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ABSTRACT: 

The digital management of architectural heritage information is still a complex problem, as a heritage object requires an integrated 

representation of various types of information in order to develop appropriate restoration or conservation strategies. Currently, there is 

extensive research focused on automatic procedures of segmentation and classification of 3D point clouds or meshes, which can 

accelerate the study of a monument and integrate it with heterogeneous information and attributes, useful to characterize and describe 

the surveyed object. The aim of this study is to propose an optimal, repeatable and reliable procedure to manage various types of 3D 

surveying data and associate them with heterogeneous information and attributes to characterize and describe the surveyed object. In 

particular, this paper presents an approach for classifying 3D heritage models, starting from the segmentation of their textures based 

on supervised machine learning methods. Experimental results run on three different case studies demonstrate that the proposed 

approach is effective and with many further potentials. 

 

1.   INTRODUCTION 

The generation of 3D data of heritage monuments, in form of 

point clouds or meshes, is transforming the approach that of 

researchers, archaeologists and curators use for the analysis of 

the findings. 3D models allow to perform morphological 

measurements, map degradation or annotate sites and structures 

directly on the virtual reconstruction of the studied objects. 

Management of architectural heritage information is crucial for 

better understanding heritage data and for the development of 

appropriate conservation strategies. An efficient information 

management strategy should take into consideration three main 

concepts: segmentation, structuring the hierarchical relationships 

and semantic enrichment (Saygi et al., 2013). But the demand for 

automatic model analysis and understanding is ever increasing. 

Recent years have witnessed significant progress in automatic 

procedures for segmentation and classification of point clouds or 

meshes.  Segmentation is the process of grouping point clouds or 

meshes into multiple homogeneous regions with similar 

properties, whereas classification is the step that labels these 

regions (Grilli et al., 2017). There are multiple studies related to 

the segmentation topic, mainly driven by specific needs provided 

by the field of application (building modelling, heritage 

documentation and preservation, robotics, etc.). Most of the 

segmentation algorithms are tailored to work with a 2.5D surface 

model assumption, coming for example from a LiDAR-based 

survey. Many algorithms require a fine-tuning of different 

parameters depending upon the nature of data and applications. 

The majority of these are supervised methods, where a training 

phase is mandatory and fundamental to guide the successive 

machine learning classification solution (Guo et al., 2014; 

Niemeyer et al., 2014; Xu et al., 2014; Weinmann et al., 2015; 

Hackel et al., 2016; Qi et al., 2016; Weinmann et al., 2017; Wang 

et al., 2018).  

It is proved that complex real-world tasks require large training 

data sets for classifier training. Different benchmarks were 

proposed in the research community, with the “Large-Scale Point 

Cloud Classification Benchmark” (www.semantic3d.net) 

providing labelled terrestrial 3D point cloud data on which 

people can test and validate their algorithms. Until now there are 

no datasets for 3D heritage point cloud classification which 

would be sufficiently rich in both object representations and 

number of labelled points.  

Considering the availability and reliability of segmentation 

methods applied to (2D) images and the efficacy of machine 

learning strategies, we present our work and methodology 

developed to assist heritage workers in the analysis of the finds, 

whose core consists in the 2D segmentation of the texture of 3D 

models. 

 

1.1 Aim of the paper 

The possibility to semantically annotate shape parts may have a 

relevant impact in several domains, like architecture and 

archaeology. Regarding the segmentation phase, the 

identification of different architectonic components in point 

clouds and 3D meshes is of primary importance. Such operations 

can facilitate the study of heritage monuments and integrate 

heterogeneous information and attributes, useful to characterize 

and describe the surveyed object. 
The presented research was motivated by the concrete need of 

archaeologists to identify and map constructive functions and 

materials of heritage structures. In order to address this need, we 

developed a method to (i) document and retrieve historical and 

architectural information, (ii) distinguish different building 

techniques (e.g. types of Opus, etc.) and (iii) recognize the 

presence of previous restoration works. Detection of such types 

of information in historic buildings with traditional methods, 

such as manual mapping or simple eye examination by an expert, 
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are considered time-consuming and laborious procedures (Corso 

et al., 2017). The aim of our research is to propose a more 

efficient technique for classification with reduced manual input.  
The structure of the paper is as follows: Section 2 reports the state 

of the art in heritage segmentation and classification, focussing 

on previous studies for restoration purpose and walls analysis. 

Section 3 gives an assessment of the developed 3D segmentation 

methodology. Section 4 presents the case studies and assessment 

approach whereas results are reported in Section 5. Finally, 

conclusions wrap up the paper, reporting challenges and a future 

vision to fulfil the gap in the field.  

 

2.   RELATED WORKS 

Many experiments were carried out about the segmentation of 

heritage 3D data at different scales (Manfredini et al., 2008; 

Barsanti et al., 2017; Cipriani et al., 2017; Poux et al., 2017). 

Some works aim to define a procedure for the integration of 

archaeological 3D models with BIM (Saygi et al. 2013; De Luca 

et al. 2014). Sithole (2008) proposes an automatic segmentation 

method for detecting bricks in masonry walls working on the 

point clouds, assuming that mortar channels are reasonably deep 

and wide. Oses et al. (2014) classify masonry walls using 

machine learning classifiers, support vector machines and 

classification trees. Riveiro et al. (2016) propose an algorithm for 

the segmentation of masonry blocks in point cloud based on a 

2.5D approach that creates images based on the intensity attribute 

of LiDAR systems.  

Recently the combination of digital technologies such as laser 

scanning, photogrammetry and computer vision-based 

techniques and 3D geographic information systems (3D GIS) 

have made a considerable contribution for the conservation 

strategies of ancient buildings. This is proposed in the NUBES 

project developed by CNRS-MAP, where the 3D model is 

generated from 2D annotated images. In particular, the NUBES 

web platform (Stefani et al. (2014) allows the displaying and 

cross-reference of 2D mapping data on the 3D model in real time, 

by means of structured 2D layer-like annotations concerning 

stone degradation, dating and material.  

In Campanaro et al. (2016) a similar example to our paper is 

given. They created a 3D management system for heritage 

structures by exploiting the combination of 3D visualization and 

GIS analysis. The 3D model of the building was originally split 

into architectural sub-elements (facades) in order to add colour 

information projecting orthoimages by means of planar mapping 

techniques (texture mapping). In our case, the idea of 

categorizing the 3D model using UV maps avoids the creation of 

many different orthoimages, a challenging step for complex 

scenarios. 

 

3.   METHODOLOGY 

3.1 Overview 

Starting from coloured 3D point clouds or textured surface 

models, our pipeline (Fig.1) consists of the following steps: 

1. Creation and optimization of geometries, orthoimages (for 

2.5D geometries) and UV maps (for 3D geometries) for the 

heritage structure under investigation. In our tests (Section 

5) all products are generated from photogrammetric data. 

2. Manual orthoimage or UV map segmentation and class 

identification to create ground truth and training data 

(section 3.2). 

3. Supervised segmentation, starting from the training 

dataset, of all the orthoimages and UV map of the digital 

models (section 3.3); 

4. Projection of the classification results from 2D to 3D 

object space by back-projection and collinearity model.  

 

 
Figure 1: Schematic representation of the segmentation method. 

 

3.2 UV map / texture generation 

The innovative aspect of the presented method is that instead of 

working on many different 2D images or orthoimages generated 

from the 3D model, we decided to unwrap the textured 3D model 

and generate an UV map that can be classified with a supervised 

method. Firstly, to generate a good texture image to be classified, 

we followed these steps: 
• Remeshing: it is useful to improve mesh quality and to 

facilitate the next steps; 

• Unwrapping: UV maps are generated using Blender, 

adjusting and optimising seamlines and overlap (Fig.2a) to 

facilitate the subsequent analysis with machine learning 

strategies. This correction is made commanding the UV 

unwrapper to cut the mesh along edges chosen in 

accordance with the shape of the case study (Cipriani et al., 

2017).  

• Texture mapping: the created UV map is then textured (Fig. 

2b) using the original textured polygonal model (as vertex 

colour or with external texture). This way the radiometric 

quality is not compromised despite the remeshing phase. 

 

a) 

 

b)

 

Figure 2: UV map after remeshing (a) and texturing (b) for the 

Cavea – Circus Maximus case study. 

  

3.3 2D classification and segmentation 

The 2D classification is performed using different machine 

learning models embedded in WeKa (Witten et al., 2016). 

Moreover we used the Fiji distribution of ImageJ, an image 

processing software that exploits WeKa as an engine for machine 

learning models (http://imagej.net/Fiji). These models are first 

trained by examples in a supervised way using a training set of 

manually annotated images. 
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Figure 3: The case studies of the work to validate the semantic classification for analyses and restoration purposes: Pecile’s wall of 

Villa Adriana in Tivoli, Italy (a), Cavea walls of the Circus Maximus in Rome, Italy (b) and portico in Bologna, Italy (c). 

 

In these images, each pixel has been manually annotated with its 

corresponding label. For each of these examples, the original 

image is submitted to the model that computes its actual 

response. The weights of the model are subsequently adjusted in 

order to minimize the difference between this response and the 

annotation that represents the expected response of the model. 

The performance of the model is assessed measuring the 

performance against another set of images, different from the 

ones used during the training phase, so that the capabilities of the 

model to generalize over unseen data can be effectively 

measured. The performances of different models trained on 

images at different scales are presented in section 4.2. 

 

  

4.   TEST OBJECTS AND EVALUATION METHOD 

Object classification is a fundamental task in archaeology and 

heritage architecture although it is very important to have a 

clearly defined purpose and practical procedures when 

developing and applying classification methods. Traditional 

classifications started in the 19th century and are still being 

developed (Adams et al., 2007). The material classification is 

usually carried out by the operator, directly on pictures, as a 

precautionary phase to analyse the structural behaviour of a 

building and for historical analysis. Performing this operation 

manually is typically a costly and time-consuming process. 

 

4.1 Case studies  

The proposed methodology has been applied firstly to two 

different but coeval archaeological case studies, to verify the 

applicability of the methodology using a 2.5D and a 3D model: 

Villa Adriana in Tivoli, in particular focusing the attention on a 

portion of Pecile’s wall (60m L x 9m H) (Fig.3a) and a small 

portion of cavea walls of the Circus Maximus in Rome (5m L x 

9m H x 2,5m D)(Fig. 3b). We classify the two digital models 

identifying the different categories of Opus (roman building 

techniques), distinguishing within the same class original and 

restored parts. 

The last case study hereafter presented is part of a portico located 

in the city centre of Bologna, spanning ca 8m L x 13m H x 5m D 

(Fig. 3c). 

  

4.2 Assessment methodology 

In order to automatically assess the performance of the 

classification, we rely on the accuracy computed for each pixel 

by comparing the label predicted by the classifier with the same 

manually annotated. Then we compute the ratio between the 

number of correctly classified pixels by the total number of pixels 

as: 

 
 

5. RESULTS 

5.1 Pecile’s wall 

Different training processes were run using different orthoimage 

scales (Fig. 4) in order to identify the best fitting solution for our 

case studies. With a 1:10 scale, we obtained results of over 

segmentation. Using a 1:50 scale, many details were lost, 

identifying only some macro-areas. The scale 1:20 (normally 

used for restoration purposes as it allows to distinguish bricks) 

turned out to be the optimal choice. It allows to capture the details 

but is still capable to not consider the cracks of the mortar 

between a brick and the other (Fig. 5). Given the manually 

selected training classes, we trained and evaluated different 

classifiers (Table 1). The first time the training process starts, the 

features of the input image will be extracted and converted to a 

set of vectors of float values (Weka input). This step can take 

some time depending on the size of the images, the number of 

features and the number of cores of the machine where the 

classification is running. The feature calculation is done in a 

completely multi-thread fashion. The features will be only 

calculated the first time we train after starting the plugin or after 

changing any of the feature options. Table 1 reports the accuracy 

results for all tested classifiers run on the orthoimage at scale 

1.20. Moreover, we report the time elapsed for each algorithm, 

considering that creating the classes and the training data took 

around 10 minutes and the feature stack array took 14 minutes.  

 

Classifier Accuracy Time 

j48 0.44 22 s 

Random Tree 0.46 15 s 

RepTREE 0.47 33 s 

LogitBoost 0.52 20 s 

Random Forest 0.57 23 s 

Fast Random Forest (16) 0.64 76 s 

Fast Random Forest (40) 0.69 120 s 

Table 1: Accuracy results and elapsed time for various 

classifier applied to an orthoimage at 1:20 scale. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-399-2018 | © Authors 2018. CC BY 4.0 License.

 
401



 

All the classifier used are based on decision tree learning method. 

In this approach, during the training, a set of decision nodes over 

the values of the input features (e.g. feature x is greater than 

0.7?) are built and connected one to each other in a tree 

structures. 

 

 
 

Figure 4: Portion of the wall’s orthoimage and three details 

at the considered scales (1:10, 1:20 and 1:50, respectively 

from left to right). 

 

This structure, as a whole, represents a complex decision process 

over the input features. The final result of this decision is a value 

for the label that classifies the input example. During the training 

phase, the algorithm learns these decision nodes and connects 

them. 

Among the different approaches, we achieved the best results in 

terms of accuracy exploiting the Random Forest method 

(Breiman, L., 2001). In this approach, several decision trees are 

trained as an ensemble, with the mode of all the predictions that 

is taken as the final one. This allows us to overcome some typical 

problems in decision tree learning, such as overfitting the training 

data and learning uncommon irregular patterns that may occur in 

the training set. This behaviour is mitigated by the Random 

Forest procedure by randomly selecting different subset of the 

training set and for each of these subset, a random subset of input 

features. At the same time, for each of these subset of training 

examples and features, a decision tree is learnt. The main 

intuition between this procedure, called feature bagging, is that 

some features are very strong predictors for the output class. Such 

features will be likely to be selected in many of the trees, causing 

them to become correlated. In the case of colour (RGB) images, 

the hue, saturation and brightness are as well part of the features.  

Out of all the tests performed with the different algorithms, the 

best accuracy we obtained was 70% overlap percentage with 

respect to manual segmentation. To identify the classification 

errors, we used a confusion matrix (Table 2). From the table 

analysis, we can see that most errors in classification are in those 

classes where an overlap of plaster is present on the surface of 

the Opus. However, it is believed that the accuracy percentage 

should not be considered absolute without previous verification 

by an expert. Comparing the segmentation handled by the 

operator and by the algorithm, we can see that the supervised 

method allows the identification of more details and differences 

in the material’s composition. In fact, it is not only able to 

distinguish the classes, but also to identify the presence of plaster 

above the wall surface. This is an important advantage for the 

degradation analysis.  

Starting from this result the training dataset has been applied to a 

larger part of the wall (Fig. 6a). To classify 540 m2 of surface the 

process took about 1 hour. Considering that the operator took 4 

hours just for classifying a smaller part (24m2), we can affirm that 

with respect to the manual method the supervised technique is 

able to obtain a more accurate result in a shorter time. The 2D 

classification has been then projected on the 3D model (Fig. 6b). 

The automatic classification results can then be automatically 

converted into the generally requested map with dedicated 

symbols/legend (Fig 6b).  

 

 
Table 2: Confusion matrix to analyse the results of the 

supervised classification of a portion of Pecile’s wall at scale 

1:20.  

 

   
  a)                               b)                                c)                                d)                               e)                               f) 

Figure 5: Orthoimage of a portion of Pecile’s wall (4m length x 9m height) exported at 1:20 scale (a), corresponding training 

samples (b), classification results obtained at different scales. Scale 1:10 (c), scale 1:20 (d) scale 1:50 (e), ground truth (f). 
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a)  

b)  

Figure 6: The original and classified orthoimage of a longer part of the Pecile’s wall long ca 60 m (a). Classification results mapped 

onto the 3D model of the wall (b). A closer view is also reported to better show the classification results with random colours or 

dedicated symbols. 
 

5.2 Cavea of Circus Maximus 

 
 

Figure 7: Manually identified training areas (11 classes) on the unwrapped 

texture of the Circus’s cavea. 

The unwrapping procedure (Section 3.2) of the 

complex 3D model of the Cavea allowed to classify 

the whole model without the need of generating 

multiple ortho-views. A more articulated training 

(Fig. 7) was created on the 1:20 UV map to classify 

the Cavea, choosing micro areas to identify the 

phases of intervention on the monuments (ancient 

and recent restorations, integrations and changes of 

the building arrangements). The manual training 

took ca 30 min.  

The classification results (achieved using Fast 

Random Forest method) are quite satisfactory (Fig. 

8). The algorithm could easily recognize within the 

same categories of opus three different types of 

restoration and was also able to identify the opus 

reticulatum class, even though it occupied only a 

small and dark portion of the object. This type of 

result underlines the quality of details that can be 

achieved starting from a detailed manual training.  

The visualization of the classification results on the 

3D geometry allow heritage end-users to even see 

restorations located in undercuts. The segmentation 

made with such a level of detail is useful for mapping 

the deterioration and to calculate the volumes for 

planning future restorations.  
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a)                                                                 b) 

Figure 8: Original and segmented 3D model of a portion of Roman Cavea in the Circus Maximus in Rome (Italy). 

 

5.3 Classification of portico structures 

 
Figure 9: Manual training classes to segment the building for 

semantic purposes. 

To demonstrate the replicability of the proposed method to a 

different type of 3D model, a third case study featuring a historical 

portico dataset is used. Such structures combine variegated 

geometric shapes, different materials and many architectural details 

like mouldings and ornaments. According to the different 

classification requirements, the aim of the task could be:  
• Identification of construction techniques; 

• Identification of different materials (bricks vs stones vs 

marble);  

• Identification of degradation categories (cracks vs humidity 

vs swelling). 

Figure 9 show the unwrapped texture of the photogrammetric 3D 

model with the manually identified training patches and classes (11). 

We decided to split some categories (walls and columns) into two 

different classes to prevent error moved by shadows and different 

plaster chromatist. The classification results (Fig. 10), based on Fast 

Random Forest model / classifier, show an over segmentation under 

the porticoes, where the plaster of the wall is not homogeneous and 

presents different types of degradation. In this case a solution might 

be to create many different classes according to the number of 

degradation categories or apply an algorithm to homogenise areas 

with small spots. 

 

 
Figure 10: 3D model and classification results of an historical building in the city centre of Bologna. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-399-2018 | © Authors 2018. CC BY 4.0 License.

 
404



 

5. CONCLUSIONS 

With the proposed methods, archaeologists or curator specialists 

are able to automatically annotate 2D textures of heritage objects 

and visualize them onto 3D geometries for a better 

understanding. The difficulty of applying image segmentation to 

cultural heritage case studies derives firstly from the existence of 

a large amount of building techniques and ornamental elements. 

A monument can be subjected to different types of degradation, 

according to the different conditions, hence increasing the 

efficiency of the classification tasks. A machine learning-based 

approach becomes beneficial for speeding up classification tasks 

on large and complex scenarios, provided that training datasets 

are as much differentiated as possible.  

In summary, critical issues and possible solutions are: 

• dark holes in architecture structures (e.g.  Putlog holes) 

can be confused with shadows introducing errors in the 

classification: it becomes fundamental the choice of the 

right classes during the training phase; 

• over-segmentation provides too many classes not useful 

in case of semantic analysis: it is necessary to apply some 

algorithm to homogenise regions;  

• long and time-consuming training phase, in particular in 

case of many classes or non-homogeneous surface (see 

Fig.7): for a better results a detail training it’s necessary. 

  On the other hand, the advantages of the proposed method are: 

• shorter time to classify objects wrt manual methods (see 

Table 1);  

• over-segmentation useful for restoration purposes to 

detect small cracks or deteriorated parts;  

• the training set might be used (replicated) for buildings 

of the same historical period or with similar construction 

material; 

• using unwrap texture allows the visualization of 

classification results onto 3D models from different 

points of view; 

• the pipeline can be extended to different kinds of heritage 

buildings, monuments or 3D models in general.  

As a future work, we plan to exploit more complex machine 

learning algorithms, in particular Deep Neural Networks to learn 

more expressive representations of the image. In particular, we 

will tackle the objective of increasing the homogeneity of the 

segmentation in order to minimize, and ideally avoid, any post-

processing phase. In order to train such models, a larger amount 

of training examples is needed. Hence, more effort will be put in 

the activity of extending the training set with more manually 

annotated examples. 
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