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ABSTRACT:

Recently, several synthetic image datasets of street scenes have been published. These datasets contain various traffic signs and can
therefore be used to train and test machine learning-based traffic sign detectors. In this contribution, selected datasets are compared
regarding ther applicability for traffic sign detection. The comparison covers the process to produce the synthetic images and addresses
the virtual worlds, needed to produce the synthetic images, and their environmental conditions. The comparison covers variations in the
appearance of traffic signs and the labeling strategies used for the datasets, as well. A deep learning traffic sign detector is trained with
multiple training datasets with different ratios between synthetic and real training samples to evaluate the synthetic SYNTHIA dataset.
A test of the detector on real samples only has shown that an overall accuracy and ROC AUC of more than 95% can be achieved for
both a small rate of synthetic samples and a large rate of synthetic samples in the training dataset.

1. INTRODUCTION

Supervised machine learning classifiers require a high number
of training samples with known class label to be able to predict
the unknown class of a new sample with a high certainty. In au-
tomotive applications, machine learning is used for example in
an advanced driver assistance system informing the driver about
important traffic signs. In this system, the function of machine
learning is to evaluate whether street scene images provided by a
vehicle camera show traffic signs and which meaning the traffic
signs have. Hereby, the term traffic sign detection refers to distin-
guish whether a part of an image contains a traffic sign or other
objects, like buildings or vegetation. In contrast, the term traffic
sign recognition refers to distinguish between different meanings
of traffic signs, like give way or do not enter (Zhu et al., 2016).

Figure 1. Blanding of a synthetic RGB street scene image and
the corresponding semantic ground truth image (Richter et al.,

2017). Traffic signs are labelled in yellow.

Both methods for semantic segmentation (e.g. (Long et al., 2015))
and object detection (e.g. (Redmon et al., 2016)) can be used for
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traffic sign detection in street scene images. The methods from
both authors rely on machine learning by evaluating a so-called
full image, the street scene image (figure 1) in the above men-
tioned system, in one processing step. In other methods for ob-
ject detection, image patches (example see figure 2) are extracted
from a full image and each patch is classified in a separate pro-
cessing step (e.g. (Wu et al., 2013)).

Figure 2. Synthetic image patches of traffic signs: 1a), 1b)
SYNTHIA, 1c) vKITTI. Real image patches: 1d) GTSRB, 2d)
GTSDB. Semantic ground truth corresponding to the synthetic

patches: 2a), 2b) Front side and back side of a traffic sign having
the same semantic class, 2c) Traffic sign and pole having the
same semantic class. (Ros et al., 2016), (Gaidon et al., 2016),

(Stallkamp et al., 2011), (Houben et al., 2013)

There is a wide range of published datasets available provid-
ing real images with known semantic class labels allowing to
train machine learning models for traffic sign detection or traf-
fic sign recognition. Some datasets (e.g. the German GTSRB
dataset (Stallkamp et al., 2011)) provide images patches of traffic
signs (figure 2, 1d)). Some datasets provide full street scene im-
ages together with enclosing rectangles around traffic signs as la-
bels (e.g. the Swedish traffic sign dataset (Larsson and Felsberg,
2011), the US-American LISA US Traffic Sign Dataset (Mogel-
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mose et al., 2012) or the German GTSDB dataset (Houben et al.,
2013)), while other ones provide pixel-wise labels for traffic signs
in street scene images (e.g. the Chinese Tsinghua-Tencent 100K
dataset (Zhu et al., 2016)). All mentioned datasets have in com-
mon that their labels provide information about the meaning of
the traffic signs to road users, in addition.

While the afore-mentioned datasets have been designed for traffic
sign detection or traffic sign recognition, training data for traffic
sign detection can also be derived from datasets designed for se-
mantic scene understanding, like the Cityscapes dataset (Cordts
et al., 2016), which provides semantic class labels for all pixels in
the street scene images by semantic ground truth images (see fig-
ure 1). Cityscapes and other datasets of this kind do not provide
information about the meaning of traffic signs, though.

A common approach to create labels for real images is to manu-
ally annotate the desired objects in the images by enclosing rect-
angles or pixel-wise and to enter additional information, like the
sign meaning. This process is costly both in time and money
(e.g. creating and quality-checking one high-quality semantic
ground truth image for Cityscapes required more than 90 min-
utes (Cordts et al., 2016)) and prone to errors made by the lablers
(e.g. the Cityscapes dataset has in average an annotation density
of 97.1% of all pixels of the high-quality semantic ground truth
images (Richter et al., 2016)).

For use in an advanced driver assistance system, a traffic sign de-
tector needs - in addition to the high classification certainty - to
ensure functional safety of the system (e.g. ISO26262 - (Organi-
zación Internacional de Normalización, 2011)) in a wide variety
of situations. A challenging situation for a traffic sign detector
could be for example, if the sunlight falls from behind a traffic
sign on the camera, which changes the appearance of the traffic
sign in the image remarkably compared to its typical appearance.
For a high degree of functional safety, the training samples need
to cover a wide variety of appearances of traffic signs.

In addition to the aspects mentioned above about labeling, real
images of challenging situations might not be available, as they
only occur under special and rare circumstances. Another way
than annotating real images to acquire training samples for ma-
chine learning is to render synthetic RGB images of 3D models
of a virtual world, for which the semantic ground truth images
can be derived from the rendering pipeline as well. Images of
challenging situations as described above can be generated and
a wide variety of the appearance of traffic signs in the images
achieved by modeling the virtual world as desired.

Recently, several datasets providing synthetic images of street
scenes have been published for research in the field of advanced
driver assistance systems. The main contribution of this paper is
to analyze selected synthetic image datasets:

• First, selected synthetic image datasets are compared re-
garding their use for traffic sign detection using machine
learning.

• Second, a selected synthetic image dataset is evaluated for
traffic sign detection by training a neural network-based de-
tector with real and synthetic training samples and by testing
the detector on real samples only.

2. COMPARISON OF SYNTHETIC IMAGE DATASETS
WITH REGARD TO TRAFFIC SIGN DETECTION

In this section, several publicly available synthetic image datasets
are compared with regard to traffic sign detection using machine
learning. Basis of the comparison is the evaluation of published
information about the datasets: Complete evaluation of the dataset
websites and the papers, in which the datasets have been intro-
duced, and the evaluation of the datasets themselves. The evalua-
tion of the datasets is done on a sample basis because of the high
number of several hundred thousands of images in all datasets in
total. The evaluation has been performed in March of 2018.

As motivated in the beginning of this paper, the comparison focus
on the following two requirements of synthetic image datasets for
traffic sign detection using machine learning:

• A high number of traffic signs in the synthetic images to
ensure a high overall detection certainty

• A high number of variations in the appearance of the
traffic signs in the synthetic images to ensure robustness of
the detector against a wide variety of appearances of traffic
signs

Derived from the requirements above, the elements of the com-
parison cover:

• the approaches for synthetic image derivation,

• the virtual scenes and the environmental conditions in the
datasets,

• the traffic signs in the synthetic RGB images,

• the semantic labels assigned to the synthetic RGB images.

2.1 Overview over the datasets

Five datasets (overview in table 1) have been preselected by the
criterion that they provide synthetic RGB images of street scenes
with traffic signs and semantic ground truth images. The datasets
are, ordered by the date of publication of the corresponding pa-
per: the Virtual KITTI (further abbreviated as vKITTI) dataset
from (Gaidon et al., 2016), the SYNTHetic collection of Imagery
and Annotations (SYNTHIA) dataset from (Ros et al., 2016), the
unnamed dataset from (Richter et al., 2016), inspired by the title
of the paper, Playing for Data, further called PfD, the unnamed
dataset from (Johnson-Roberson et al., 2016), further called DitM,
also inspired by the title of the paper, Driving in the Matrix,
and the VIsual PERception (VIPER) dataset from (Richter et al.,
2017).

Dataset #Images Creation method TS labels
vKITTI 21,260 Self-rendering 3

SYNTHIA >200,000 Self-rendering 3

PfD 24,966 Game export 3

DitM >260,000 Game export 7

VIPER >200,000 Game export 3

Table 1. Preselected datasets with synthetic images of street
scenes with traffic signs (TS).
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Beyond the pre-selected datasets, there are some other image syn-
thetic datasets of street scenes available, but which don’t contain
traffic signs at all, e.g. a virtual pedestrian dataset (Marin et al.,
2010), an urban canyon dataset to study the influence of the field-
of-view of a camera on visual odometry (Zhang et al., 2016) or a
multi-object and multi-camera tracking dataset (Bochinski et al.,
2016). Scientific papers (e.g. (Tsirikoglou et al., 2017)) and web-
sites (e.g. (7D Labs, 2018), (BIT Technology Solutions, 2018))
addressing synthetic image data indicate that there might be other
synthetic image datasets existing, which have not been published
yet.

The DitM dataset will not be considered for further comparison,
as it provides no traffic sign labels and is therefore outside of the
focus of this paper, though the synthetic RGB images are similar
to the ones in the PfD and VIPER dataset because of the similar
production process.

2.2 Synthetic image production process

The synthetic data in the datasets in our comparison is produced
by one of two approaches being described by the following part
(both pipelines see figure 3).

Figure 3. Approaches used to produce the synthetic data in
datasets in our comparison: Top: Synthetic RGB images and

buffer data are exported from video games playing on streets of
a virtual world, buffer data is processed to get the semantic

ground truth images. Bottom: A virtual world with streets is
created by 3D modeling artificially, the synthetic RGB images

and semantic ground truth images are rendered from the models.

The PfD and VIPER datasets are produced by data export from
the open-world game GTA V, whose game play takes place on the
streets of a virtual world. Resources (like geometry meshes, tex-
ture maps or shaders) communicated during a game session from
the game to the graphics hardware to display the game on a com-
puter monitor are captured. Lack of access to the source code and
the virtual world inside GTA V requires this effort. The captured
images showing the player’s view on the virtual street scenes are
saved as synthetic RGB images. Identifier images containing per-
manent identifiers for all resources corresponding with a pixel in
the RGB image are created. Pixels sharing the same resources
are clustered to a patch automatically. The semantic ground truth
image for each RGB image is created by manually annotating
each patch with a semantic class. The manual effort is reduced
by propagating the class of a patch for other RGB images after its
manual annotation. The VIPER dataset provides in addition se-
mantic ground truth on the so called ”instance-level”, identifying
individual objects in multiple images, by exploiting information
from additional resources.

The vKITTI and the SYNTHIA datasets are produced by the self-
rendering approach. A 3D model of a virtual world with streets
is created as first step. In the case of vKITTI, the virtual world is

created based on real scenes shown in the image sequences in the
KITTI dataset (Geiger et al., 2012). The 3D models for objects
in the virtual world are taken from a publicly available database
of 3D models. In the case of SYNTHIA, there are no links of
the virtual world to real scenes. Aside from the 3D models of
the objects, the illumination in the virtual world and the position
of the camera can be set as desired. Finally, the RGB images and
the semantic ground truth images are created by rendering, i.e. by
taking virtual images of different scenes in the virtual world. The
Unity game engine is used to render the vKITTI and SYNTHIA
images.

One can assume that the appearance of traffic signs in synthetic
images should be as close as possible to the appearance in real
images to apply machine learning models trained on synthetic
data on real data, for example in the afore-mentioned advanced
driver assistance system. Therefore, the question of the degree of
realism in the synthetic datasets is addressed. The authors of the
PfD and VIPER datasets motivate the game-based approach by
the higher degree of realism of commercial games compared to
open-source virtual worlds (e.g. from a driving simulator). For
example, they state that ”realism” is achieved by ”the high fi-
delity of material appearance and light transport simulation” and
”the content of the virtual worlds”, which includes ”the layout of
objects and environments, the realistic textures, the motion of ve-
hicles and autonomous characters, the presence of small objects
that add detail, and the interaction between the player and the en-
vironment (Richter et al., 2016). More details, for example which
criteria define a high-fidelity material, are not given and subse-
quently it is also not proven whether GTA V fulfills these criteria.
The authors of SYNTHIA state to have used ”realistic models of
cars, vans, pedestrians and cyclists” (Ros et al., 2016), but do not
further discuss the degree of realism. Advantageous of their self-
rendering approach is the full access to the virtual world allowing
to change every part of it, like the geometry and the material of
objects, the illumination and the world composition. Both the
GTA engine and the Unity engine are game engines relying on
a technique called deferred shading. This technique allows real-
time rendering for a fluent game session with computers available
on the market today at the cost of some drawbacks. Mainly, the
support of anti-aliasing and the use of semi-transparent materials
are limited (Unity Technologies, 2017).

2.3 Virtual scenes and environmental conditions

Variations in the scenes and the environmental conditions can in-
crease the variations in the appearance of traffic signs (cf. fig-
ure 6) and their placement, for example.

Each virtual world contains different scene types, like downtown,
suburb, countryside or highway with typical traffic sign popula-
tion. The scenes in the PfD and VIPER dataset are defined by
the game scenes of GTA, but can be changed with third party
modificators for the game (e.g. Map Builder, (OmegaKingMods,
2016)). The game scenes of GTA are controlled by the player,
who moves a virtual person within the virtual world. Though the
area of the land in the virtual world in GTA V is more than 48
km2 (KeWiS, 2015) and is larger than the virtual world in many
other games, the limited influence of a third person on the vir-
tual world of the game makes it challenging to create challenging
situations as described in the motivation. The full access to the
virtual world in the approach used for SYNTHIA and vKITTI is
more flexible for creating challenging situations.

The synthetic RGB images of the different datasets show vari-
ations in the environmental conditions, whereby the seasons of
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Figure 4. Synthetic images (bottom) in the vKITTI dataset are
based on real images (top) in the KITTI dataset. Objects like

buildings, vegetation, streets and cars, can be identified in both
the virtual and real scene based on their placement, but the

geometry and material of the virtual object seem to be simplified.

the year, the daytimes and weather conditions are meant. Im-
ages showing summer season, daylight and sunny weather are the
most frequent ones. Other environmental conditions, like winter
or sunrise, sunset, night or overcast, rain are only partially cov-
ered by each dataset.

Assessing virtual worlds with regard to their degree of realism is
especially interesting for the vKITTI dataset, where the images
of the real KITTI dataset are available as reference. Visual com-
parison between sample image pairs form the real KITTI and the
synthetic vKITTI dataset shows that dominant objects, like cars,
buildings, vegetation, of the synthetic images can be identified in
the corresponding real image (example see figure 4). According
to the authors of the vKITTI dataset, the cars in the virtual world
are placed and oriented using information about the position and
orientation of the cars provided in the real KITTI dataset. In con-
trast, the geometry and the material of the virtual objects are dif-
ferent from the real objects, what can be drawn back to the use of
3D models from a public database instead of creating own mod-
els. Comparing the shape of shadows of a corresponding virtual
and real object in an image pair, the statement of the authors of
the vKITTI dataset can be confirmed that the illumination is set
manually. The described differences in the geometry and material
of objects between vKITTI and real KITTI images indicate that
the appearance of objects in synthetic and real images is different
as well. The influence of those differences in the appearances on
an object detector trained on one dataset and tested on the other
one would have to be investigated.

vKITTI inheres also some unrealistic effects like cars disappear-
ing from one frame to the next one without any reason, like being
occluded behind a larger object. While the lack of real data as
reference makes it hard to discuss the degree of realism of the
virtual worlds of the other datasets, they show inconsistencies
as well. For example, the SYNTHIA dataset contains a scene in
which vehicles are driving on a road, which is completely blocked
by construction barriers and another scene, in which pedestrians
and cars intersect each other. The player of GTA game sessions
can cause or avoid inconsistencies as well, especially in the in-
teraction with artificially controlled road users. In contrast to
the appearance addressed above, the inconsistencies might have a
larger influence on other learning tasks, e.g. learning the behavior
of road users, than on traffic sign detection.

2.4 Traffic sign variations

Variations in the training data can also be achieved by variations
in the position of traffic signs in the street scene images, by vari-
ations in their meanings or by modifications of the 3d models of
the signs themselves, for example.

Varying positions of traffic signs in the street scene images can
help to avoid that a machine learning model gets trained to ”ex-
pect” a traffic sign only in certain parts of a street scene image.
That could be a drawback with regard to the robustness of the de-
tector. The distribution of traffic signs in the street scene images
of the datasets is visualized by heatmaps in figure 5 created from
the semantic ground truth image. The ”hot spots” (red parts in the
heatmaps showing a high density of traffic signs in that part of the
synthetic RGB image) of traffic signs in the synthetic images are
in the image center, while the hot spot for the real image dataset
Cityscapes, which covers data from various cities, is in the right
upper part of the image. Further, the hot spot for vKITTI is closer
to the bottom border of the image then the other hot spots are.
Probably, because vKITTI is the only dataset, in which the traf-
fic signs and their poles (typically shown below the sign in street
scene images) have the same semantic class. The heatmaps also
show that the distribution of traffic signs varies between the syn-
thetic datasets. The distribution is wider in the datasets produced
with GTA V than in the datasets produced with a self-created
virtual world. Approximately, the distribution in the Cityscapes
dataset is as wide as in the datasets produced with GTA. Note
also the colorbars of the heatmaps showing that there is a large
difference in the number of traffic signs between the datasets.

Figure 5. Heatmaps showing the distribution of traffic signs in
the synthetic images of different datasets. The distributions are
derived from the semantic ground truth images. The heatmap of

the real-world dataset Cityscapes is given as reference.

Not very much information can be given about the meanings of
traffic signs; all datasets contain traffic signs of different mean-
ings. The datasets produced with the self-created virtual worlds
contain a smaller number of different meanings then the datasets
produced with GTA. But as all traffic signs in the datasets share
the same semantic class, the distribution of traffic sign meanings
can’t be derived directly from the semantic ground truth, though
this information would be interesting in regard to variations in
training data. Even for traffic sign detectors, it might be advan-
tageous to train different detector models for different groups of
traffic signs separated by their color or by their shape. Meaning-
less traffic signs (e.g. figure 6 d)) can be found in some synthetic
images; they should not be used for training detector models.

Several modifications are applied to the basic 3D models and ma-
terials of signs to make them looking more realistic. Modifica-
tions can be for example dirt or reflections on the sign or aging
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Figure 6. Examples of synthetic images of traffic signs from
different datasets: With modifications applied: a) painting

chipping off from the sign, b) dirt and reflections on the sign, c)
during rain. Without modifications: d) meaningless sign.

effects, like paint peeling off from signs (see examples in fig-
ure 6). As the same modifications appear in different images in a
dataset, one can assume that the modifications are applied man-
ually when creating the virtual worlds. To give an example, all
signs with the same meaning (figure 6 b), c)) in the GTA-based
datasets show the same dirt pattern. The same observation can be
made for paint chipping off from the signs in the vKITTI dataset.
Applying the same modifications to several traffic signs in the
virtual world increases the number of variations in the training
data only a bit. Different combinations of modifications could be
applied to the signs to get more variations.

2.5 Labeling strategy and inconsistencies

Semantic labels are needed together with RGB images to cre-
ate training datasets for machine learning-based object detectors.
Especially for large (synthetic) datasets, training data has to be
created automatically from the datasets. Labeling strategies or
inconsistencies in the labels can be a cost factor, if correction or
removal of undesired data from training datasets require manual
action.

All analyzed datasets provide semantic ground truth images (ex-
ample see figure 1) containing pixel-wise semantic labels for the
objects in the corresponding synthetic RGB images. Regarding
traffic signs, different labeling strategies are used for different
datasets (table 2).

Dataset vKITTI SYNTHIA PfD VIPER
TS meanings

7 7 7 7distinguished
Pixel-wixe labels

3 3 3 3for TS
Instance labels

7 7 7 7for TS
Front / back side

7 7 3 3distinguished
TS and pole

7 3 3 3distinguished

Table 2. Comparison of labeling strategies used for the analyzed
synthetic image datasets with regard to traffic signs (TS).

The datasets only provide semantic labels on a ”class-level” for
traffic signs. The term ”class” is used to distinguish different
kinds of objects in street scenes. The semantic class definition
of the analyzed datasets is identical or similar to the class defini-
tion proposed by Cityscapes. In both Cityscapes and the analyzed
datasets, all traffic signs are assigned to a single class for traffic
signs. None of the analyzed datasets provides labels distinguish-
ing different meanings of traffic signs. VIPER, SYNTHIA and
vKITTI provide labels on a ”instance-level” for some kinds of

objects, but not for traffic signs. The term ”instance” is used to
distinguish between different individual objects.

With regard to traffic sign detection, the labeling strategies men-
tioned in table 2 can influence the trained models. In vKITTI,
the pole of a traffic sign has the same semantic label as the sign
itself. In this case, the trained detector model might ”remember”
the combination of sign and pole, which could lead to a decrease
in the detector performance, if the pole is occluded behind other
objects. In vKITTI and SYNTHIA, the front side and back side
of a traffic sign have the same label, which has to be questioned,
because the different appearance of front side (different colors,
text, ...) and back side (typically metal-gray) might lead to a
worse detector performance of the front side of the signs, which
is typically the side of interest in traffic sign detection.

Figure 7. Examples of inconsistencies in the traffic sign labels of
different datasets. Top row: Semantic ground truth images

(yellow: traffic sign, gray: pole), bottom row: Corresponding
synthetic RGB images: a) Ladder labelled as traffic sign, b)

Varying class labels for one sign, c) and d) Both cases show the
same traffic sing; pole one time labelled as pole, the other time

as traffic sign; backside of the traffic sign labelled as traffic sign.

Inconsistencies in the semantic labels, like a wrong label, occur
in the analyzed datasets, but should be avoided, as the labels are
used as ground truth for the class of an object in the correspond-
ing RGB image. In the semantic labels of traffic signs of the an-
alyzed datasets, the following inconsistencies have been found:
Other objects are labelled as traffic signs (figure 7 a)), the same
sign has varying class labels (figure 7 b)). In one dataset, the
backside of a traffic sign is sometimes labelled as traffic sign,
other times as different object (figure 7 c)). In one dataset, the
pole of a traffic sign is sometimes labelled as traffic sign, some-
times as pole (figure 7 d)).

3. EVALUATION OF A SYNTHETIC DATASET FOR
TRAFFIC SIGN DETECTION

The second part of this paper aims at the evaluation of a synthetic
dataset for machine learning-based traffic sign detection. The au-
thors of the analyzed datasets use machine learning to evaluate
their datasets, as well. Their applications are multi-object car
tracking (vKITTI) and semantic segmentation (SYNTHIA, PfD,
VIPER).

As the purpose is to evaluate synthetic data independent of side
effects, the experimental setup is kept as easy as possible (pipeline
see figure 8). Especially, that means using a detector, which eval-
uates an image patch instead of a full image (example patches see
figures 2, 9). To keep in mind from the motivation of this paper,
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a street scene image is considered as full image, while an image
showing a traffic sign with a small border around it showing back-
ground (examples see figure 9) is considered as image patch. Side
effects can be for example the influence of the position or size of
traffic signs in street scene images on the detector, or the differ-
ent shape of image patches if traffic signs and their poles have the
same semantic class. Both examples are not typical for synthetic
image datasets in particular, as they can theoretically occur also
in real image datasets. The evaluation should be independent of
them, therefore.

Figure 8. Pipeline to evaluate the performance of traffic sign
detection on synthetic images. Performance measures are ROC
AUC, OA, P and R. The testbed could be extended to be able to

control different variations in the virtual world, for example
regarding the incidence of sunlight.

The detector bases on deep learning, following recent work of
other authors in the field of traffic sign detection and recognition
in images (e.g. (Wu et al., 2013), (Zhu et al., 2016)). The archi-
tecture of the deep learning network is a modification of LeNet,
which has been used in other work for object detection (Sermanet
and LeCun, 2011). The detector has been already trained and
tested on real image data of the GTSDB and GTSRB dataset
(Hanel and Stilla, 2018). The overall accuracy achieved in that
work is 96%. The training and test datasets for that detector need
to contain samples of image patches, as described in the previous
paragraph, and their semantic class labels, i.e. either traffic sign
or other objects. The image patches have to have a geometric res-
olution of 32 x 32 px and have to be RGB. Either traffic sign or
other objects is the output of the detector for each test sample.

For the evaluation, multiple detector models are trained with a
mixture of synthetic samples and real samples, as shown in fig-
ure 8. The detector model is tested only with real samples. Think-
ing of a traffic sign detector as part of an advanced driver assis-
tance system, the detector training can be performed offline and
can rely on synthetic and real samples therefore. In contrast, the
detector is applied online, i.e. on public roads, to images of a ve-
hicle camera, where no synthetic images will be available. There-
fore, the test dataset contains only real samples. The performance
measures for evaluation are the common ones for binary classi-
fiers: the overall accuracy (OA), the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve, precision
(P) and recall (R).

4. EXPERIMENT WITH THE SYNTHIA DATASET

The real samples for training and testing have been derived from
the GTSRB and the GTSDB dataset. The real image patches of
traffic signs are taken from the GTSRB dataset (Stallkamp et al.,
2011), while the real image patches of other objects are randomly
sampled from street scene images in the GTSDB dataset (Houben
et al., 2013). Both datasets have been already used as reference by
other authors working in this field (e.g. (Wu et al., 2013)) and are
the basis for benchmarks on traffic sign detection and recognition
(Ruhr-University Bochum, Institute for Neuroscience, 2010).

The synthetic samples for training have been derived from the
SYNTHIA dataset. SYNTHIA contains traffic signs with the
same shape and texture as the signs in the GTSRB and GTSDB
datasets. Though, the number of different traffic sign meanings
overlapping between these real datasets and that synthetic dataset
is only around ten (examples see figure 9), depending on how
strictly the shape and texture of the signs should match between
the datasets. Therefore, the absolute number of synthetic samples
is small (details see following paragraphs). Performing the exper-
iments with vKITTI was discarded because of the expected high
effort to separate the signs from the poles when creating the im-
age patches of traffic signs from the street scene images, as pole
and sign share the same semantic class (see figure 2). Performing
the experiments with a GTA-based synthetic dataset would have
resulted in a high number of synthetic samples from the US, but,
to the knowledge of the authors, there is no suitable real image
dataset of traffic signs from the US available. Most of the street
scene images in the afore-mentioned LISA dataset (Mogelmose
et al., 2012) have a low quality, e.g. due to compression effects
or are blurred.

Figure 9. Traffic signs with only a few different meanings can be
used to train the traffic sign detector, as there is no larger overlap

between a published real and a synthetic dataset (Ros et al.,
2016).

The synthetic RGB images of street scenes and the semantic ground
truth images are processed as follows to extract image patches
of traffic signs: Tight enclosing rectangles around traffic signs
are calculated using the pixel-wise semantic labels. The rectan-
gles are enlarged to include a border showing background objects
in the image patches, as the real image patches in the GTSRB
dataset contain a border as well. This process is done automati-
cally. For creating the training data, suitable image patches have
to be selected: Real image patches showing traffic signs with
meanings not provided by the SYNTHIA dataset are removed,
the same for synthetic image patches. Synthetic patches showing
the backside of traffic signs are removed (see labeling strategy of
SYNTHIA in table 2), which has to be done manually, but is an
easy task. Image patches of traffic signs, which can be mirrored
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like the do not enter sign, are mirrored by horizontal flipping to
increase the number of synthetic training samples. Synthetic im-
age patches of other objects are randomly sampled from the syn-
thetic RGB street scene images in SYNTHIA, excluding traffic
signs in these images, of course.

The total number synthetic image patches of traffic signs derived
from SYNTHIA, as described above, is around 1,750. The ra-
tio of patches of traffic signs to other objects is 1:5 to consider
that the most parts of a street scene image do not contain traffic
signs. The experiment covers multiple training steps of the detec-
tor model with different ratios of synthetic samples to real sam-
ples. The ratio is varied from 1:10 to 10:1. The total number of
samples is kept constant for all trainings. The training dataset is
split into a 80% part for the training itself and a 20% part for val-
idation. The ratio between training and test dataset is 80%:20%.
Training is performed until the loss asymptotes. The hyperpa-
rameter values have been found by hand-tuning: The batch size
is 64, the learning rate 0.001, the drop-out probability 80%.

5. DETECTOR PERFORMANCE IN THE
EXPERIMENT

The traffic sign detector achieves for all ratios between the num-
ber of synthetic training samples and real training samples an
overall accuracy and ROC AUC of more than 95% (see figure 10).
The shapes of the OA and AUC curves reveals a periodic increase
and decrease of the OA and AUC values, respectively, over the
stepwise change of the ratio between the samples. A clear state-
ment about the reason for these shapes can’t be given. Note, that
for training a drop-out probability of 80% has been used, which
can be a source for indeterministic performance of a classifier for
multiple trainings. Figure 10 further shows that the difference be-
tween OA and AUC increases with an increasing rate of synthetic
samples in the training data; the OA curve shows a slightly neg-
ative linear trend, especially for ratios larger than 10:5. Though,
the overall very high values of more than 95% let us draw the con-
clusion that synthetic data from SYNTHIA can be used to train a
traffic sign detector.
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Figure 10. Overall accuracy and ROC AUC of the traffic sign
detector trained with different ratios between synthetic and real

samples. Tests are done on real samples only.

The precision and recall curves (figure 11) show the same pe-
riodic increase and decrease of the values for a changing ratio
between synthetic and real training samples. The precision and
recall for the class other objects are always above 95%. The pre-
cision and recall for the class traffic sign ranges between 80% and

100%; the periodic increase and decrease is much larger than for
the other class. As the recall curve for traffic sign shows lower
values than the precision curve for traffic sign, the rate of false
negative detections will be higher than the rate of false positives
detections for this class.
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Figure 11. Precision and recall curves for both classes traffic
sign (TS) and other objects (OO).

When discussing the detector performance, one might question
the small number of just a few thousand samples (see section 4)
for training of a deep learning network. Therefore, the same net-
work has been trained on all image patches of traffic signs from
the GTSRB dataset and a corresponding amount of image patches
of other objects sampled from the GTSDB dataset, in total more
than 100,000 image patches. Test on the same (small set of) real
samples as before results in an overall accuracy of 98.7% and a
precision of 96.4% and a recall of 95.5% for the class traffic sign.
Compared with the values (OA = 98.2%, P(TS) = 97.2%, R(TS) =
91.2%) obtained for training on a real-only set, but with the same
number of samples as used for figures 10, 11, the overall accuracy
and precision obtained for the large real sample training set differ
by less than 1 percentage point. Only the difference between the
recall values is a little bit larger, around 4 percentage points. This
comparison can be interpreted as that the small real and synthetic
mixed training set is not in general problematic, especially as the
network used for the experiments has around 25,000 parameters
only. In addition, (Mayer et al., 2018) write in a recent work, that
a small training set of 1,000 image pairs in their application of
optical flow estimation can be sufficient to train a deep network.

6. CONCLUSION

In this contribution, selected synthetic datasets providing RGB
images of street scenes and corresponding semantic ground truth
images have been compared with regard to traffic sign detec-
tion using machine learning. The comparison has shown that
the datasets contain images with traffic signs in different types of
street scenes, under different environmental conditions and with
different modifications applied to the signs. The semantic la-
bels are provided pixel-wise. The labeling strategies might cause
manual effort when creating training datasets for a traffic sign de-
tector, for example, as the front side and back side of traffic signs
has not been assigned to different semantic classes in all datasets.
The degree of realism of the datas is addressed by the authors
of the dataset mainly by evaluating the performance of machine
learning tasks, e.g. semantic segmentation, on their dataset. Own
experiments with the synthetic SYNTHIA dataset and a LeNet-
based network for traffic sign detection have shown a high overall
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accuracy and ROC AUC of more than 95% for training data with
different ratios between synthetic and real data. Though, it was
only possible to derive around 1,750 synthetic training samples
of traffic signs because of the low overlap of signs with the same
meaning with a suitable real image dataset. Future work can fo-
cus on assessing the quality of synthetic images without using a
package of machine learning and the data.
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