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ABSTRACT: 
 
With deep learning approaches now out-performing traditional image processing techniques for image understanding, this paper 
accesses the potential of rapid generation of Convolutional Neural Networks (CNNs) for applied engineering purposes. Three CNNs 
are trained on 275 UAS-derived and freely available online images for object detection of 3m2 segments of railway track. These 
includes two models based on the Faster RCNN object detection algorithm (Resnet and Incpetion-Resnet) as well as the novel one-
stage Focal Loss network architecture (Retinanet). Model performance was assessed with respect to three accuracy metrics. The first 
two consisted of Intersection over Union (IoU) with thresholds 0.5 and 0.1. The last assesses accuracy based on the proportion of track 
covered by object detection proposals against total track length. In under six hours of training (and two hours of manual labelling) the 
models detected 91.3%, 83.1% and 75.6% of track in the 500 test images acquired from the UAS survey Retinanet, Resnet and 
Inception-Resnet respectively. We then discuss the potential for such applications of such systems within the engineering field for a 
range of scenarios. 
 
 

1. INTRODUCTION 
 
With significant advances in the research field of deep learning, 
there has been a dramatic change in image processing techniques 
for image understanding and object recognition (LeCun et al., 
2015). This has been driven by significant developments in the 
architectures of Convolutional Neural Networks (CNNs) (e.g. 
Long et al., 2014; Badrinarayanan et al., 2015; Chen et al., 2016). 
Such advances have led to object detection models trained using 
state-of-the-art CNNs to surpass human abilities to distinguish 
features within an image (Chen et al., 2015). Furthermore, 
adaptions of CNN object detection models are paving the way for 
accurate general-purpose pixel-wise segmentation and 
classification of images (Long et al., 2014; Pinheiro et al., 2016). 
Whilst CNNs are being heavily utilised within the computer 
science and medical imaging fields, there is less evidence of such 
exploitation within the field of engineering. There are many 
reasons why this may be the case, however, one of most obvious 
reasons would be the novelty of the technology. This has likely 
resulted in many engineering firms simply being unaware of the 
recent advances in both deep learning as well as the open-source 
libraries that allow for easy model generation and application. 
Here we demonstrate that with the aid of Googles TensorFlow 
open-source project as well as cloud computing resources (e.g. 
Amazon AWS, Google Cloud etc.), deep learning is accessible to 
a wide audience outside of the computer science and medical 
imaging field. To achieve this, we outline the methodology 
required to train a CNN using UAS acquired imagery from an 
aerial railway track survey. Furthermore, we address key 
obstacles in the generation of such models as well as undertake 
quantitative and qualitative comparisons of key decisions that 
must be made. These include model hyper-parameters such as 
training set size, learning rates and architectures. Whilst deep 
learning and CNN techniques have been well documented within 
computer science journals, this paper intends to demonstrate the 
potential of the technology in the context of practical application 
for engineering scenarios. The broader aim of this paper is to 

demonstrate the advantages and caveats of the use deep learning 
in this context. 
 
1.1 Convolutional Neural Networks 
 
CNNs (or ConvNets) are the most common deep learning tool for 
analysing visual imagery and since the success of Krizhevsky et 
al., (2012) architecture for the annual ImageNet classification 
competition (Deng et al., 2009) they have proved to be an 
essential tool for image understanding. The modern CNN 
architectures are largely accredited to pioneering work 
undertaken by LeCun et al. (1989) and LeCun et al. (1998). 
CNN’s derive their name from the ‘convolutional’ operator 
which is a common tool used in image processing. Convolution 
filters have demonstrated essential components for extracting 
useful information from images, however, the convolution kernel 
needs to be pre-computed and pre-selected prior to being used on 
an image (e.g. Sobel, Laplacian, Gaussian blur filters etc.). By 
definition, deep learning does not follow this pattern. In deep 
learning, relationships between features are learned through 
supervised training of artificial neural networks. No prior 
assumptions or relationships are given to the model prior to 
training. Each neuron within the neural network is assigned a 
weight and bias which is used to manipulate the flow of input 
data. The weights and biases for each neuron are trained using a 
backpropagation algorithm (LeCun et al., 1990) which utilises 
supervised training data to calculate the necessary gradient and 
thus direction of each weight and bias to be tuned to minimise a 
loss function. Whilst a full review of deep learning technology is 
beyond the scope of this paper, LeCun et al. (2015) can serve for 
such a purpose. CNNs work in a similar way to typical deep 
learning networks, however, convolution filters are the features 
to be learned by the network. During training, images are passed 
through the CNN and the convolutions applied to the image. The 
filters are then adjusted accordingly through the backpropagation 
algorithm. While higher level filters tend to learn edge/corner 
detection filters, lower level filters can be significantly more 
complex and unique matrix combinations (Figure 1).  
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In general, the application of CNNs can be split into three 
fundamental categories; classification, object detection and 
segmentation. Classification classifies the entire image into one 
category (e.g. dog, person, building etc.). Object detection is 
effectively thousands of classifications on one image. By doing 
this, the bounding box of the classification with the highest 
probability of a given object is assumed to be the objects location 
within an image. Lastly, typical segmentation algorithms (e.g. 
Long et al., 2015; Pinheiro et al., 2016; Badrinarayana et al., 
2015) use a localised classification as the initial stage to perform 
pixel-wise semantic segmentation meaning every pixel within an 
image is given a class. In this paper, we discuss the potential of 
object detection. This decision is driven by the high performance 
of modern object detection algorithms. Whilst the reliability and 
robustness of semantic-segmentation is increasing within 
controlled benchmark datasets (e.g. PASCAL VOC (Everingham 
et al., 2010), Synthia (Ros et al., 2016), COCO (Lin et al., 2014)), 
there is much less evidence of applied general-purpose use to the 
same degree as object detection. 
 
1.2 CNNs in civil in engineering: 
 
Applied use of CNNs has been dominated by the computer 
science and medical imaging fields. Typical computer science 
applications include face detection (Parkhi et al., 2015; Li et al., 
2015), automated driving/robotic vision systems (Huval et al., 
2015) and general object detection used by scene categorisation 
for companies handling large image datasets (e.g. Facebook, 
Google, Amazon etc.). CNNs have also shown incredibly 
promising results within medical imaging with models now 
surpassing doctors for the classification of particular 
irregularities of cells (Zhang et al., 2017). However, CNNs still 
have a bounty of untapped potential within the engineering field. 
 
Awareness of damage and defects in civil engineering structures 
is vital for appropriate prevention measures to be undertaken. 
However, due to the size of structures (e.g. roads, tunnels and tall 
buildings and bridges), regular surveying for defects is time 
consuming when carried out manually. Due to the inhomogeneity 
and complexity of defects such as cracks creating general-use 
detectors using traditional computer vision techniques (e.g. 
Abdel-Qader et al., 2003; Zou et al., 2012) has not been fully 
adopted by industry. Recent papers adopting deep learning CNN 
techniques however have shown highly accurate results for the 
detection and segmentation of cracks in a range of surfaces such 
as tarmac and asphalt (Zhang et al., 2016), metal fixings (Yeum 
and Dyke, 2015) and concrete (Cha et al., 2017; Koch and 
Brilakis, 2011).  Here all papers reported crack identification 
with an accuracy of over 90% which greatly out performs prior 
attempts which do not utilise machine learning techniques. The 

results improve on papers such as Prasanna et al., (2016) where 
traditional machine learning algorithms such as Support Vector 
Machines and Random Forest were used for detection. 
 
Similar to crack detection, railway track defect analysis has also 
benefitted from CNNs ability to detect inhomogeneous and 
variable features. Giben et al., (2015) demonstrated a method of 
mounting a camera to the front of a rail vehicle to capture 
imagery. Each image was subsequently segmented into each 
individual rail component with a 92% accuracy. This provided a 
promising foundation for further defect analysis. Faghih-Roohi 
et al., (2016) followed a similar approach, however, used video 
frames as input images for training and achieved similar accuracy 
(~91%). Soukup and Huber-Mörk, (2014) and Masci et al., 
(2012) also demonstrated similar approaches with high accuracy 
to detect defects in the steel tracks using a range of CNNs. These 
methods demonstrate the powerful nature of CNNs where 
consistent camera view-point positions are available.  
 
Makantasis et al., (2015) demonstrated techniques to undertake a 
full tunnel defect inspection using CNNs. This demonstrates the 
ability of single model’s ability to have a multi-use purpose 
through training on multiple classes. For example, the 
combination of defect inspection and Building Information 
Modelling (BIM) systems can be incorporated into a general  
solution, where both objects and defects are recorded 
simultaneously. Currently, BIM system generation procedures 
require a high level of manual feature labelling, this therefore 
presents a great potential for atomisation. While BIM tends to 
benefit from data acquired using terrestrial cameras, the ever-
decreasing costs of Unmanned Aerial Systems (UASs) has also 
resulted in great potential for aerial imagery to be used for similar 
purposes. UASs are now becoming common-place on large 
engineering and surveying projects, and therefore offer a great 
platform for multi-use CNN applications. This can include tasks 
such as routine bridge and building inspection, power line 
surveillance, as well as feature mapping of built environments 
(Radovic et al., 2016). Other examples can include collection of 
building inventory data which is important for seismic risk 
assessment. Here, UASs offer potential for automating collection 
of important risk parameters such as the number of stories of a 
building (Liu et al., 2014). Furthermore, CNNs can offer the 
potential for automating the flight control of the UAS by allowing 
the system to perform object sighting and comprehension (object 
detection and classification respectively). This would be 
particularly effective when the feature of interest is moving, or 
its location is unknown prior to the flight (i.e. defects). Despite 
the potential for these solutions, engineering features can consist 
of very specialised equipment and therefore bypass the interest 
of the general public. To create such systems, the engineer or  

 
Figure 1: The architecture of a typical CNN. The first few layers usually consist of convolution and pooling layers. Units within the 
convolutional layers are then organised into feature maps where each unit is connected to local patches of the previous layer though 

a set of weights known as a filter bank. The result of this weighted sum is passed through a non-linearity (e.g. ReLU or Softmax 
function). Finally, a fully connected layer is added. The weights of the fully-connected layer are used to determine the classification 

of the inputted image. [Source: MathWorks., 2018] 
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BIM professional would need to generate and train their own 
model fit for the purpose. A general consensus would indicate 
training a CNN requires two essential pre-requisites; a large 
dataset and high compute power. Whilst this consensus is true, it 
is possible for both to be overcome using a range of techniques 
described in this paper. 
 

2. METHODOLOGY 
 
The process of utilising a CNN for object detection can be 
categorised into the following stages; data acquisition, model 
training, model evaluation, model application (Figure 2). Here 
we describe the process taken to achieve each stage. 
 
2.1 Data Acquisition 
 
The aim of the experiment was to create a site-specific object 
detection model. Therefore, data was collected of the site. Our 
data was acquired using a DJI Zenmuse X5 camera mounted onto 
a DJI Inspire 1 UAS. As the original purpose of the data 
collection was for a photogrammetric reconstruction, both nadir 
and oblique imagery was taken to aid an accurate camera 
calibration. Both nadir and oblique images were used for training, 
validation and testing of the model. To further increase the 
robustness and versatility of the training data, 125 images of 
railway tracks in varying light conditions and view angles were 
downloaded from the internet and included into the training set. 
LabelImg (Tzutalin, 2015) was used to create ground-truth 
bounding boxes. As the railway track is continuous and has an 
inconsistent shape dependant on intersections etc. it was decided 
to define a section of rail as a ~3m2 section containing the steel 
tracks and concrete/wooden sleepers. 150 images of the railway 
track survey were used for training making the complete training 
set 275 images. To further utilise the small set of images, data 
augmentation was used. Data augmentation is a common 
technique in CNNs to fully-utilise small and large datasets, as 
well as avoid potential over-fitting of the model. Here, we applied 
a horizontal and vertical flip as well as a contrast adjustment to 
the input images. This subsequently tripled the image dataset. 
The total process of generating ground-truth labels took ~2 hours.  
 
2.2 Network Architectures and training 
 
Google’s TensorFlow (Abadi., 2016) was used as the framework 
for model training. All training was undertaken on a single 
Nvidia 1080Ti Graphical Processing Unit (GPU). Object 
detection architectures can be categorised into two main 
categories; two-stage and one-stage. Two-stage approaches were 
popularised by the R-CNN architecture (Girshick et al., 2013). 
The algorithm works by first generating a regional proposal for 
potential bounding box locations, the second stage then classifies 
each proposal candidate using a typical CNN classification. 
Lastly, a refinement stage is undertaken to eliminate duplicate 
bounding boxes and the proposals with the highest classification 
probability is used as the object location. This method has since 
been refined (Girshick et al., 2014; Ren et al., 2015; He et al., 

2017) and has consistently achieved state-of-the-art results on the 
COCO benchmark challenge. However, one of the biggest 
limitation with two-stage architectures is their inability to 
optimise or parallelise. Although accurate, currently real-time 
object-detection using a two-stage approach is not feasible (Lin 
et al., 2017). One-stage detectors speed up this process by 
applying a regular dense sample of classifications over the image 
at various scales and aspect ratios. Each sample consists of a 
bounding box for which the highest classification scores are 
recorded. This not only makes the process computationally 
cheaper, but also allows for parallelisation over multiple cores. 
The most common one-stage detectors consist of the YOLO 
(Redmon et al., 2016; Redmon and Farhadi, 2016) and SSD (Liu 
et al., 2016) detectors. Despite significant increases in detection 
speed, the YOLO and SSD accuracies typically fall within 10-
40% of state-of-the-art two-stage detectors (Huang et al., 2017; 
Lin et al., 2017). Here, we compare the recent RetinaNet (Lin et 
al., 2017) one-stage object-detector which claims similar 
accuracies to state-of-the-art two-stages detectors using its novel 
focal loss algorithm. For comparison, the commonly used Faster 
RCNN with ResNet (Chen and Gupta, 2017) and Inception 
(Szefedy et al., 2017) were also trained with the dataset. 
 
2.2.1 Faster RCNN 
 
Faster RCNN works by first creating a region proposal network. 
This is achieved processing the images with a features extractor 
(in our case ResNet and Inception-v4) at an intermediate level 
(e.g. ~Conv4-Conv6 layer). The results of these predictions 
attempt to classify the image into class-agnositc box proposals of 
foreground and background. The second stage takes the box 
proposals and uses them to crop from the same intermediate 
feature map. The remainder of the feature extractor is passed to 
the proposal to predict class and class-specific box refinement 
(Girshick, 2015). The location loss function used is the Smooth𝐿" 
for training where: 

(1) 

𝐿({𝑝&}), {𝑡&}) =
1

𝑁./01121
3𝐿./1(𝑝&, 𝑝&∗)
&

+ 𝜆
1

𝑁728
3𝑝&∗𝐿728(𝑡&, 𝑡&∗)
&

 

Where: 
 
{𝑝&} is the predicted probability of proposal being an object, {𝑡&} 
is the coordinates of the predicted bounding box, 𝐿./1 is the log 
loss, 𝑝&∗ is the ground truth objectness label, 𝐿728 is the Smooth𝐿" 
loss and 𝑡&∗, is the true box coordinates. The loss function of the 
regressor can then be defined as: 

(2) 

SmoothL1(x)= 9 0.5x2

|x|-0.5
			 if	|𝑥| < 1

otherwise,  

 
Whilst we separately use the ResNet (He et al., 2016) and the 
Inception-v4 with ResNet (Szegedy et al,. 2016) CNN classifiers, 
an in-depth description of these is beyond the scope of this paper. 

 

Figure 2: Workflow for training CNN with user acquired data. Test data is all the user data acquired that was not included in the 
training or validation datasets. 
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2.2.2 Focal Loss for Dense Object Detection (RetinaNet) 
 
RetinaNet was published along with the novel algorithmic 
concept of focal loss (Lin et al., 2017). Lin et al. (2017) propose 
that a large class imbalance between foreground and background 
(i.e. 1:1000) during the training of dense object detectors 
negatively impact accuracy. They address this issue by re-
shaping the cross-entropy loss such that it down weights the loss 
assigned to well-classified features during training. Here, the 
problematic well-classified features refer mostly to easily 
identified negatives (background). The reshaped focal loss 
differentiates between easy and hard examples and then uses this 
differentiation to down weight easy examples, focussing training 
on the hard examples. The focal loss starts from a Cross Entropy 
(CE) binary classification: 

(3) 

CE(𝑝, 𝑦) = 9 ? @AB(C)
? @AB("?C)

			 if	𝑦 = 1
otherwise, 

 
Which can be rewritten as: 

𝑝D = 9
𝑝

1 − 𝑝)			
if	𝑦 = 1

otherwise, 

(4) 
Where CE(𝑝, 𝑦) = CE(𝑝D) = −log	(𝑝D) 
 
The weighting is then applied by adding a modulating factor 
(1 − 𝑝D)I with tunable focussing parameter 𝛾 ≥ 0. The focal loss 
function is then defined as: 

(5) 
(𝑝D) = 	−(1 − 𝑝D)I log(𝑝D) 

 
This improvement allowed for an Average Precision (AP) score 
of 32.5 with speed 73ms on the COCO dataset. In comparison, 
Faster RCNN with ResNet and Inception-ResNet achieved an AP 
scores of 33.3 (speed 106ms) and 37 (speed 620ms) respectively. 
The RetinaNet classification is carried out using a Feature 
Pyramid Network (Lin et al., 2017) backbone on top of a 
feedforward ResNet architecture. 
 
2.3 Model hyper parameters 
 
Hyper parameters need to be set for any CNN the most influential 
and important here are; batch size, learning rate, decay, epochs 
and dropout. Simply speaking, batch size determines the number 
of images passed through one single forward/backward pass of 
the network. Learning rate is a constant that determines how 
quickly the network can abandon what it has learnt prior for new 
information. Decay is the ratio between learning rate and epoch, 
where, as the epoch increases the learning rate decreases. This is 
calculated by applying the following: 

(6) 

decayed learning rate=learning rate*decay rate(global step
decay step

). 
 
An epoch refers to a single presentation of all training data 
through the network. Dropout is a regularisation technique to 
avoid overfitting of a model. This was first outlined by Hinton et 

al., (2012) who showed by randomly omitting half of the feature 
detectors on each training case result degradation caused by 
overfitting could be mitigated. Hyper parameters can be tuned 
intuitively depending on the model response to training data. The 
hyper parameters used for each network architecture are shown 
in Table 1.  
 
2. 4 Model performance evaluation 
 
Initially, to quantify accuracy of the trained models the mean 
(mAP) was computed with a true positive being defined as the 
proposal and ground-truth having an Intersection Over Union 
(IOU) greater than 0.5. However, as the labelling of ground truth 
was computed as ~3m2 extracts of railway track this caused a 
significant under-estimation of the accuracy. For example, a 
section of railway track may be completely covered in object 
proposals, however, if these were not the initial ground truth 
labels (which would be difficult as square sections of railway 
track are largely homogeneous), the metric may define this as 
inaccurate. We addressed this issue with two approaches. Firstly, 
a second evaluation was performed on the model at each epoch 
with an IoU threshold of 0.1. Whilst this largely solves the issue 
described above, it introduces an uncertainty with respect to 
poorly detected areas perpendicular to the track (figure 3b). 
Despite this, however, we argue this is a more representable 
accuracy metric of the results discussed later.   Finally, we derive 
a third metric which does not make use of the IoU. Here, the 
amount of track covered by object proposals was compared as a 
ratio to the level of track not covered by an object proposal. We 
computed this by measuring the length of track within and not 
within object proposals. This also enabled an accuracy 
assessment to be undertaken on test images as well as validation 
images. A total of 500 test images were used for evaluation which 
were captures during the same aerial survey as the training data. 
 

 
Figure 3: Issues relating to Intersection over Union (IoU) 

accuracy measurement. A) Unfortunate positioning of ground 
truth boxes results in the image having an accuracy of 

50%@IoU=0.5. In the image a total of 78% of the railway 
track is covered by prediction boxes. With an IoU=0.1 the 
accuracy is increased to 75% B) Limitations of IoU@0.1 
metric. Although ~10% of railway track is detected the 
accuracy measurement would be 100%@IoU=0.1. C) 

Demonstration of more representative accuracy measurements. 
Image would have 0%@IoU=0.5 and 100%@IoU=0.1.  

 
 

 

Table 1: Hyper parameters for model training. Dropout rate is a fraction proportion of the feature detectors. Training time is on a 
single Nvidia 1080Ti GPU. 

Network Batch Size Learning Rate Decay  Dropout Rate Epochs Training Time (hrs) 
Faster RCNN 
with ResNet 

4 3E-4 0.96 0.5 200 4 

Faster RCNN 
with Inception-
v4 

4 3E-4 0.96 0.5 200 5.5 

RetinaNet 4 1E-5 0 0.5 200 6.5 
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3. RESULTS 
 
Initial training of the CNN (figure 4) demonstrated that whilst the 
model had appeared to converge with a small loss (~0.4), 
accuracy@IoU=0.5 was relatively low to what is expected in 
comparison to the cited studies of the network architectures. This 
we feel is a practical demonstration of the unsuitability of the 
accuracy metric used (IoU=0.5). Upon review it was noted that 
the railway track was detected in every training/validation and 
test image, further suggesting the unsuitability of the accuracy 
metric. Furthermore, accuracy is noticeably higher in the first few 
epochs and then decreases steeply before apparently settling. 
This is a common sign of a model ‘over-fitting’ to the training 
data (Wu and Gu, 2015). We discuss this further later on. 
 

 
Figure 4: Training loss and validation accuracy (IoU=0.5) for 

each of the network architectures. Accuracy is comparably 
lower to papers cited in the methodology section. The 

training loss appears to have converged well. 

 
The model validation was re-evaluated for each epoch with the 
accuracy metric IoU=0.1 (figure 5). A significant improvement 
is demonstrated as suggested. The accuracy is on average ~2.25x 
higher than the corresponding accuracy measurement where 
IoU=0.5 for each network. Furthermore, a visual review of the 
results (figure 7) showed no evidence of incorrect railway track 
predictions (where the side of the track is predicted (figure 3b)) 
being evaluated as correct. 
 

 
Figure 5: IoU comparison where IoU=0.5 and 0.1 thresholds 
are set for evaluation of the model performance. Results are 

approximately ~2.25x greater when IoU=0.1. 

To assess if the model was over-fitting, the training accuracy was 
evaluated for each epoch (figure 6). The training evaluation is 
calculated by running a single evaluation of each image in the 
training dataset at the end of each epoch. The evidence of over-
fitting is further demonstrated here where the decline in 
validation accuracy is mirrored by an increase in training 
accuracy. Whilst for a general fit model this would be a very 

worrying sign, for a site-specific rapid object detection system 
where little variation between training and testing data is likely 
to exist we argue this is not a major issue.  
 
The final evaluation method we carried out was a percentage ratio 
of railway track covered by object-detection proposals and 
railway track uncovered. The results along with the IoU results 
are displayed in table 2. Each architecture achieved a high 
coverage (>75%) of the railway track. Oblique images in general 
performed worse, most likely due to the more limited quantity of 
training data. Overall, the one-stage Retinanet outperformed the 
two-stage feature extractors (Resnet and Inception-Resnet). This 
was evident in both the IoU=0.1 and percentage proposal 
coverage evaluation methods. At IoU=0.5 the Resnet model was 
the highest performer. As one would expect, the one-stage 
Retinanet was also significantly quicker at creating proposals. 
Proposals were computed on a Nvidia 1060 GPU. In this 
scenario, Retinanet was 11.7x faster than Inception-Resnet and 
5.8x faster than Resnet for computing proposals. Inception-
Resnet was the slowest performing architecture and also yields in 
the poorest results in each evaluation. 
 

 
Figure 6: Training and Validation evaluation accuracies at 

IoU=0.5. The simultaneous increase in training accuracy and 
decrease in validation accuracy is a classic sign of over-

fitting of the training data. 

 
4. DISCUSSION 

 
The results demonstrate the potential for training high-accuracy, 
site-specific object detection models in a short period of time. 
This was achieved by utilising a small sample (150) of images 
acquired using a UAS as training data. The results obtained are 
only made possible by the ability to bottleneck (or fine-tune) the 
model architecture. Therefore, each model was not trained from 
scratch (i.e. all weights initialised randomly). Instead, the 
publicly available weights from training on the ImageNet dataset 
were used as initial parameter weights. Without this, initial 
training would require a significantly larger dataset (i.e. > 20,000 
images) and a much longer training time (i.e. ~1-2 weeks). 
However, weight information is readily available for the majority 
of common architectures and here we demonstrate it can be ‘re-
purposed’ for an engineering scenario. Furthermore, we 
demonstrate that with the aid of googles TensorFlow and 
labelImg, a training dataset has to potential to be labelled and 
trained within a day.  
 

 

Table 2: Results of each accuracy metric for network architectures. Computed proposal times on a Nvidia 1060 GPU are also shown. 
Retinanet can be seen here to be the highest performing network architecture. 

 Resnet Inception-Resnet Retinanet 
Proposal Coverage (%) 83.1 75.6 91.3 
Accuracy@IoU=0.5 (%) 43.2 32.9 40.7 
Accuracy@IoU=0.1 (%) 87.9 72.4 93.0 
Proposal Time (seconds) 0.64 1.29 0.11 
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The accuracy of the models demonstrated a high level of 
reliability in the solution. Despite initial validation accuracy 
(@IoU=0.5) of 43.2%, 32.9% and 40.7% for Resnet, Inception-
Resnet and Retinanet respectively, these low scores were most 
certainly due to the unsuitability of the accuracy metric. This was 
quantifiably backed up by increased accuracies in the two other 
accuracy metrics. The first of which decreased the IoU threshold 
value from 0.5 to 0.1. This new threshold resulted in evaluation 
accuracies of 87.9%, 72.4% and 93% for Resnet, Inception-
Resnet and Retinanet respectively. However, this does open up 
the potential risk for poorly positioned predictions that sit on the 
side of the railway track but near it being classed as correct 
predictions. However, a visual inspection of the results showed 
no evidence of this occurring. This is most likely due to the 
unique structure of the track being a prime subject for training a 
CNN. This is also likely to be the main reason high accuracies  
were obtained for the percentage of track covered accuracy 
metric. Here, we established a new accuracy assessment as the 
tracks demonstrated a potential problem for the IoU method. This 
was caused by railway tracks being a continuous feature and 
therefore object labelling consisting of ~3m2 segments of track. 
As this was done randomly, there was no way for the CNN to 
determine where the original ground-truth box would have lay. 
Although we feel this justifies reducing the IoU threshold to 0.1, 
it is perhaps still not the most relevent method. By measuring the 
length of the track and dividing it by the length of track covered 
by object proposals we develop an accuracy metric which 
determines how much of the track has been successfully 
identified. Interestingly, the one-stage object detection Retinanet 
performed the best overall. The results obtained were 83.1%, 
75.6% and 91.3% for Resnet, Inception-Resnet and Retinanet 
respectively. The superior proposals are also computed in a 
significantly shorter time (0.11 seconds).  
 
The ability for high accuracies with very low compute times 
opens up a large potential for reliable real-time object detection. 
With the decreasing costs of UAS’s along with ever improving 
libraries and API’s for flight control, the incorporation of real-
time object detection for intelligent flight control is clearly 
achievable. Such flight control could be used for automatic 
intelligent navigation solutions for both continuous structures 
such as roads and tracks as well as moving objects such as 
vehicles. We further argue that this is not only achievable, but 
object-detection models can be trained and deployed quick 
enough that it is a reasonable solution for many applications (e.g. 
defect detection, BIM inventory assessments, safety inspections 
etc.). 

 
The results indicate that the Inception-Resnet architecture 
performed the worst in respect to both speed and accuracy. This 
demonstrates that the speed-accuracy trade-off is not always a 
relevant assessment of a model’s potential. The performance of 
the one-stage Retinanet perhaps indicates that the incorporation 
of an updated cross-entropy function to include a focal loss 
strategy is highly effective. The novelty of the algorithm should 
however still suggest caution should be taken when reaching 
conclusions here. Neural networks are highly complicated 
systems and still highly unpredictable. The performance of one 
dataset is by no means a guarantee of the same model’s 
performance on a different dataset. Such caution is particularly 
relevant when generating many models based on single-class 
systems which vary from the ImageNet classes. 
 

 
 

Figure 7: Visual inspection of computed proposals for A) 
Inception-Resnet, B) Resnet and C) Retinanet. In general, 

oblique imagery performed worse than directly nadir 
imagery. This is likely due to a larger number nadir imagery 

in the training dataset. 

 
4.1 Future work

 
The work here demonstrates a typical object-detection system. 
However, for certain tasks a full semantic segmentation is sought 
after. The initial object-detection can act as a mask to further 
perform pixel-wise segmentation and classification through deep 
learning methods (e.g. Long et al., 2014; Pinheiro et al., 2016). 
Whilst the field of semantic segmentation through deep learning 
is advancing rapidly, there has not been any real demonstration 
of robust systems which could be incorporated easily into 
engineering workflows. This is mainly due to the increased 
complexity of the problem along with the increased labour of 
accurately labelling data. Object detection does still offer 
exciting possibilities for pixel-wise semantic segmentation using 
traditional image processing techniques. Many traditional image 
processing techniques often fail when unexpected background in 
introduced into the problem (e.g. covered objects, unexpected 
surface types etc.). By detecting object boundaries this problem 
can be simplified by an order of magnitude. 
 

Another interesting application would utilise the initial 
predictions computed through the object detection model to map 
continuous features such as railway track into GIS. This could be 
achieved by fitting lines between proposals to determine the 
direction and the features centre point. By then further combining 
the predicted features and the on-board GNSS a potential very 
accurate vector file of the feature could be produced. Such 
developments could be very useful for developing countries that 
do not benefit from well managed GIS. 
 

5. CONCLUSION 
 
The work presented here demonstrates the potential application 
of rapid development of CNNs for single-class object detection 
systems. Each CNN was trained using 275 images of railway 
track acquired from a UAS and online-resources. Whilst the work 
is directed at single-class (railway track) there is no reason to 
believe the solution is not scalable and with more training data, 
more classes could be trained. The Faster RCNN two-stage object 
detection was tested with two network architectures for 
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classification (Resnet and Inception-Resnet). A third one-stage 
object detection which incorporates a focal loss mechanism, 
using the novel Retinanet architecture was also evaluated. 
Retinanet out-performed both two-stage object detectors in 
respect to both speed and accuracy. Three accuracy metrics were 
computed to evaluate model performance which included; 
IoU@0.5, IoU@0.1, track proposal coverage. The latter refers to 
a percentage of railway track covered by object detection 
proposals compared to track length. Retinanet achieved an 
accuracy of 91.3% track coverage, with Resnet and Inception-
Resnet achieving 83.1% and 75.6% respectively. Manual 
ground-truth labelling took ~2 hours and model training between 
four and six hours on a single Nvidia 1080 Ti GPU. The models 
made use of fine-tuning pre-trained weights to achieve high 
accuracies in a short period of time. The results show to potential 
for such rapid object detection systems, which have a wide-range 
of potential applications that can the engineering field could 
benefit. Further research could develop the processes discussed 
within this paper for a range of applications such as; pixel-wise 
segmentation, automatic intelligent UAS navigation systems and 
continuous feature mapping systems.  
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