
DEEP LEARNING FOR LOW TEXTURED IMAGE MATCHING

V. V. Kniaza,b∗, V. V. Fedorenkoa, N. A. Fomina

a State Res. Institute of Aviation Systems (GosNIIAS), 125319, 7, Victorenko str., Moscow, Russia
(vl.kniaz, vfedorenko, nfomin73)@gosniias.ru

b Moscow Institute of Physics and Technology (MIPT), Russia

Commission II, WG II/8

KEY WORDS: image matching, deep convolutional neural networks, auto-encoders, cultural heritage

ABSTRACT:

Low-textured objects pose challenges for an automatic 3D model reconstruction. Such objects are common in archeological applications
of photogrammetry. Most of the common feature point descriptors fail to match local patches in featureless regions of an object. Hence,
automatic documentation of the archeological process using Structure from Motion (SfM) methods is challenging. Nevertheless, such
documentation is possible with the aid of a human operator. Deep learning-based descriptors have outperformed most of common
feature point descriptors recently. This paper is focused on the development of a new Wide Image Zone Adaptive Robust feature
Descriptor (WIZARD) based on the deep learning. We use a convolutional auto-encoder to compress discriminative features of a local
path into a descriptor code. We build a codebook to perform point matching on multiple images. The matching is performed using the
nearest neighbor search and a modified voting algorithm. We present a new “Multi-view Amphora” (Amphora) dataset for evaluation
of point matching algorithms. The dataset includes images of an Ancient Greek vase found at Taman Peninsula in Southern Russia.
The dataset provides color images, a ground truth 3D model, and a ground truth optical flow. We evaluated the WIZARD descriptor on
the “Amphora” dataset to show that it outperforms the SIFT and SURF descriptors on the complex patch pairs.

1. INTRODUCTION

Dense and robust image matching is a crucial step for an accurate
3D object reconstruction. Various kind of textures requires dif-
ferent feature descriptors for high-quality image matching. Often
it is not easy to choose the best feature descriptor from the wide
range of algorithms available nowadays. Each handcrafted de-
scriptor has advantages and disadvantages. Usually, it achieves
the best performance only for a specific kind of object’s texture.
Recently a new generation of feature descriptors based on the
deep learning was developed. Such descriptors can be trained for
image matching for a given kind of object. Such specificity in
the pair selection provides a dramatic increase in the matching
precision and recall. The main disadvantage of the deep learning
based descriptors is that the initial step of a dataset generation is
necessary. The process of an accurate image path pair extraction
can be time-consuming, and it is required for any new kind of
object texture that was not present in the original training dataset.
This paper is focused on the development of a new Wide Image
Zone Adaptive Robust feature Descriptor (WIZARD) based on
the deep learning. The paper presents two main contributions:
(1) technique for on-the-fly automatic training dataset genera-
tion from the input imagery, (2) a new deep convolutional auto-
encoder architecture (WIZARD) for the descriptor code genera-
tion.

The WIZARD descriptor is based on a convolutional auto-encoder
for retrieval of the discriminative image features. The architec-
ture is designed to work with the color images. It is based on the
previous work for image matching in the infrared range (Knyaz et
al., 2017). The auto-encoder takes a color image patch of 64×64
pixels as an input x. The image is processed by three convolu-
tional layers to obtain a feature code F . The feature code is used
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as the WIZARD descriptor’s value for image matching. During
the training stage, the auto-encoder is trained to compress the in-
put x to code F and to recover back the input image from the
code F to output image y. The loss function is based on the
difference between the output image y and the input x. As the di-
mension of the code F is small (196 values) the encoder learns to
compress the most discriminative features of the input image to
code F . Hence, the code can be used efficiently for image patch
matching (Kehl et al., 2016).

We perform on-the-fly generation of the codebook to adopt the
auto-encoder to the target object texture domain. Firstly, image
feature points are detected using FAST (Rosten and Drummond,
2006) or SUSAN (Smith and Brady, 1997) feature detectors. To
generate the dataset small image patches are extracted for each
detected feature point. After that, each image patch is applied as
a texture to a random surface. The textured surface is rendered
from various angles to new image patches that are used for code-
book generation. All rendered images are collected in the training
dataset to provide surface invariant image matching. Matching is
performed using feature codes generated by an auto-encoder. A
majority vote of feature codes for a given point defines its class.
The 3D model generation pipeline is presented in figure 1.

2. RELATED WORK

Accurate image patch matching is required in many applications
of photogrammetry and computer vision. For example, local patch
descriptors must provide high robustness for an accurate 3D model
generation using structure-from-motion (SfM) algorithms (Re-
mondino et al., 2014, Knyaz et al., 2017). Nowadays, local patch
descriptors became the main approach for robust point matching.
In contrast with methods that perform dense point matching of
the whole image (optical flow estimation (Farnebäck, 2003, Sun
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Figure 1. A 3D model generation pipeline

et al., 2010, Dosovitskiy et al., 2015), LSD-SLAM (Engel et al.,
2014)), descriptors are designed for matching of small regions of
an image a keypoint (edge, blob, etc.).

First approaches to point matching were based on the corner de-
tection. Corner detectors proposed by Harris (Harris and Stephens,
1988) and Förstner (Förstner and Gülch, 1987) provided a de-
gree of automation for photogrammetric software. The problem
of matching of non-corner points has stimulated the development
of blob descriptors such as Local Binary Patterns (LBP) (Wang
and He, 1990) and the Census Transform (Zabih and Woodfill,
1994). Still, scale and rotation invariant descriptors were required
to perform feature point matching “in the wild.” The SIFT de-
scriptor (Lowe, 1999, Lowe, 2004) provided the desired degree
of robustness to changes in an object’s pose and orientation. The
high accuracy of the SIFT made it very popular in practical appli-
cations. It remains widely used for point matching in photogram-
metry after nearly twenty years since the original paper.

The main disadvantage of the SIFT is high computational com-
plexity. Multiple descriptors were proposed (SURF (Bay et al.,
2008), ORB (Rublee et al., 2011), FREAK (Alahi et al., 2012))
that outperformed the SIFT in the processing time. However, the
benefit in the time came at the cost of the matching quality. By
the end of the 2010s, there was a vast list of handcrafted feature
descriptors. Each descriptor had its benefits and disadvantages,
that should be considered for an effective application.

The situation changed with the appearance of a new machine
learning-based generation of feature descriptors in the 2010s. The
new descriptors used the deep Convolutional Neural Networks
(CNN) for an effective encoding of discriminative features. The
modern GPUs reduced the computational time of the CNN-based
descriptors, while training on the dedicated dataset provided a
superior performance in the point matching on the target object.

Simo-Serra et al. (Simo-Serra et al., 2015) proposed a deep con-
volution feature point descriptors (DCFPD) that outperformed the

SIFT on the Multi-view Stereo (Goesele et al., 2007) dataset. The
DCFPD is based on a Siamese network that takes two images
patches as an input. In the output, the network produces a simi-
larity measure between the patches.

An alternative approach was proposed by Kehl et al. (Kehl et
al., 2016) for matching of local RGB-D patches. The approach
is based on a convolutional auto-encoder (CAE) (Goodfellow et
al., 2016). In previous research (Knyaz et al., 2017) performed
by authors, the CAE-based approach was successfully modified
for matching local image patches in infrared images. The present
paper is focused on the modification of the developed method
for effective matching of the RGB local patches in low-textured
images.

3. METHOD

Local patch matching with the WIZARD descriptor includes sev-
eral steps. Firstly, a convolutional auto-encoder is trained offline.
Secondly, the trained encoder is used to generate a codebook for
every photo. Finally, the points are matched using the codebook.
The following section presents details of each step.

3.1 Convolutional auto-encoders

An auto-encoder (AE) can be considered as a special case of a
feed-forward neural network (Goodfellow et al., 2016). An AE
consists of two parts: an encoder and a decoder. The encoder
takes an input x and compresses it to a low dimensional code f.
The decoder takes the code f as input and reconstructs the original
signal in its output y. The objective function is the cross-entropy
loss (logistic loss) for the input x and the reconstruction y.

A convolutional auto-encoder (CAE) is designed to process the
images. The CAE uses convolutional layers in the encoder part.
Image reconstruction is performed using deconvolutional layers.
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Layer Size out Kernel Stride

Input 3× 64× 64
Convolution 32× 31× 31 2× 2 4
Convolution 32× 15× 15 2× 2 2
Convolution 1× 14× 14 2× 2 2
Code 1× 14× 14
Deconvolution 32× 30× 30 4× 4 2
Deconvolution 32× 62× 62 4× 4 2
Deconvolution 3× 64× 64 3× 3 1

Table 1. CAE network architecture

The low-dimensional code f must contain the discriminative fea-
tures of an input x to provide a high-quality reconstruction. Hence,
the code can be used as a descriptor for a local patch matching.

A CAE architecture proposed in the previous research (Knyaz et
al., 2017) was used as a starting point. Three contributions were
made: (1) a convolutional layer and a deconvolutional layer were
added to process a larger input patch, (2) two fully-connected
layers were removed, (3) the number of the input’s channels was
increased to three. The resulting CAE architecture is presented in
figure 2 and table 1.

Figure 2. The convolutional auto-encoder architecture of the
WIZARD descriptor

3.2 Dataset design

We present a new “Multi-view Amphora” (Amphora) dataset for
evaluation of point matching algorithms. The dataset includes
images of an Ancient Greek vase found at Taman Peninsula in
Southern Russia. The dataset provides color images, a ground
truth 3D model, and a ground truth optical flow. The dataset is
publicly available1.

The ground truth 3D model was generated using a fringe pro-
jection scanner (Knyaz, 2010). The external orientation of the
camera was found for each color photo. The model was imported
to the Blender 3D creation suite to create the ground truth optical
flow for color images. The optical flow (figure 3) can be used to
validate the matching results during the test stage.

1http://www.zefirus.org/MVA18

Figure 3. An image from the dataset and the corresponding
ground truth optical flow

3.3 WIZARD codebook generation

A robust feature point descriptor must be invariant to changes in
scale and rotation of the local patch. The codebook augmenta-
tion is used to address this aspect of the point matching. Firstly,
a local path is extracted for each point detected on the input im-
ages (figure 4). After that, the local patch is projected on various
surfaces: flat plane, sphere, corner, pit, etc.

Figure 4. Feature point extraction

Multiple images are rendered using the textured model. The po-
sitions of a virtual camera are sampled randomly over a sector
of a sphere (see figure 5). Multiple roll angles are selected ran-
domly for each position. Positions and intensities of a virtual
light source are also sampled randomly. Figure 5 summarized the
complete augmentation process.

After the augmentation, all synthesized image patches are pro-
cessed using the CAE to obtain the codebook. The codebook
defines the correspondence between a point ID on the current im-
age and the code F for point’s local patch. For a single image
the codebook includes N × g rows, where N is the number of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-513-2018 | © Authors 2018. CC BY 4.0 License.

 
515



Patch Patch ID Code F
001 [ 0.7567923,	 …,	 0.69736898,	 0.69337928]

001 [ 0.9359031,	 ...,	 1.46776056,	 1.96676433]

… … …

002 [ 1.9520411,	 ...,	 2.24001193,	 2.51816773]

002 [ 2.3267161,	 ...,	 2.24746609,	 2.04086089]

… … …

4. Codebook generation 3. Camera pose sampling

2. Local surface projection
Corner Plane Sphere Pit

1. Local patch extraction

Figure 5. Codebook augmentation

points detected by a feature detector, g is the number of patches
synthesized during the augmentation.

3.4 Local patch matching

We perform local patch matching using a modified majority vote
approach (Knyaz et al., 2017). Let Iq be a local image patch
on the query image Q. Let zq be the local ID of the patch on
the image Q. Let Cb be the codebook for image B in which
the corresponding patch Ib must be found. Firstly, we calculate
the query patch code Fq = CAE(Iq). To find the corresponding
patch, we query k IDs of nearest neighbors Zb from the codebook
Cb

Zb = NearestNeighbors(Cb, zq) = {zj1b , zj1b , zj2b , . . .},
(1)

The ID of the corresponding patch zb is given by the patch ID of
a majority vote of its neighbors. We define the probability that
patch Ij

b corresponds to the patch Iq as follows

p = P (zq = zjb) =
|{zb ∈ Zb : zq = zjb}|

k
. (2)

The probability p is used as a distance measure to filter the poor
matches.

4. EVALUATION

We evaluate the WIZARD descriptor using the “Amphora” dataset.
The following section presents details on training and evaluation
of the descriptor.

4.1 CAE training details

CAE networks are trained in a semi-supervised setting. The train-
ing dataset does not provide any information about the correct

patch pars. Hence, local patches for the dataset can be sampled
using a sliding window. We created the dataset with 20000 local
patches using images from the “Amphora” dataset. The training
was performed using the PyTorch library (Paszke et al., 2017)
and the NVIDIA 1080 GPU. The CAE networks have a moder-
ate number of trained parameters compared to deep modern net-
works. Therefore the training process took only 30 minutes and
90 epochs. The CAE reconstruction results for the first and the
last epochs are presented in figure 6.

Figure 6. Examples of CAE reconstruction for the first (left) and
the last (right) epochs

4.2 Comparison with other feature descriptors

We compared the WIZARD descriptor with the SIFT and the
SURF feature descriptors. We used pairs of images from the
“Amphora” dataset and the corresponding optical flow. The opti-
cal flow U(x, y) defines the displacement vector from the second
image in the pair to the first image.

For each point on the second (query) image Q, we searched the
best match on the first image B. We calculated the difference
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Figure 7. Precision-Recall curves for the SIFT, the SURF, and
the WIZARD descriptors

between a location of the patch xq on the query image, and the
corresponding location xb found by a descriptor

Û(xq) = xq − xb. (3)

The matching point is considered correct if the L2 norm of the
difference of the optical flow U and the calculated displacement
Û is less than a threshold t. The decision function d(U , Û) re-
turns one if the correspondence is correct, and zero otherwise

d(U , Û) =

{
1, ||U − Û ||2 < t

0, otherwise
. (4)

We use the probability p as the score value for the WIZARD de-
scriptor. We use the difference between the best match distance
and the second match distance as the score for the SIFT and the
SURF descriptors

s(Fq, F1, F2) =
||Fq − F2||2 − ||Fq − F1||2

||Fq − F2||2
, (5)

where Fq – is the descriptor’s code for the query image, F1 – is
the code for the best match, F2 – is the code for the second match.
The Precision-Recall (PR) curves for the SIFT, the SURF, and the
WIZARD descriptors are presented in figure 7.

The area under the PR curve for the WIZARD was 0.88, for the
SIFT it was 0.79, and for the SURF it was 0.62. The analysis of
the PR curve has shown that the WIZARD descriptor has outper-
formed the SIFT on similar pairs with high recall.

4.3 Applications

We evaluate the performance of the WIZARD descriptor in the
full pipeline for a 3D model generation. The WIZARD descrip-
tor was applied to find the corresponding image points on the

Figure 8. An example of 3D model reconstruction of an ancient
vase using matches found by the WIZARD descriptor

Figure 9. Accuracy evaluation for the reconstructed model

images of the amphora. The final 3D object reconstruction was
performed with the Agisoft PhotoScan using the point pairs found
using the WIZARD descriptor. The result of the 3D reconstruc-
tion on the ancient vase is presented in figure 8. A comparison
with the 3D models generated by original PhotoScan pipeline has
shown that the WIZARD descriptor improves the surface accu-
racy in low-textured areas, e.g., bare clay areas of the vase (fig-
ure 9).

5. CONCLUSION

The new WIZARD deep learning-based feature descriptor has
been developed. The descriptor uses a convolutional auto-encoder
network to extract discriminative features from image patches
effectively. The final matching is performed using a modified
voting algorithm. A dataset was generated to evaluate the WIZ-
ARD descriptor. The dataset includes 39 images of an ancient
amphora and the corresponding ground truth optical flow. The
optical flow can be used for automatic evaluation of point match-
ing algorithms. The evaluation of the WIZARD descriptor on
the “Amphora” dataset has shown that it effectively outperforms
the SIFT and the SURF descriptors in the matching accuracy of
low-textured images patches.
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