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ABSTRACT:

Remotely sensed hyperspectral data has widely been used to determine water quality parameters in oceanic waters. However in
freshwater basins the dependence between the hyperspectral data and the parameters is more complicated. In this work some ideas are
presented concerning the study of this dependence. The data used in this study were collected from the lake Hiidenvesi in southern
Finland. The hyperspectral data consists of reflectances in 36 bands in the wavelength area 508...878 nm and the separately measured
water quality parameters are turbidity, blue-green algae, chlorophyll, pH and dissolved oxygen. Hyperspectral data was used as bare
band reflectances, but also in the form of two simple spectral indices: ratio A/B and difference A-B, where A and B go through all
the bands. The correlations of the indices with the parameters were presented visually as 1- or 2-dimensional arrays. To examine the
significance on the results of different variables, the data was classified in two different ways: the natural basins and the values of the
water quality parameters. It was noticed that the variability of the correlation arrays was particularly strong among different basins in
both the magnitude of correlation and the best performing indices. Further studies are needed to clarify which features of the basins are
of most importance in predicting the shapes of the correlation arrays.

1. INTRODUCTION

Boreal lakes are one of the worlds largest fresh water storages.
Worldwide fresh water is a limited natural resource. In Nordic
countries state and county authorities have the responsibility to
monitor the condition of water sources. This can be done by in-
situ measurements, but there is need for remotely sensed mon-
itoring methods, which can be utilized also in cloudy weather.
Hyperspectral imaging using manned small planes or unmanned
aerial vehicle, can help in this challenge. The aim of this work
is to study how hyperspectral data could be used to investigate
water quality parameters in inland waters.

Open ocean waters (often referred as Case 1 waters) have been
successfully studied with multispectral cameras carried by satel-
lites. Multispectral data is somewhat similar to hyperspectral
data, but the number of the bands is smaller and the bands are
wider. In the case of inland and near- coastal waters (Case 2 wa-
ters) multispectral data has not proved as functional since waters
of this type are optically more complex (Odermatt et al., 2012).

When hyperspectral data is used to investigate water areas, the
aim is to associate the characteristics of the hyperspectral image
to the values of certain water quality parameters. In the simplest
form this means that from the collected hyperspectral and param-
eter value data it is observed that a certain hyperspectral band
correlates well with some parameter value. In principle, we can
then use a similar hyperspectral image to predict the values of the
parameter in somewhere else.

Instead of single bands, hyperspectral data can also be used in the
form of spectral indices, which are arithmetical operations among
different bands. The idea behind indices is that they often provide
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more explicit correlations with the water quality parameters than
bare band reflectances. The correlation of an index with a water
quality parameter depends on how the spectral signature (see 3.1)
changes when the parameter value increases.

Traditionally spectral indices have been used with multispectral
data for certain fixed bands. A familiar example is the normalized
difference vegetation index (NDVI), which is defined as (NIR -
Red)/(NIR + Red), where NIR and Red are the near infrared and
red bands respectively. Hyperspectral data consists of a larger
number of narrow bands, so for a given index type it is reasonable
to ask which bands work best in estimating a certain parameter.
To this end the indices of the given type are calculated with all
the band combinations and further the correlations of the obtained
indices with the parameter are determined. The correlation results
can then be presented in an array with dimension equal to the
number of independent bands in the index. Indices have been
used in this way for example in estimating biomass in (Nisi et
al., 2017).

This study applies these methods in water quality analysis and
also aims to make the concepts more precise. In section 2.3 in-
dex families and their dimensions along with visualization meth-
ods are introduced. Practical examples of these visualizations are
seen in section 4.

To investigate which features are mainly responsible for the vari-
ation of the correlation patterns, the data is divided into classes
in two ways (see 2.2). First classification is done by the lakes
natural basins to see how the basin type affects the results. Sec-
ondly the classification is done separately for each parameter by
the parameters value, which helps to see how the results depend
purely on the parameters. To connect the variation in the correla-
tion results with the properties of the data, the notions of spectral
reflectance signature and parameter profile are defined in section
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3. These are visual summaries of the datas spectral and paramet-
ric properties respectively.

2. MATERIALS AND METHODS
2.1 General

The research material consists of the hyperspectral data and mea-
sured water quality parameters from August 2015 in the lake Hi-
idenvesi in southern Finland. The ecological state of Hiidenvesi
is average and its type is eutrophic and naturally turbid with mud.
According to paleolimnologic research, Hiidenvesi has been rel-
atively eutrophic even 300 years ago, but in the last 50 years the
eutrophication has escalated mainly because of human impact.
The area of Hiidenvesi is ca. 30 km?. Hiidenvesi is intrinsically
divided into eight basins with differences in water quality and
morphology. (Ranta et al., 2015)

Remote sensing was done with hyperspectral imaging based on
Fabry-Perot interferometer (FPI). This imaging technology cap-
tures whole frames from one to two separate wavebands at once
and provides the hyperspectral spectrum by scanning the spectral
range within 2 s time, providing thus the possibility to combine
photogrammetric and hyperspectral analysis of data.The 36 hy-
perspectral bands used here were appoximately equally spaced
in the wavelength area 508...878 nm (Hakala, 2018). Images
were captured from a manned single engine aircraft Cessna 172
Reims Rocket aeroplane with an FPI camera using a flight height
of about 2025 m above the mean sea level, providing a ground
sample distance (GSD) of 2 m. Image cubes provided by the FPI
camera were first laboratory calibrated (Saari et al., 2013). Im-
age orientations were solved with self-calibrating bundle block
adjustment using the VisualFM software (Markelin et al., 2014).
Spectrometric image mosaics were generated using software by
Honkavaara (Honkavaara et al., 2013). Open access aerial laser
scanning data by NLS were used as digital surface model in or-
thomosaic generation. Mosaic was calibrated to the reflectance
by least square fitting using field spectrometer, which measured
white calibration target and lake water during data collection.

The studied water quality parameters (abbrevations, units) were
turbidity (Turbid, NTU), blue-green algae (BGA, mg/l), chloro-
phyll with BGA (CHL, pg/l), pH (pH-scale) and optically sensed
dissolved oxygen (ODO, mg/l). These parameters were measured
simultaneously from a boat using Y SI-Multiparameter sonde and
S::CAN UV-VIS spectrometer. Measurements were calibrated
based on laboratory measurements of water samples.

2.2 Classification of data

To investigate the behavior of indices in different occasions, the
data was divided into classes in two ways. These are division into
basins and division according to the parameter values. Division
into basins was done according to the 8 distinct natural basins
depicted in figure 1. This figure also shows the route of the refer-
ence measuring boat.

The division into parameter classes was done for each parameter
separately by dividing the data into parts "low’ and "high’ accord-
ing to whether the value of that parameter is lower or higher that
the (approximate) median. Thus for each parameter two classes
are obtained: the class parameter_low of the points with value
lower than the median of this parameter and similarly the class
parameter_high of points with high parameter values.
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Figure 1. Lake Hiidenvesi divided into basins and the route of
the reference measuring boat

By comparing the results obtained with these two dividing meth-
ods one can estimate the effects of distinct features on the corre-
lation figures with hyperspectral data.

2.3 Families of indices and their dimensions

For a given set of hyperspectral bands an n-dimensional family
of indices is determined from an artithmetic operation involv-
ing n different bands. The fype of the index family is the arith-
metic operation and the indices of the family are the results of
the operation carried out for all the possible band combinations.
The number of indices in an n-dimensional index family is thus
(number of bands)".

For example, the unique 1-dimensional index family is just the set
of hyperspectral bands. Types of two dimensional index families
include A/B, A-B and (A-B)/(A+B), where A and B represent
distinct bands. Similarly A/ (B +C), (A B)/(C B)and A/B +
C are examples of 3-dimensional index families.

Usually it is of interest to determine which members of an in-
dex family give the best correlations with some parameter. This
can be done by placing the calculated correlations of every index
into a cubical array with the same dimension as the index fam-
ily and each side consisting of the sequence of the hyperspectral
bands. Each item of the array can be given a color correspond-
ing to the strength of the correlation. When the dimension of the
index family is 1 or 2, the correlation array can be inspected vi-
sually as a plane figure. Even for dimension 3 the visualization
of the whole array is fairly easy by slicing the correlation cube
into 2-dimensional parts. In higher dimensions the visualization
becomes somewhat more challenging.

This kind of correlation array usually has a few distinct regions of
high correlation from which one can determine the indices with
strongest correlations with the parameter of interest. There usu-
ally exists a unique index with the strongest correlation, but the
form of the whole correlation array can give more insight on the
dataset. The correlation figures could also be used as a simple
way to find indices with strong correlation with the parameter of
interest but low mutual correlation (see 5).

Note that the specification of an index family includes all the
characteristics of the hyperspectral bands used, which essentially
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depend on the equipment used to collect the hyperspectral data.
Two sets of bands with similar central wavelengths but different
widths can give rise to different correlation arrays for the same
index family.

3. DATA CHARACTERISTICS
3.1 Spectral reflectance signature

To characterize the spectral properties of the data, a histogram
was made for each band by dividing the reflectance axis into bins
of equal size and for each bin finding the number of points for
which the reflectance in this band falls into the bin. Histograms
for all bands have been depicted in one figure by organizing them
vertically side by side and presenting the numeric values (bin
sizes) with a colormap for which lighter colors indicate larger
numbers. In the figures obtained this way the lighter parts form a
curve, which in a way represents the ’average’ reflectance spec-
trum of this dataset. These figures are called spectral reflectance
signatures, sometimes abbreviated as spectra.

Figure 2 depicts the spectral reflectance signatures of the data
from distinct basins of Hiidenvesi. The general shape of these
spectra with a peak around the band 10 = Rs75 ' is typical to
some turbid waters (Doraxan et al., 2002). From figure 2 it can
be seen that in basins 2 and 3 the peak is clearly higher compared
to the other basins.
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Figure 2. Spectral reflectance signatures of the basins

Figure 3 shows the spectral reflectance signatures for the low-
high classes of the parameters BGA and ODO respectively. For
BGA the spectral signature of the low- and high-classes differ
notably: the spectrum of the class BGA_low has lower peak and
is lucid, whereas the spectrum of BGA _high has higher averages
and is more spread out. On the other hand for ODO the two spec-
tra of the classes ODO_low and ODO_high look rather similar.
This may indicate that the reflectance spectrum of the water is
more sensitive to the values of the parameter BGA than those of
the parameter ODO. It can also be noted that the peaks of the
spectral signatures of the basins 2 and 3 in figure 2 are much
clearer than the spread-out one of the class BGA _high.

The other parameters Turbid, CHL and pH behave in many re-
spects similarly to BGA, so in here and what follows their corre-
sponding figures have been left out. All the figures used in this
study can be found at (Hakala, 2018).

LThis notation indicates that band 10 corresponds to reflectance at the
wavelength 575 nm.
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Figure 3. Spectral reflectance signatures for the low- and
high-classes of the parameters BGA and ODO

3.2 Parameter profiles

Figures similar to the spectral reflectance signatures can also be
made using the parameter values instead of the band reflectances.
These figures are not as generic as the spectral reflectance signa-
tures, since the set of water quality parameters used is not stan-
dardized nor have they any natural ordering. With a fixed param-
eter set however these figures can be useful in understanding the
essence of the parameters behavior in different classes of the data.
This kind of figures are called parameter profiles.

Figure 4 shows the parameter profiles of the distinct basins. Note
that since the units and scales of the parameters vary, the y-axis
cannot be given any reasonable numeric scale. For this reason
the y-axis here shows only the common bin-numbers for the his-
tograms of different parameters.

From figure 4 it can be seen that the basins 6, 7 and 8 have quite
similar parameter profiles, notably they have very low turbidity
and BGA-CHL-content. Basins 2 and 3 are most turbid and basin
2 has exceptionally high BGA and CHL content. Comparing fig-
ures 2 and 4 it can be hypothesized that the sharpness of the peak
of the spectrum could be related mainly to the turbidity of the
water.
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Figure 4. Parameter profiles of the basins

Parameter profiles were also constructed for the different param-
eter value classes and figure 5 shows these for the parameters
BGA and ODO. Here the low- and high-classes are defined sepa-
rately for each parameter, which can be verified from the figures
by observing that the column of the parameter in question has low
(high) values in the corresponding low (high) class.

The profiles of the BGA low- and high-classes (top row of figure
5) are very unlike. We see that the values of Turbid and CHL
(partly also pH) are low in the class BGA_low and high in the
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Figure 5. Parameter profiles for the low- and high-classes of the
parameters BGA and ODO

class BGA _high, and also the deviations are much higher in the
latter class. This indicates that Turbid, CHL (and pH) are mutu-
ally correlated to BGA and that the median used as the division
point is close to the lower end of the scale.

For the parameters Turbid, CHL and pH the behavior of the spec-
tral reflectance signatures and the parameter profiles of the low-
and high-classes is similar to BGA. The large deviation in the
spectral reflectance signature of the class BGA _high in figure 3
seems to stem from the deviation of the values of these correlat-
ing parameters.

The parameters profiles of the ODO low- and high-classes (bot-
tom row of figure 5) are rather similar (except of course the ODO-
columns which show the division to low- and high-classes). This
indicates that the parameter ODO is quite independent of the
other parameters.

4. INDEX CORRELATIONS
4.1 Band correlations

As explained in section 2.3, the unique 1-dimensional index fam-
ily consists of the hyperspectral bands. The correlation array of
this index family with a given water quality parameter can be
displayed as a 1-dimensional array of boxes such that each box
represents a band and its color corresponds to the correlation of
the parameter with the reflectance in the band.

The upper part of figure 6 shows the correlation arrays of the
parameter BGA with the 1-dimensional index family sorted by
basins. For comparison, the last row depicts similar correlation
array for the whole dataset. The lower part shows the equivalent
correlation arrays for the parameter ODO. Note that in the col-
ormap of these figures the sign of the correlation matters, i. e.
significant correlations are represented by either dark red or dark
blue.

If the horizontal rows in figure 6 (representing the basins) were
similar to each other, one could easily determine the bands which
generally correlate best with the parameters BGA and ODO re-
spectively. In reality however, the rows are notably different,
which means that for different basins the best correlations with
the parameters are given by different bands.

Figure 7 also shows the correlation arrays of the 1-dimensional
index family with the parameters BGA and ODO, but here the
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Figure 6. Band correlations for the parameters BGA and ODO,
basins separately and the whole data
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Figure 7. Band correlations for the parameters BGA and ODO,
parameter classes separately and the whole data

classification is done by the parameter classes instead of basins
(again the last row represents whole data).

From figure 7 it can be seen that for BGA the correlations in the
high-class are much stronger than those in the low-class and that
the correlation array of the whole data is very similar to that of
the high-class. This could be related to the fact that the deviation
in the high-class of BGA was clearly greater in both the spectral
reflectance signature and parameter profile (see figures 3 and 5).
For the parameter ODO the difference between the correlation
arrays of the low- and high-classes is striking and here the array of
the low-class looks more similar to the one concerning the whole
data.

4.2 Correlations with index family A/B

For the 2-dimensional index family A/B the correlation array with
a water quality parameter is 2-dimensional and can be displayed
as a pixelated square of size 36*36. Each pixel corresponds to
a unique ordered pair (A, B) of bands and its color represents
the correlation of the index A/B with the parameter in question.
The correlation figures of the index family A/B are close to skew
symmetric, because the indices reflected by the main diagonal
are multiplicative inverses. The deviations from this symmetry
occur mainly in the weakly correlating areas of the array. In all
the subsequent 2-dimensional correlation figures the band A is on
the vertical axis and the band B on the horizontal axis.

Figure 8 shows the correlation arrays of the index family A/B
with the parameters BGA and ODO for the whole data. The index
family A/B behaves very differently for the different parameters
BGA and ODO. For the parameters Turbid, CHL and pH however
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the corresponding figures are quite similar to the one for BGA,
likely due to the high mutual correlation of these parameters.
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Figure 8. A/B-correlations for the parameters BGA and ODO in
the whole data

In figures 9 and 10 the correlation of the index family A/B with
the paramaters BGA and ODO is depicted with the data divided
into basins. These figures show that significant variation on the
shape of the correlation arrays occurs from one basin to another:
e.g. the correlations for ODO look almost opposite for the basins
Sand7.
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Figure 9. A/B-correlations for the parameter BGA classified by
basins

AdivB_0DO_basinl AdivB_ODO_basin2 AdivB_ODO_basin3 AdivB_0DO_basind

61

363126211611 6 1
363126211611 6 1
3631267211611 6 1

363126211611

1 611162126313 1 6111621 2631 36 1 6111621 263136 1 611162126 313

AdivB_0DO_basins

AdivB_ODO_basing AdivB_ODO_basin7 AdivB_0ODO_basing

363126211611 61
B/3INWAWU 61
353126211611 61

363126211610 61

Viél‘ll‘EZIIZIEB‘LD;G Vl‘E‘l'll'é?‘lZ‘ﬁE‘lS% ;‘6111.62126.1‘13'6 Vi‘ﬁl‘ll‘ﬁl'll'&}‘l)‘ﬁ
Figure 10. A/B-correlations for the parameter ODO classified by
basins

For some basins the overall correlation is weak. Comparing fig-
ure 9 to figure 4 it can be observed that for the parameter BGA
the overall strength of the correlation figure seems to be related
to the deviation of the parameter in distinct basins so that weak
correlation corresponds to small deviation. The same observa-
tion in fact holds also for the parameters Turbid, CHL and pH.
For the parameter ODO this does not hold, since e.g. the basins
1 and 6 have weak correlation figures but rather large deviations.
For the parameter ODO the correlations in the basin 5 are actu-
ally stronger than those in the whole data, whereas for BGA (also

Turbid, CHL and pH) the correlations in the individual basins are
generally lower than in the whole data.

When the data is divided by basins, the correlation figures of
the parameters of even the same correlation class (BGA, Turbid,
CHL, pH) no longer look similar. On the other hand, also the
mutual correlation of these parameters breaks up in this division.
(Hakala, 2018)

Figures 11 and 12 show the correlation of the family A/B with
the parameters BGA and ODO with the data divided into the low-
and high- classes of the parameters BGA and ODO respectively.
Figure 11 reveals that for BGA the overall correlation is much
stronger in the high-class, which may be associated to the larger
deviation of BGA in this class (see figure 5). The parameters
Turbid, CHL and pH again behave very similarly.
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Figure 11. A/B-correlations for the parameter BGA by the
parameter classes

For the parameter ODO in figure 12 the correlation strengths in
the low- and high-classes are quite similar, although the patterns
are very different. This may be surprising as the spectral re-
flectance signatures of the classes ODO_low and ODO_high (fig-
ure 3) look almost the same. Although the behavior of parameter
ODO usually deviates from the other parameters, for some reason
the correlation figure of the high-class of ODO looks similar to
the high-classes of the other parameters.
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Figure 12. A/B-correlations for the parameter ODO by the
parameter classes

4.3 Correlations with index family A-B

The correlation arrays for the 2-dimensional index family A — B
are also squares of size 36*36 and can be visualized in the same
way as those of the family A / B in section 4.2. For this family
the indices reflected by the main diagonal are additive inverses,
so the correlation figures are completely skew symmetric.

The behavior of this index family with respect to the different
partitions of the data is rather similar to the family A/B, so to
avoid repetition the correlation figures for this family will not be
presented here in totality. Figure 13 of the A — B -correlation
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for BGA and ODO in the whole data serves as an example of the
general shape of the correlation array.

Compared to the corresponding figures of the family A / B (see
figure 8), the pattern in the figures for A — B is more ’broken’
with vertical and horizontal lines. This makes it a little harder to
sort out the distinct areas of strong correlation.
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Figure 13. A-B-correlations for the parameters BGA and ODO
in the whole data

5. APPLICATIONS

If an index could be found that correlates generally well with
a given water quality parameter, then the values of the param-
eter could be quantitatively predicted with remotely sensed hy-
perspectral data. When handling a new set of data a calibration
should be performed. In the simplest case this would be done
by searching the geographical locations of the highest and low-
est index values and performing the parameter measurements at
these locations. Due to the strong correlation the scatter figure of
the parameter vs the index should be close to a straight line with
endpoints prescribed by the measurements.

The problem is that the properties of even the distinct basins of
the same lake can be so varied that no common well performing
index can be found. For example from figure 8 it can be seen that
the best correlating index of the family A/B with the parameter
BGA is B9 / B3 = Rse7/Rs16 “(Pearson correlation 0.91). Fig-
ure 9 shows that in basin 2 the correlation of the index B9 / B3
with BGA is very weak (Pearson 0.03), whereas the index B13 /
B17 = Re10/Rees2 works a lot better (Pearson 0.63). In figure 14
both of these dependencies are shown as scatter plots color coded
by the basins. For the basin 2 the index B9 / B3 of figure 14 (a)
does not depend on BGA, but for the index B13 / B17 of figure
14 (b) the dependency is obvious.

The solution for this problem would be to find the essential prop-
erties of a water basin which determine the shape of the correla-
tion figure concerning given parameter and index family. Then
the correct index to be used in the calibration could be selected in
advance based on these properties.

Another idea for utilizing the correlation figures of section 4
could be in finding variables that correlate strongly with a given
parameter but mutually weakly. E. g. multilinear regression
can be made more reliable using this kind of independent vari-
ables. From an index family we can always find indices with
the strongest correlation with the parameter, but selection based
only on the value of the correlation often gives neighboring in-
dices which have strong mutual correlation. E. g. in figure 8 the

2Here e.g. B9 means band 9 and Rsg7 refers to reflectance at the
wavelength 567 nm.
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Figure 14. Scatter figures of the parameter BGA with the index
B9 / B3 in the whole lake and B13 / B17 in basin 2

indices of the A/B-family which correlate best with BGA are lo-
cated in the neighborhood of the optimal index B9 / B3 and by
continuity are correlated also to each other. Considering the total
structure of the figure instead of the correlation values, several re-
gions of high correlation can be found. By choosing from each of
these regions the index giving the local maximum of the correla-
tion we obtain a set of indices with no built-in dependencies and
from these indices the ones with low mutual correlations can be
picked. Of course one can look for these non-correlating indices
from several index families simultaneously.

For example the parameter BGA correlates quite well with the
index B26 — B33 = R743 — Rsss from the family A-B and the
index B9 / B19 = Rs67/Res2 from the family A/B (correlations
0.86 and 0.78 respectively) and the mutual correlation of these
indices is rather low (0.56). Figure 15 depicts the scatter plots of
these indices with BGA: usually lower mutual correlation of the
indices means more disparity in the corresponding scatter plots.
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Figure 15. Scatter figures of the parameter BGA with the indices
B26 — B33 and B9 / B19 (whose mutual correlation is 0.56)

The scatter plots of figure 15 have been color coded by basins
in the same way as in figure 14 (a), so that the behavior of the
indices in distinct basins can be investigated. It seems that among
the three indices described here the index B26 — B33 seems to
have the best overall correlation with BGA, even though some
disjoint points lower the correlation value. Especially basins 6, 7
and 8 which are problematic for the other indices, are quite well
aligned with the rest of the data for the index B26 — B33. This
kind of scatter plots can be useful in examining the behavior of
individual indices in the whole data and in different basins.

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLI1-2-411-2018 | © Authors 2018. CC BY 4.0 License.

416



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC Il Mid-term Symposium “Towards Photogrammetry 2020, 4—7 June 2018, Riva del Garda, Italy

6. CONCLUSIONS

In this work the correlation behavior of hyperspectral bands and
the 2-dimensional index families A/B and A-B with different wa-
ter quality parameters was investigated using data from the lake
Hiidenvesi. It was noted that the type of the basin seems to af-
fect strongly on both the overall strength of the correlations and
the set of the indices which correlate best with the given parame-
ter. Typically it is not easy to find any single index which would
correlate even adequately in all basins. The main reasons for the
great variability of the correlation arrays among different basins
are still unclear.

The parameters BGA, Turbid and CHL are absorbing substances
and mutually strongly correlating. Also the parameter pH usu-
ally correlates moderately with these parameters, even if it is of
a different category. The mutual correlation implies rather simi-
lar behavior for these parameters in most cases. However when
dividing the data by the basins the mutual correlation of these pa-
rameters varies and so do the correlations with the index families.
For the parameters BGA, Turbid, CHL and pH the shape of the
spectral reflectance signature seems to depend on the value of the
parameter so that larger parameter values gives sharper peak in
the spectrum. Also for these parameters the overall correlation
strength with an index family seems to be related to the deviation
of the parameter values in a class of data.

The parameter ODO is non-absorbing and its behavior with re-
spect to hyperspectral data departs clearly from the other param-
eters. E. g. the concentration of ODO does not seem to notably
affect the spectral reflectance signature. In contrast the ODO con-
centration seems to have great impact on the correlation figures
with the index families.

The correlation figure of a parameter with an index family typ-
ically contains a few areas of strong correlation. The objective
is to find the essential properties of basins which determine the
shape of these correlation figures. If this works out the type of a
given basin could be used to choose the best index for estimating
a certain parameter and quantitative predictions of the parameter
values could be made based on hyperspectral data.

The methods examined in this work are simple and their fuction-
ality may be restricted by the non-linear behavior of the data.
The same data from the lake Hiidenvesi has also been studied
using convolutional neural networks (CNNs), which are neural
network models that approximate the neuron model using con-
volutional computation. According to the preliminary results in
this domain, CNNs seem to capture the non-linear behaviour of
the data and estimating the parameter values in different basins
of the lake using this method has been rather succesful.
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