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ABSTRACT:

In this paper we combine the ideas of image matching, object detection, image retrieval and zero-shot learning for stating and solving
the semantic matching problem. Semantic matcher takes two images (test and request) as input and returns detected objects (bounding
boxes) on test image corresponding to semantic class represented by request (sample) image. We implement our single-shot semantic
matcher CNN architecture based on GoogleNet and YOLO/DetectNet architectures. We propose the detection-by-request training and
testing protocols for semantic matching algorithms. We train and test our CNN on the ILSVRC 2014 with 200 seen and 90 unseen
classes and provide the real-time object detection with mAP 23 for seen and mAP 21 for unseen classes.

INTRODUCTION

Various image matching techniques are traditionally applied in
stereo vision, 3D reconstruction, structure-from-motion, SLAM
algorithms, multi-sensor fusion, landmark detection, object track-
ing and so on. However, classical image matching techniques
cannot match images with essential shape or pose inter-frame
changes, because image matching operates with pixel-level im-
age fragments or mid-level shape templates, but not with seman-
tic objects or object parts. On the other hand, object detection
techniques presume the detection and localization of all objects
of some given class (or classes). In the early years of computer
vision object detection was implemented in nave manner based
on direct matching of class samples. In the modern computer
vision such nave detection-by-matching is totally substituted by
learning-based detection. Currently all state-of-the-art detectors
utilize the deep convolutional neural networks (CNN). Unfortu-
nately, there is an important limitation of CNN-based detectors:
they can detect only the objects of seen classes presented at CNN
training stage. But sometimes we need to detect objects of previ-
ously unseen classes based on just one or too few sample images
available at the execution stage. This unseen object detection
problem is close to the image matching, but it requires the more
sophisticated semantic matching. We propose to call the semantic
matcher any procedure, which takes two images (test and sample)
as input and returns the set of object detections (bounding boxes
on test image) corresponding to semantic class represented by in-
put sample image.

In this paper we combine the ideas of image matching, object de-
tection, image retrieval and zero-shot learning for practical real-
time solving of the semantic matching problem. In our single-
shot semantic matcher CNN architecture we compare the deep
features from the top hidden layer of single-shot detector with
deep features representing the request (sample) image. Our CNN
consists of three parts: Object Detector, Request Descriptor and
Semantic Matcher. We perform the joint end-to-end training of
these three CNN parts. Our implementation of semantic matching
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CNN architecture is based on GoogleNet (Szegedy et al., 2015)
and YOLO/DetectNet (Redmon et al., 2016) CNN architectures.
We train and test our net on the ILSVRC 2014 dataset (200 seen
and 90 unseen classes) and provide the real-time object detection
with mAP (mean average precision) 23 for seen and 21 for unseen
classes.

The contributions of this paper are the following:
- new problem statement for semantic matching;
- original single-shot semantic matcher CNN architecture con-
taining Object Detector, Request Descriptor and Semantic Matcher
parts;
- experimental demonstration of possibility for real-time detec-
tion of unseen objects.

1. RELATED WORKS

1.1 Object Detection

Modern CNN based object detection methods are divided into
two groups by computation scheme: region proposal based and
single shot methods.

1.1.1 Proposal based methods are represented by R-CNN
(Girshick et al., 2014), Fast RCNN (Girshick, 2015), Faster R-
CNN (Ren et al., 2015), R-FCN (Dai et al., 2016), FPN (Lin et
al., 2017a). R-CNN uses selective search method to generate re-
gion proposals in an image and then perform classification on the
regions. R-CNN is very slow because the CNN must process each
region separately. Fast R-CNN and Faster R-CNN improve the
efficiency by using neural networks to generate the region pro-
posals and share features between detector CNN and classifier
CNN. R-FCN improves speed and accuracy by removing fully-
connected layers for final detection. FPN uses pyramid CNN ar-
chitecture based on ideas of SSD (Liu et al., 2016) and DenseNet
(Huang et al., 2017) to improve accuracy. Deformable R-CNN
(Dai et al., 2017) uses dynamic filters in convolutional layers to
take into account for variability of view angle, object size and so
on.
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1.1.2 Single shot methods like YOLO (Redmon et al., 2016),
SSD (Liu et al., 2016), DSOD (Shen et al., 2017), RetinaNet (Lin
et al., 2017b) have recently been proposed for real-time detection.
YOLO uses a single CNN to predict object class and location in
one stage. There is not longer required to do per-region clas-
sification operation so that it is extremely fast. SSD improves
YOLO in several aspects: using different layers for classification
and bounding estimation; using different CNN layers for differ-
ent scales; shape priors to improve IOU. DSOD is built upon the
SSD framework but uses DenseNet-like (Huang et al., 2017) ar-
chitecture to get better quality. RetinaNet based on FPN architec-
ture that is transformed to single shot and special loss function –
Focal Loss that keeps focus on hard cases during learning.

1.2 Image retrieval

Image retrieval is one of a fundamental task of machine learn-
ing. Modern algorithms are grown from handcrafted features
and indexing algorithms (e.g, (Lowe, 2004), (Bay et al., 2006),
(Dong et al., 2010)) to methods that uses CNN for global de-
scriptor construction (for example (Ng et al., 2015). A variety of
methods uses Deep features approach for image retrieval (for ex-
ample, (Arandjelovic et al., 2016)). There based on the general-
ization properties of CNNs, CNNs were trained for classification
on some big dataset (for example ILSVRC). (Babenko and Lem-
pitsky, 2015) proposed to fine tune networks on a dataset similar
or closed to target dataset. The same idea was widely used for
different tasks. In (Torii et al., 2015) geo-tagged datasets were
used for weakly supervised fine-tuning of a triplet network. A
image pair with big distance used as non-matching, while match-
ing pair are picked by closest images. Distance is defined by the
current CNN representation. This approach performs end-to-end
fine-tuning for image retrieval. In (Radenovic et al., 2016) hard
negative mining was used to improve accuracy. In (Cao et al.,
2017) original hashing method was used for effective feature cod-
ing. In (Zepeda and Perez, 2015) exemplar SVM was proposed
for final classification.

2. MAIN IDEA AND CNN ARCHITECTURE

This paragraph evolves and describes the ideas of semantic match-
ing, which were briefly outlined in Introduction.

As we mentioned above, image matching problem refers to the
comparison of two images test and sample. Matching process
usually consists in a search of correspondence between sample
image and test image (or some part of test image). The result of
image matching is a set of sample-to-test correspondence param-
eters, which describe the localization of corresponding part of test
image and (if required) the transformation of this image fragment
relative to sample image. Image matching algorithms need to be
robust with respect to major lighting/color and minor pose/shape
changes. However, classical image matching techniques cannot
match images with major shape or 3D pose changes like those
demonstrated in Figure 1, because image matching operates with
pixel-level image fragments or mid-level segmented shape tem-
plates, but not with semantic objects or object parts.

On the other hand, object detection problem presumes the detec-
tion and localization of all objects of some given class in the ob-
served (test) image. Currently all state-of-the-art object detectors
are based on deep convolutional neural networks (CNN). These
CNNs take test image as input and return the list of object propos-
als (bounding boxes) with some belief estimates for recognized

object class. The training of such CNN-based detectors requires
thousands of examples for each class. The main natural limita-
tion of such common learning-based object detection scheme is
that we can detect only objects of seen classes (presented in our
training set).

Figure 1. Semantic matching as image matching with major
shape and/or pose changes

But sometimes we need to detect semantic objects of previously
unseen class based on one or too few new sample images avail-
able at the execution stage. This unseen object detection problem
is close to the image matching problem, but it requires the more
sophisticated semantic matching. Semantic matcher should take
two images (test and sample) as input and return the list of ob-
ject proposals (bounding boxes on test image) with some belief
estimates, which correspond not to concrete input sample, but
to whole (previously unseen) semantic class represented by this
sample image. The original single-shot detectors are trained for
detection of some fixed seen classes, but we propose to apply the
retrieval by deep feature trick for fusion of single-shot detection
and image retrieval ideas. In our single-shot semantic matcher
CNN architecture we compare the deep features from the top hid-
den layer of single-shot detector (see Figure 2) with deep features
representing the request class-sample image.

So, our CNN consists of three parts: Object Detector, Request
Descriptor and Semantic Matcher (Figure 2). We perform the
joint end-to-end training of these three CNN parts. Thus we ob-
tain the real-time semantic object detection-by-request. Our CNN
architecture (Table 1) is based on the GoogleNet-V1 CNN that
implemented in Caffe (Jia et al., 2014) framework and pre-trained
on the ILSVRC 2012 image base.

Input
image

Test (512× 512) 128×128

Object De-
tector CNN

GoogleNet FCN Request
descriptor
CNN

GoogleNet
FCN

Concatenation

Semantic Conv 1x1 (1024)
Matcher Conv 1x1 (1024)
CNN Conv 1x1 (1) Conv 1x1 (4)

(Segmentation) (Bboxes)

Table 1. Our CNN architecture

We select the GoogleNet as a basic CNN model due to its very
wide spreading in a machine learning society, which provides
the guaranteed repeatability of our results with the use of any
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(a) single-shot object detector

(b) single-shot semantic matcher

Figure 2. From single-shot object detector (a) to our single-shot
semantic matcher CNN architecture (b).

deep learning framework. For Object Detector CNN and Request
Descriptor CNN we use the GoogleNet-V1. So Object Detector
CNN contains 2 convolution layers, 9 inception modules, and 3
pooling. Request Descriptor CNN has a similar architecture with
the exception of 2 pooling. Semantic matcher CNN contains two
1 × 1 convolutional layers serially and two convolutional lay-
ers for bounding box prediction and semantic segmentation. The
output grid cell is 16× 16 pixels of size.

To train the CNN we use the complex loss function that is the lin-
ear combination of loss functions for objects semantic segmenta-
tion and objects bounding boxes estimation:

L = Lsemantic + Lrectangle (1)

For semantic segmentation we use the following L2-loss func-
tion:

Lsemantic =

N∑
k=1

W∑
x=1

H∑
y=1

(labelk(x, y)−GTmapk(x, y))
2

(2)

Here
N – number of samples;
W,H – horizontal and vertical grid sizes;
labelk(x, y) – predicted class label map for k-th sample;
GTmapk(x, y) – ground truth class label map for k-th sample.

In addition, we use the L1-loss function normalized by the geo-
metric mean of ground truth width and height of object in order to
save balance between objects that belong in the wide size range:

Lrectangle =

N∑
k=1

W∑
x=1

H∑
y=1

|xk
1(x, y)− xk

GT1
(x, y)| ·Kk

norm

+ |yk
1 (x, y)− yk

GT1
(x, y)| ·Kk

norm

+ |xk
2(x, y)− xk

GT2
(x, y)| ·Kk

norm

+ |yk
2 (x, y)− yk

GT2
(x, y)| ·Kk

norm

(3)

Here
xk
1(x, y), y

k
1 (x, y), . . . – prediction of relative coordinates for k-

th sample in cell Cx,y;
xk
GT1

(x, y), yk
1 (x, y), . . . ground truth relative coordinates for k-

th sample in cell Cx,y;
Kk

norm = 1√
Wk·Hk

– scale normalization coefficient for k-th

sample;
Wk, Hk – ground truth width and height of k-th sample.

Note that scale normalization is implemented in our architecture
as a special output-like mask layer with 4×W ×H cells contain-
ing the scale normalization coefficients if these cells cover object
appropriated input reference image, and 0 values - otherwise. At
the training stage the element-wise multiplication of CNN output
and this mask is performed and this way the requirement of scale
normalization of coordinate errors in back propagation as well
as ignoring the cells without objects in the learning for bounding
box prediction is fulfilled.

So training dataset consist of pairs of images – test image and
request image. Those pairs can be negative (there is no object of
requested class on test image) or positive (there is some object of
requested class on test image).

Finally, lets note that our CNN consists of three parts: Object De-
tector, Request Descriptor and Semantic Matcher, which process
different input data. Object Detector processes the test image,
Request Descriptor processes the request (sample) image repre-
senting the requested class and Semantic Matcher processes the
activations of top layers of Object Detector and Request Descrip-
tor CNNs. Due to this we can decrease the amount of computa-
tions via preliminary calculation, tabular storage and further reuse
of deep descriptors. Such implementation allows preserving the
high processing speed of single-shot detector even if we deal with
more than one sample per class or multiple classes, because we
run Object Detector once, take requests descriptions from mem-
ory storage and execute only the Semantic Matcher each time for
each proper analyzed request.

3. EXPERIMENTAL RESULTS

We use the ILSVRC 2014 dataset (training subset) for our CNN
training. It contains 456567 images annotated with the 200 ob-
ject categories and contained objects bounding boxes. For train-
ing we use 512x512 fixed size images cropped from ILSVRC
images without scaling and 128x128 fixed size images cropped
from same dataset for reference image.
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3.1 Detection-by-Request learning and testing

We propose the new detection-by-request testing protocols on
ILSVRC 2014 for semantic matching algorithms. These proto-
cols presume the estimation of AP (average precision) charac-
teristics (with bounding box Intersection-over-Union > 0.5) for
each sample of each class being taken as request (one leaf out).
Based on this exemplar-wise information we calculate the total
AP and mAP scores for semantic matching algorithm - average
and top. The top score is based on the account of detection results
of only one most representative request for each class (estimated
via testing on the validation set).

In seen classes case it is possible to compare proposed method to
classical single shot detectors like YOLO. In this case we cant use
one leaf out technique, so we use test subset for request images ad
whole testing subset for testing. Our model can run more than 30
FPS on GeForce 1080Ti, so computational speed is comparable
to single shot detectors.

3.2 Seen Object Detection Results

For seen object detection testing, we use ILSVRC 2014 dataset
and official code for evaluation. Our result is 0.23 mAP. Our mAP
is much lower than modern CNN-based object detectors (about
0.7 based on result table for ILSVCR 2017). This relatively low
level can be explained by two reasons:
- During training we dont use any types of OHEM (online hard
examples mining) or other techniques for result improvements.
- Our CNN based on first generation Google net.

So the results are comparable with first generation of single shot
detectors like YOLO. We think with modern CNN and object
detection learning techniques like OHEM, Focal loss and mod-
ern CNNs like DenseNet semantic matcher can reach state of art
mAP on seen objects.

We evaluate reactions of our matcher on different request of one
class. We fix a threshold and build precision/recall graph for dif-
ferent requests. As you can see on Figure 3 the quality of re-
quest is fundamentally important. In our example precision/recall
grown from 0.66/0.19 for worst request to 0.95/0.9 for best re-
quest. We have computed average precision and recall with fixed
threshold on the 200 seen classes mean by request average preci-
sion 0.7, mean by request average recall 0.58. The results of this
evaluation are shown in Figure 4.

Figure 3. Precision and recall (for fixed threshold) for different
requests for class squirrel

If we use best requests for each class according to the F1-measure
(Figure 5) we receive best request average precision 0.77 (more
than 10% gain), best request average recall 0.68 (about 15% gain).

Figure 4. Mean (by request) precision and recall (for fixed
threshold) for different classes. Each point represent one of 200

seen classes

Figure 5. Best (by request) precision and recall (for fixed
threshold) for different classes. Each point represent one of 200

seen classes

3.3 Unseen Object Detection Results

We conducted similar studies for unseen classes of images. We
selected 90 classes from extended version of ILSVRC 2014 dataset
(3632 classes) that were not used at the training stage. First
we evaluate reactions of our matcher on different request of one
class. To evaluate difference between reactions on seen and un-
seen classes we build similar graphs as in seen case (Figure 6, 7).
In our example precision/recall grown from 0.42/0.24 for worst
request to 0.72/0.56 for best request.

We have computed average precision and recall with fixed thresh-
old on the 90 unseen classes mean by request average precision
0.686, mean by request average recall 0.57.

If we use best requests for each class according to the F1-measure
we receive best request average precision 0.73 (more than 6%
gain), best request average recall 0.63 (more than 10% gain). For
90 unseen classes we receive 0.21 mAP following our testing pro-
tocol. As you can see from results, our CNN has small quality
drop for unseen classes in comparison to seen case. For fixed
threshold mean by request average precision drops by approx.
2%, mean by request average recall drops also by 2%. Some
qualitative examples shown on Figure 8.
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Figure 6. Precision and recall (for fixed threshold) for different
requests for unseeen class screw

Figure 7. Mean (by request) precision and recall (for fixed
threshold) for different classes. Each point represent one of 90

unseen classes

4. CONCLUSION

In this paper, we focus on stating and solving the semantic match-
ing problem. Semantic matching algorithm takes two images
(test and request) as input and returns the list of detected objects
(bounding boxes) on test image corresponding to semantic class
represented by request (sample) image. Such semantic matchers
could be of use in the image matching, sensor fusion, landmark
detection, change detection, object tracking and other computer
vision tasks, which require the (re)identification and localization
of 2D image or 3D scene parts under their major shape and pose
changes. On the other hand, such semantic matching could pro-
vide the object detection for objects of unseen classes represented
by only one or too few samples.

We consider the test image as a collection of rectangular frag-
ments and reduce the semantic matching problem to the fragment
retrieval-by-request task. Then we apply the ideas of single-shot
object detectors like YOLO and SSD in order to achieve the real-
time semantic matching tool. In our single-shot semantic matcher
CNN architecture the deep features from the top hidden layer
of single-shot detector are compared with deep feature vector,
which represents the request image. Object detection and request
description parts are trained together end-to-end for seen class
object detection/localization by request and then applied to both
seen and unseen classes.

Our implementation is based on GoogleNet and YOLO/DetectNet

Figure 8. Qualitative Examples for the unseen classes detection:
request image, test image and coverage map

(Redmon et al., 2016) CNN architectures. We train our net on
the ImageNET-200 dataset (200 seen classes, 90% images for
learning, 10% - for testing) and test both on the testing part of
ImageNET-200 dataset and on ImageNET-90 dataset (90 unseen
classes). We propose the detection-by-request training and test-
ing protocols on ILSVRC 2014 for semantic matching algorithms.
These protocols presume the estimation mean average precision
characteristics (with bounding box Intersection-over-Union >0.5)
for each sample of each class being taken as request. Based on
this exemplar-wise information we calculate the total mAP scores
for semantic matching algorithm - average and top. The top score
is based on the account of detection results of only one most rep-
resentative request for each class (estimated via testing on the
validation set). Our semantic matcher CNN operates at the rate
of 30 fps with CPU Core i7 and GPU GeForce GTX 1080 Ti.
This computational speed is comparable, for example, to multi-
class single shot detectors. So, we can conclude that our seman-
tic matcher can be used as a real-time multi-class object detector
with reasonable detection rates for seen classes and possibility for
detection of unseen classes.

Model for Caffe framework is available on our GitHub page:
https://github.com/NIIAS3050/SingleShortSemanticMatcher. In
the future we will try to improve detection rates via OHEM,focal
loss and other techniques. We will implement our architecture
based on more modern and powerful CNN architectures like Dense-
Net (Huang et al., 2017) in the schemes of SSD (Liu et al., 2016)
or FPN (Lin et al., 2017a) detectors (for non-real-time applica-
tions).
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