignment has to be performed manually, because we need a
good approximation for the coregistration to avoid local minima
in the following step of local coregistration. All other steps are
fully automated.

We demonstrate this methodology on an example of two point
clouds derived from images acquired by a UAV, cf. fig. 1. One
dataset only contains nadir views, the other one only oblique
views. Consequently, both point clouds overlap in the ground
and roof areas, but the first point cloud does not show many
points of the facades. Our 3d reconstruction pipeline consists
of a highly accurate image orientation (Michelini and Mayer,
2016), dense image matching using semi-global matching – SGM
(Hirschmüller, 2008) and the scalable reconstruction approach of
(Kuhn et al., 2017).

Figure 1. Two point clouds of the same building. The point
clouds with RGB texture are derived by 3d reconstruction from
nadir views (left) and from oblique views (right).

2.1 Initial Alignment

If both point clouds are not given in a common global coordinate
system, e.g., GPS, one point cloud must be transformed into the
coordinate system of the other. Standard implementations such
as the Point Cloud Library (Aldoma et al., 2012) only succeed, if
the point clouds have a significant overlap and the same scale. If
no assumptions can be done, this initial alignment step must be
performed under manual supervision. Selecting at least three ho-
mologous, not collinear points in both point clouds, cf. fig. 2, we
are able to determine the rotation, scale and translation parame-
ters by determining a Helmert transform. This way, we are able
to estimate the transformation of the coordinate system using a
least squares optimization when selecting more than three points.

2.2 Local Registration

Local registration is often used for refining the overlap between
two point clouds. Then, a distance between both data sets is

Figure 2. Two point clouds from fig. 1 with three homologous
points. The markers were manually selected without identifying
individual points of the clouds.

minimized, often iteratively in a EM-based framework, because
a closed form solution is not known. One standard approach
is the Iterative Closest Point – ICP (Besl and McKay, 1992),
where correspondences between point pairs are identified and
the distance between all corresponding point pairs is minimized.
There exist many implementations of ICP, e.g., (Li and Hartley,
2007) or (Rusu and Cousins, 2011). Such implementations vary
in the identification and minimization steps which have to get
are adjusted to the certain application. Usually, the points are
analyzed within a neighborhood to identify corresponding point
pairs. Then those pairs are filtered using different heuristics, and
often a least squares optimization is performed to minimize the,
e.g., point to point or point to plane distances.

Normal Distributions Transform (NDT) as proposed by (Biber
and Strasser, 2003) and improved by (Magnusson et al., 2007) is
an alternative to ICP. In NDT, the spatial densities of the datasets
are modeled by Gaussian mixture models, and the overlap be-
tween both mixture models is maximized. In our experiments,
NDT was much faster than ICP, but it was less robust, requiring
a more accurate initial alignment. Thus, we only document the
experiments with ICP in this paper. Fig. 3 shows the two point
clouds after the initial alignment step (top) and after employing
ICP (bottom) based on its standard implementation in the Point
Cloud Library (Rusu and Cousins, 2011).

Nevertheless, ICP has limited success for some challenging data-
sets. If both point clouds have significantly different point den-
sities, then the algorithm is unable to find correct point-to-point
correspondences. Furthermore, the search for the optimal fit will
get stuck in a local minimum, if there are no further constraints.
This problem is essential for symmetric scenes and for scenes
with many parallel planes.

In case of symmetries or multiple parallel planes, small rotations
and translations do not affect the quality of overlap for most of the
points. Thus, the optimization converges to a local minimum of a
flat valley in the cost function. Such a case occurs for the scene in
fig. 3, where the ground and the parallel rooftop levels constitute
most of the correspondences. Therefore in-plane translations and
rotations do not affect the overall optimization metric enough to
produce a gradient to the optimal alignment. We can solve this
problem by extracting planar surfaces (Rabbani et al., 2006) and
their boundaries to perform ICP only on boundary points. I.e.,
we will not consider the large amount of uninformative points for
the in-plane rotations and translations. Results for this degenerate
case are presented in the sec. 3.1.

2.3 Surface Smoothing & Artifacts

In this subsection we describe all aspects of point cloud smooth-
ing. The goal is to obtain surfaces with less noise and merge the
two clouds. Remark that we do not determine real meshes, e.g.,
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Figure 3. Result of the initial alignment (top) and the local regis-
tration with ICP (middle and bottom). Comparing top and middle
view, the offset is significantly smaller after employing ICP, cf.
the region of a roof super structure marked by the ellipses. Addi-
tionally, we highlighted regions in the bottom view which show
the limitations of ICP, because its result is not optimal.

as done by (Liu et al., 2007), (Bodenmüller, 2009) or (Caraffa et
al., 2016), and we also do not segment the point cloud, e.g., as
done by (Nguatem and Mayer, 2016) or reviewed by (Grilli et al.,
2017), but we locally estimate the object surfaces by polynomi-
als.

We will note the source point cloud Q and the target point cloud
P . If both point clouds have similar properties such as accu-
racy or point density, it does not matter which one is source and
which one is target. Otherwise, we advice to consider the point
cloud with lower quality to become the source point cloud. We
approximate the surfaces through the points in P by piecewise
polynomial functions and project the points of Q onto these, i.e.,
we project low-quality points onto the high-quality target surface

following (Márton et al., 2009).

For each point q ∈ Q a local neighborhood Pq is selected, by
using either a fixed number of nearest neighbors, or all neighbors
in a fixed radius. The first method can result in neighbors that
are relatively far away form the currently fitted point, and their
influence must be minimized when fitting the point (e.g. through
the distance-based weighting, see below). The second method
has the disadvantage that it may yield too few neighbors if the
search radius is too small, but it ensures that the neighbors will
surround the point to be fitted. In our approach the second method
is preferred, as we require a maximum distance as cutoff to avoid
changing points that have no correspondence in case Q and P are
different (i.e. in non-overlapping areas). Whereas, using the first
method requires extra filters to ensure this.

Weights are assigned to every neighbor pi ∈ Pq of q based on
the distance to the currently fitted point (with a scaling parameter
s, that can be chosen depending on the search radius):

wi = e−||pi−q||/s, q ∈ Q, pi ∈ Pq (1)

Additionally, points can be weighted based on their estimated ac-
curacy as well.

Each point q ∈ Q will be projected onto the plane kq fitted
through its nearest neighbors Pq , thus bringing it in the proxim-
ity of the surface. This plane kq defines a local reference frame,
having the projection of the query point as the origin and with
axes denoted uvn (where u and v are coordinates in the local co-
ordinate system lying within the plane, and n is the normal of the
plane).

In order to fit a weighted least-squares plane, we assemble a
weighted covariance matrix from the m points pi ∈ Pq:

C =

m∑
i=1

wi · (pi − p) · (pi − p)T , p =
1

m
·

m∑
i=1

pi (2)

followed by the eigenvalue and eigenvector computation.

In the next fitting step the polynomial approximation is performed.
For this, the standard coordinate system is transformed into the
local coordinate system uvn and a high-order bi-variable poly-
nomial is fitted to the heights of the points above the plane and
the height of the projected point is recalculated. A polynomial of
order N has (N + 1) · (N + 2)/2 terms and is of the form:

hq(u, v) =

N∑
a=0

a∑
b=0

ca(a+1)/2+b · ua−b · vb. (3)

To compute the vector of unknown coefficients ci of the poly-
nomial, we minimize a weighted least squares error function as
in (Márton et al., 2009), using a recomputed w as weights based
on the initial projection of q, i.e., the origin of the new frame of
reference.

After resampling, surface normals have to be re-computed as the
normal of the fitted polynomial in point q, through the partial
derivatives. We can easily compute the normal n of the estimated
surface by computing the two partial derivatives at (u, v) = (0, 0)
in the local coordinate system and their cross product:

n = (u0 + c1 · n0)× (v0 + c2 · n0). (4)

where c1 and c2 are the first order coefficients for the u and v
coordinates, respectively, u0, v0 and n0 being the corresponding
unit vectors.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-155-2018 | © Authors 2018. CC BY 4.0 License.

 
157



Figure 4. Time (in sec.) for calculating polynomial models in a
neighborhood of 1.5 (blue) and 5 m (red) of orders 1-5 (on the
horizontal axis) for the dataset in fig. 10.

Fig. 4 shows the effect of N and search radius on the runtime. A
large radius enables the merging of distant misaligned surfaces,
while the distance-based weighting ensures that the smoothing is
not affected by distant points in case there is good overlap. A
high polynomial order increases accuracy, but quickly becomes
impractical for large radii. Since there need to be at least as many
points in a neighborhood as terms in eq. 3, the lower limit of the
search radius is influenced by N .

If we note q′ as projection of q onto the polynomial surface hq ,
the Euclidean distance between q and q′ is a good measure for
the distortion introduced by the fusion. It can be used to detect
(i) inconsistent measurements in the two point clouds, e.g., be-
cause one of them is inaccurate, (ii) fusion artifacts, e.g., when
the alignment did not converge to a correct solution and produced
duplicated surfaces, or (iii) the amount of deviation from the es-
timated surface (due to noise) that was smoothed out. In conse-
quence, artifacts could be marked in the fused point cloud, if a
threshold for the distance is exceeded.

3. EXPERIMENTS ON CHALLENGING DATASETS

In this section we describe our experiences on fusing challenging
datasets. The first case shows a building scene with a high over-
lap, but the overlapping area in the complete scene consists only
of a few parallel planes. The second case is about fusing a sparse
landscape model derived from satellite images and a dense, but
small LiDAR point cloud acquired by a mobile scanning system.

3.1 Fusing Point Clouds Overlapping only at Parallel Planes

Regarding the dataset of two point clouds from a building (fig. 1),
we observed a small offset after employing the standard ICP of
the Point Cloud Library – PCL (Rusu and Cousins, 2011), cf.
fig. 3. As discussed in sec. 2.2, this is because the overlapping re-
gion consists mostly of parallel planar surfaces. Instead of using
all points for ICP, we determine all boundary points and perform
ICP only on these points. We extract planar surfaces with a sim-
ple region growing method that considers the estimated surface
normals, and the boundaries of these surfaces, both using im-
plementations from PCL. The intermediate results are shown in
fig. 5.

Then, performing another ICP optimization on the contours will
not consider the large amount of uninformative points for the in-
plane rotations and translations. Using the 2d version of the opti-
mizer from PCL’s registration API ensures that only the remain-
ing three degrees of freedoms are changed, but requires a trans-
formation of the clouds such that to align the planes’ normal to
the vertical coordinate axis. Therefore the regular ICP was used
in this step as well, as out-of-plane correspondences are highly
unlikely when using the contours.

The final result is shown in fig. 5 (bottom), where contour points
of both point clouds are visualized in red. Both point clouds look
perfectly coregistered.

Figure 5. Parallel planar surfaces constituting the majority of the
overlapping area (top and middle). The correction based on the
plane’s contour points (bottom) produces an improvement over
the alignment from fig. 3, in spite of dataset-specific differences.

3.2 Fusing Landscape and Building Model

The dense point cloud as shown in fig. 6 has been acquired by a
mobile LiDAR system. It consists of more than 800 000 points
showing the road and buildings facades of a downtown crossroads
in Germany. The ground resolution at the road is less about 1 cm
due to the short distance of the scanner to the ground.

The much sparser landscape model is derived from WorldView-
01 satellite images following (Hirschmüller, 2011). We manually
cropped to scene to the same extend as shown in the dense point
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Figure 6. LiDAR point cloud of a downtown crossroads. We
marked identical buildings to fig. 7 by ellipses of same color.

cloud, cf. fig. 7 (bottom). The cropped landscape model con-
sists of almost 50 000 points and has a ground resolution of only
0.55 m per pixel. Originally, a digital surface model (2.5d) has
been produced, which we transformed into a 3d point cloud. The
reconstructed mesh shows only the roofs and the road surfaces,
but it lacks of building facades. Furthermore, the accuracy of the
height values is very low, e.g., the church tower is missing in the
data.

Figure 7. Complete (top) and cropped (bottom) surface model re-
constructed from satellite images. We marked identical buildings
to fig. 6 by ellipses of same color. The building surrounded by
a red ellipse is a church whose tower has not been reconstructed
from satellite images.

The result of the fusion of both datasets employing the standard
ICP without surface smoothing is shown in fig. 8. At top, we
show both point clouds in monochrome colors: green is the Li-
DAR point cloud, red is the sparse model derived from satellite
images. The LiDAR point cloud of the building and the land-
scape model overlap almost exclusively at the road’s surface. At
bottom, we chose the same view from above but the colors de-

scribe the point heights (blue is high, red is low). Together both
views allow a visual inspection of the fusion result. We also can
recognize a drift in the LiDAR point cloud because of scanning
errors, cf. the unaligned building facades marked by ellipses. The
same result is presented in fig. 9, but we chose a side view on the
scene. Here, we can inspect the match of height values on the
street level of the result, which we regard satisfactory.

The height profile of the satellite scene varies highly, so that the
ground looks corrugated. Furthermore roofs are often too low.
Since both point clouds only overlap at the ground, the satellite
model can be mapped on the LiDAR points along the ground. No
correction can be done at other parts of the point clouds without
making assumptions about the nature of the scene.

In the surface smoothing step, points can be projected on polyno-
mial surfaces of the denser dataset after performing ICP. We cal-
culated the polynomial functions based on the LiDAR points for
optimal mapping values. A distance-based weighting of points
is triggered by a Gaussian function to decrease the influence of
points far away from the centroid. Therefore we can safely use
neighborhoods which are ten times larger than the estimated noise,
i.e., in our case 1 to 2 m.

While it is computationally more expensive to fit higher order
polynomials, in most cases the results are better especially if
one considers the correctness of the recalculated surface normals
and edges and corners. Fitting higher order polynomials is more
and more costly as the number of members increases (see 4) but
the corners’ accuracy is maintained well at order 5 while still
smoothing the large undulations of the satellite measurements of
the road’s surface, cf. fig. 10.

4. SUMMARY AND OUTLOOK ON FUTURE WORK

We discussed the standard methodology for fusing point clouds
using ICP. It does not perform well, if we want to fuse point
clouds which have significantly different quality, and if the scenes
consist of many parallel planes. For both problems we presented
a solution, and we demonstrated their success.

In the experiment with the city model derived from satellite im-
ages and the LiDAR point cloud, we showed that we also are able
to handle scenes with little overlap. The overlap can be even less,
if a point cloud reconstructed from facade images taken from the
ground shall be fused with point cloud derived from nadir views
from above. Then we have a minimal overlap of only sharing the
building’s footprint and its eaves.

Solving this problem could include use of a method based on
signed distance functions as in volumetric mapping approaches
(Wagner et al., 2014), where occlusion information can be con-
sidered during optimization. These, however, are limited in their
volume or resolution, due to the explicit representation of the 3D
space, but methods for a hierarchic representation using octrees
and their compression exist already (Hornung et al., 2013).

To improve usability and transparency for the user, the degenerate
case of overlap between datasets consisting only of parallel planar
surfaces should be detected automatically. Similarly, the degree
of smoothing necessary could be estimated from the residual er-
ror metric of ICP. Also it remains to be analyzed which type of
artifact visualization is the most informative for non-expert users.

Furthermore, we would like to analyze recently published local
registration methods, e.g., (Zhou et al., 2016) and (Förstner and
Khoshelham, 2017), or other ICP variants or implementations,
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Figure 8. Result of fusion with standard ICP without surface
smoothing. Top: Monochrome colors (green: LiDAR point
cloud, red: landscape model derived from satellite images). Bot-
tom: Same view with colors encoding point heights. Notice the
height discrepancy at the boundary between facades, which are
visible only in the LiDAR-based point cloud (appearing as dense
lines), and the rooftops which are visible only in the satellite im-
ages (appearing as points arranged in a grid pattern).

e.g., (Geiger et al., 2012) and (Pomerleau et al., 2013). Last
but not least, it would lead to better results of ICP, if semantic
information as provided by (Weinmann et al., 2014), (Kuhn et
al., 2016) or (Wang et al., 2017) would be considered for finding
point-to-point correspondences, i.e., points classified as building
or street would only be registered to points of the other dataset
which have the same classification result.
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Figure 10. Top row: Result of fusion, left: with standard ICP only, right: with ICP and an additional step with surface smoothing using
a polynomial of order 5. Thereto, the points from landscape model are projected on polynomial models through LiDAR points. A box
is marked in both views. This extract is documented in the two rows below. There, the results without polynomial fittings (0) and with
polynomial fittings of degree 1 to 5 are visualized in the according subfigures. Additionally, we marked the area of a building footprint
in two views. The increased accuracy along the edge between facade and road can get inspected. Furthermore, notice the disappearance
of the doubled road surface. This happens already at 1st order polynomial surface estimation.
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