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ABSTRACT:

In the last decades, an increase in the number of extreme precipitation events has been observed, which leads to increasing risks for

flash floods and landslides. Thereby, conventional gauging stations are indispensable for monitoring and prediction. However, they are

expensive in construction, management, and maintenance. Thus, density of observation networks is rather low, leading to insufficient

spatio-temporal resolution to capture hydrological extreme events that occur with short response times especially in small-scale catch-

ments. Smaller creeks and rivers require permanent observation, as well, to allow for a better understanding of the underlying processes

and to enhance forecasting reliability.

Today’s smartphones with inbuilt cameras, positioning sensors and powerful processing units may serve as wide-spread measurement

devices for event-based water gauging during floods. With the aid of volunteered geographic information (VGI), the hydrological

network of water gauges can be highly densified in its spatial and temporal domain even for currently unobserved catchments. Fur-

thermore, stationary low-cost solutions based on Raspberry Pi imaging systems are versatile for permanent monitoring of hydrological

parameters. Both complementary systems, i.e. smartphone and Raspberry Pi camera, share the same methodology to extract water

levels automatically, which is explained in the paper in detail. The annotation of 3D reference data by 2D image measurements is ad-

dressed depending on camera setup and river section to be monitored. Accuracies for water stage measurements are in range of several

millimetres up to few centimetres.

1. INTRODUCTION

It is impossible to imagine today’s weekly news without hearing

the term of ”climate change”. Beside warming effects, a rapid

increase of global flood events can be observed [Hirabayashi et

al., 2013, Milly et al., 2002]. Thus, heavy rainfalls can trigger

inundations or landslides, being dangerous for human and envi-

roment [Müller and Pfister, 2011]. Flash floods are often not pre-

dictable and may affect smallest catchments in very short times.

However, the costs for permanent overall observation would be

excessively high, which is why gauging stations are economical

installed. As a consequence, hydrological networks may have an

insufficient coverage for threatened areas in case of need.

Improvements in this sense can be achieved using photogram-

metry for contactless monitoring of environmental parameters

(e.g. [Eltner et al., 2018, Eltner et al., 2017, Schwalbe and Maas,

2017,Capolupo et al., 2015]). With the aid of a single camera and

methods for image processing, characteristics of a prevalent situ-

ation can be captured and further examined. Its implementation

will be carried on with image-to-geometry registration. Thus,

the analysed 2D image data is transferred into object space to

annotate prior acquired 3D point sets or digital surface models

(DSMs). For the development of a versatile mobile and stationary

low-cost system for hydrological measurements, the image data

of a monitored river section, captured by smartphone or Rasp-

berry Pi camera, is analysed for its prevalent water line. Due to

the intersection of image and object data, the water line can be

interpreted as series of water levels.
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The following chapter (1.1) provides a small overview of re-

lated work concerning novel and conventional approaches for wa-

ter stage measurements. Section 2 introduces smartphones and

low-cost Raspberry Pi camera modules as versatile measurement

units. Three study regions situated close to conventional water

gauges, one for mobile and two for stationary water level ob-

servation, are chosen to enable evaluation of the results (section

3). In section 4, the acquisition of 3D reference data as well as

2D imagery for water line investigation is addressed. Section 5

gives an introduction into the methodology. Finally, the results

are evaluated and discussed in section 6 and an outlook is given

in section 7.

1.1 Related work

The determination of water surfaces from remote sensing data

is well-established in geosciences, f.e. using (multi-)spectral in-

dices [Lillesand et al., 2014, Govender et al., 2007, Melgani and

Bruzzone, 2004]. Nevertheless, these approaches suffer from

high instrumental efforts and reduced spatial and temporal reso-

lution to observe small catchments or sudden events (e.g. floods).

Unmanned aerial vehicles (UAVs) with low-cost equipment are a

considerable alternative [Koschitzki et al., 2017, Gonçalves and

Henriques, 2015, Colomina and Molina, 2014, Niethammer et

al., 2012, Niedzielski et al., 2016] but, regarding the current leg-

islative situation, constant autonomous observation (e.g. using

scheduled flights) is not possible, particularly for urban river sec-

tions. In combination with photogrammetric approaches, laser

scanning techniques have been proven successful for water level

determination, i.e. by the application of laser light sheet triangu-

lation [Mulsow et al., 2016]. The vast majority of the mentioned
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approaches have one thing in common: data is acquired in the

field but necessary information is derived in the office later. How-

ever, in case of flash floods, the time between the instrumental

setup and final interpretation should be kept as brief as possible

because river characteristics can change suddenly. Smartphones

and modularly pocket computers, i.e. Raspberry Pi’s, are able to

acquire and process data, gain and visualise information, and fur-

thermore, can transmit the results to the final users not necessarily

present in the field.

The analysis of textural image features for image segmentation

and boundary extraction, pointing to the shore line, is a common

approach for image-based water line detection. However, each

presentation of texture is highly correlated with perception. Thus,

close-range images of running waters can show entirely different

textural features in contrast to the appearance from a bird’s-eye

view, where running water seems to be very similar, making them

classifiable [Verma, 2011, Martinao et al., 2003, Haralick et al.,

1973]. Time-lapse images provide an additional dimension, i.e.

the third dimension time, to enhance the distinction of river lines.

More details about this approach are given in [Kröhnert and Me-

ichsner, 2017].

The retrieved water line has to be transfered into object space,

which can be expressed as annotation, a term commonly used

in computer graphics, of 3D data using registered 2D images

[Schwalbe and Maas, 2017, Kehl et al., 2016, Chen et al., 2008].

Popular use cases can be found in augmented reality (AR) where

virtual image content is projected into the real world using mobile

devices as interfaces, e.g. smartphones or AR glasses. In applied

geo-sciences, [Kehl et al., 2017,Kehl et al., 2016] use an Android

tablet for field-based geological interpretations in petroleum ge-

ology. Virtual renderings of available 3D base data are gener-

ated to solve the issue of field-based 2D-3D matching. Com-

mon approaches are mesh- [Sattler et al., 2011], splat- [Garcı́a et

al., 2015] or point-based rendering [Meierhold et al., 2010]. If

an virtual image with known pixel depths is available, the issue

of pose estimation can be described as Point-n-Perspective (PnP)

optimisation problem with additional camera geometry parame-

ters [Lepetit et al., 2009, Marquardt, 1963].

2. LOW-COST MEASUREMENT HARDWARE

Prior discussing the hardware system, the term low-cost needs to

be clarified. To put it in a nutshell, [Potsiou and Ioannidis, 2003]

define low-cost as ”good results within less time and low budget”.

Thus, smartphones equipped with inbuilt cameras, location sen-

sors and powerful processing units offer stunning newly instru-

ments in scientific research. Furthermore, single board comput-

ers, such as the Raspberry Pi, gain more and more popularity due

to their modularly extensibility, tailored to the individual needs

of the users, at low costs.

2.1 Smartphone

During the last decade there has been a significant change in

terms of worldwide mobile smartphone subscriptions with still

rising trends1. Today’s smartphones can be considered as small

pocket computers instead of mobile phones with advanced sen-

sors and cameras. They can serve as widely spread measurement

devices for various applications also in geo-sciences. Beside the

already mentioned scenarios in 1.1, common tasks comprise e.g.

mobile mapping [Masiero et al., 2016, Verma et al., 2016, West-

head et al., 2013], object reconstruction with Structure from Mo-

tion (SfM) [Masiero et al., 2014] or, river monitoring [Pena-Haro

Figure 1. Weißeritz, Dresden. Floods 2002 (left), 2013 (right)2.

et al., 2015, Kim et al., 2013].

Most of the smartphones provide sensors for orientation such

as accelerometer, magnetometer and gravity meter and for posi-

tion and navigation a Global Navigation Satellite System (GNSS)

module. Increasingly, gyroscopes and barometers are installed

to support orientation and relative positioning via sensor fusion

[Dabove et al., 2015, Mourcou et al., 2015]. Nevertheless, com-

pared to commercial state of the art sensor systems, as used in

autonomous navigation, the values obtained by smartphone sen-

sors must be critically reviewed [Kröhnert et al., 2017].

A smartphone can be a suitable device for photogrammetric mea-

surements, using the inbuilt camera for data acquisition, location

sensors to determine the exterior orientation parameters, and the

computational power. Thus, smartphones allow for field-based

research.

2.2 Raspberry Pi

Besides smartphone cameras, low-cost single board computers

equipped with a simple camera circuit board can be used to ob-

serve river cross sections. In this study a Raspberry Pi com-

puter and a Raspberry Pi camera v2.1 are utilised. Using such

a board enables the opportunity of simple script implementations

to trigger the camera in specified temporal sequences and capture

videos with specific lengths. Furthermore, intelligent image cap-

turing is possible, e.g. considering previously captured images

and afterwards extracted information.

3. STUDY AREAS

For application-based development and evaluation of the method-

ology, three rivers with small- and medium-scale catchments, sit-

uated in Saxony, Germany (see table 1) are gauged. Stationary

Raspberry Pi cameras are installed at the creek Triebenbach and

the river Wesenitz. To evaluate on the fly water stage measure-

ments using smartphones, an urban section of the river Weißeritz

is observed. Here, measurements are taken twice each day (early

in the morning and later in the afternoon) for seven days. The

observed section became known through the media during the

floods in 2002 and 2013 after heavy rainfalls (figure 1).

All measurements at the three rivers are performed close to offi-

cial gauges that serve as references (see section 6).

4. DATA

For field-based surface annotation, the image measurement must

be transferred into object space to detect water levels. In order

1see eMarketer.com Slowing Growth Ahead for Worldwide Internet Au-

dience [29.03.2018]
2see mapio.net (2002) and (2013) [29.03.2018]
3see the interdisciplinary data & analysis (iDA) web portal of the Free

State of Saxony [29.03.2018]
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Table 1. Study areas

Weißeritz Wesenitz Triebenbach

catchment 366 km2 227 km2 1.5 km2

■④max flow rate rm
3

s
s 3 / 300 (2002) 2.2 / 58 (2010) 0.09 / 8 (2002)

■④max water level [m] 1.3 / (-) 0.5 / 2.6 (2010) 0.09 / 140 (2002)

shore characteristics boulder, meadow, partly

vegetation covered shore

cobblestones, partly vegeta-

tion covered shore

boulder, less vegetation,

sand gravel

camera gauge mobile smartphone camera stationary Raspberry Pi

camera module

stationary Raspberry Pi

camera module

location of camera gauge urban, traffic junction point rural, agricultural land forested

camera-object-distance 15 - 20 m ✒ 8 m ✒ 3 m

temporal resolution two daily measurements ca.

08:30 & 15:30 h

0.5 h 1 h

available gauging station official3: flow and pressure

gauge, level recorder, re-

mote data transmission

official3: flow and pres-

sure gauge, level recorder,

remote data transmission,

manual water metering

pressure gauge, level

recorder

temporal resolution 15 min 15 min 10 min

to obtain three-dimensional reference data, several approaches

are conceivable. In this study, SfM is applied to generate 3D

point sets from terrestrial images or aerial images captured with

an UAV. Additionally, Terrestrial Laser Scanning (TLS) was ap-

plied at the Triebenbach and Wesenitz to check the quality of the

SfM-based point clouds.

4.1 Digital surface models

SfM is characterized as a very flexible, fast and easy to use tech-

nique to generate 3D data. In a nutshell, SfM can be consid-

ered as an enhanced method of conventional stereo photogram-

metry that applies multi-view geometry allowing for the genera-

tion of coloured 3D representations of almost any-sized objects.

After image acquisition, feature points are detected and matched

and subsequently used within the image bundle to reconstruct the

camera configuration via bundle adjustment. The reconstructed

camera geometry serves as basis for the posterior dense match-

ing. Table 2 gives an overview of the 3D point surfaces in relation

of each study area (see section 3). Figure 2 shows the multi-view

geometry for the river Weißeritz. The reconstruction of river beds

is difficult using SfM due to water cover. However, for shallow,

calm waters being clear and almost translucent, it is possible to

reconstruct the bed considering water refraction during depth es-

timation [Dietrich, 2017].

4.1.1 (Geo) referencing A joint reference system has to be

defined to retrieve information using data from different sources.

Therefore, the underlying topography as well as the image data

for registration, captured by the camera-gauges, have to be in a

common reference frame.

For the fixed camera gauges, a local and scaled reference sys-

tem is already sufficient and no geo-referencing is necessary. 12

and 17 well-distributed temporary ground control points (GCPs)

at the Triebenbach and Wesenitz, respectively, have been mea-

sured with a total station providing accuracies of a few millime-

tres. Additionally, eight stones serve as permanent GCPs close to

the shore line of the Wesenitz. GCPs are further used for point

cloud alignment of the TLS- and SfM-based point clouds utiliz-

ing the advantages of both data sources [Eltner et al., 2016].

Mobile water gauging aims to be used in any situation where

3D representations of river sections are available (e.g. 3D point

clouds or DSMs). Thus, the surface data needs to be available in

a global reference frame within which the smartphone can be sit-

uated. At the Weißeritz, the SfM-derived point cloud has been

geo-referenced using six survey points and four scales (figure 2)

to apply a simple Helmert transformation. The overall root mean

square error (RMSE) is 4cm and residuals of 2.5cm can be ob-

served at GCPs close to the shore line.

4.1.2 Reference water stage measurements Currently, offi-

cial gauging stations provide accuracies of ✟1cm for stage mea-

surements, averaged over a defined time interval [Siedschlag,

2015]. [Horner et al., 2018] divide measurement error sources

in stage reading errors as well as non-systematic error sources

that are negligible and in systematic errors that are in the range

of 0.5cm✁ 6.8cm and are caused by sensor drift or invalid cali-

bration. Thus, especially uncalibrated stage values from conven-

tional water gauges should be regarded critically. Furthermore,

it is important to acknowledge that comparing water stage mea-

surements can cause bias simply due to the impact of varying

temporal resolutions of the individual measuring devices.

Camera-based water measurements are performed close to con-

ventional gauges to allow for reliable reference data and evalua-

tion of the performance of the camera-gauges. Table 1 gives an
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Table 2. Generation of base topography by application of SfM.

Weißeritz Wesenitz Triebenbach

Terrestrial images

Camera(s) Sony Alpha 7M2 + 24 mm

(+ 70 mm)

Canon 500D + 20 mm;

Canon 1200D + 20 mm

Canon 600D + 20 mm

Aerial images

Platform + Camera(s) (-) Astech Falcon 8 + Sony

NEX-5N + 6 mm

(-)

Date & time 2018/02/14 09:30h 2017/03/31 15:00h 2017/06/13 xx:xxh

Covered area rm2s 1.000 1.500 ➔ 10

No. images (terrestrial/aerial) 153 (24 mm) + 100 (70 mm) 185 (500D) + 255 (1200D) /

20

78

Water level [m]✝ 1.19 0.51 ➔ 0.05

Referencing

Additional TLS data available no yes yes

Tachometric GCPs/CPs 6 fixed (official) points 17 + 8 fixed (natural) points 12 temporary points

Global coordinate system UTM 33N/DHHN92 local local

*low, mid, high water tides

overview of the installed systems with respect to the study areas

Weißeritz, Wesenitz and Triebenbach.

4.2 Camera requirements

The camera has to be adapted regarding its intrinsic and extrin-

sic parameters to ensure the precise alignment of camera images

and 3D topography of the area of interest. This section discusses

the individual requirements of mobile (see section 4.2.1) and sta-

tionary camera calibration (see section 4.2.2) considering the in-

dividual study areas.

4.2.1 Smartphone camera considerations The approach of

mobile water gauging aims at the citizen scientists, who would

like to participate in the densification of a hydrological network

simply by taking images with their smartphones. Consequently,

a simple camera application is necessary that supports hand-held

time lapse images and 2D water line detection. At the same time,

the application has to be able to collect information about the

camera position and orientation to reference the image measure-

ments which is further described in section 5.

4.2.2 Raspberry Pi camera considerations The low-cost

camera used to observe the Triebenbach and Wesenitz are located

close to the rivers at a tree and a lamp pole, respectively, at least 2

m above the water surface. The cameras have a fixed focal length

about 3 mm and are focused at infinity. Pixel size is 1.4 µm and

image resolution amounts 2592 x 1944 pixels. To allow for the

operation at remote locations, the camera system at the Trieben-

bach is equipped with a car battery. To guarantee enduring oper-

ation, an energy saving system is added to the Pi, which boots the

single board computer every hour for a few minutes and puts the

system back into sleep mode until the next scheduled boot. At

the Wesenitz permanent power supply is given. Hence, the com-

puter runs permanently and solely a light sensor controls image

capturing to avoid data collection during the night.

The simple circuit cameras entail the advantage that they are quite

robust regarding their interior camera stability due to the usage

of solely few elements, which are integrated in a fixed manner.

Prior or posterior time-lapse image acquisition at the river cross

sections, the cameras have been calibrated with a temporary cal-

ibration field that has been shifted, tilted, and rotated in-front of

the cameras. Afterwards, a bundle adjustment is performed to re-

trieve focal length, principle point and distortion parameters. The

parameters are used for subsequent image measurements assum-

ing temporal stable interior camera configurations.

5. APPLICATION DEVELOPMENT

On the one hand, the chapter discusses the methodology to re-

trieve water levels from image data and, on the other hand, it pro-

vides insights into the technical implementation of smartphones,

i.e. the Android application Open Water Levels is introdcued,

which is based on the open source framework Open Camera

v1.3.84.

5.1 Time lapse image sequences for water line determina-

tion

Even fixed outdoor cameras are affected by camera movements

due to environmental influences, e.g. wind, resulting in changes

of the calibrated exterior camera configuration. Of course, similar

issues occur during hand-held time lapse image acquisition using

smartphone cameras. However, in the context of spatio-temporal

texture analysis, a non-rigid camera leads to considerable noise,

which impedes water line derivation.

A possible solution is provided using co-registration of the time

lapse images with a feature-based matching approach implement-

ing a subsequent perspective transform. Afterwards, the image

becomes divisible due to the captured motion of water. Thereby,

multi-seeded region growing is applied within a user-defined re-

gion of interest (RoI) using either the spatio-temporal texture or

the average image depending on the distinctiveness between wa-

ter and land in both data sources. Once the image is classified

in rigid and non-rigid parts, i.e shore and water areas, the shared

boundary is identified as water line.

Detailed descriptions of the approach are given in [Eltner et al.,

under review, Kröhnert and Meichsner, 2017].

4Open Camera - Camera app for Android [29.03.2018]

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-543-2018 | © Authors 2018. CC BY 4.0 License.

 
546

https://sourceforge.net/projects/opencamera/


Figure 2. Study region Weißeritz in Dresden, Altplauen: SfM configuration with 3D point cloud overlay (left) and detail shot (right)

close to a official gauge.

5.2 Surface annotation

Once image measurements are performed, they have to be trans-

ferred into object space to retrieve actual information about the

water level. Considering section 4.2.2 and 4.1.1, the whole setup

of the fixed low-cost solution (Pi camera), i.e. interior and exte-

rior camera parameters, can be calibrated in advance and solely

minor changes are adjusted using image co-registration.

However, the mobile approach has to be location-independent to

be suitable for citizen scientists, making it necessary to estimate

camera parameters on the fly, i.e. using self-calibration, without

registration targets.

5.2.1 Scene description using smartphones Global refer-

enced object data serves as a big cloud of GCPs that has to be

assigned to the corresponding time lapse image sequence. A vir-

tual image is rendered that is based on initial information about

camera position and orientation. Open Water Levels analyses the

device-specific hardware sensors to consider the best approach

to orient the data whereas the inbuilt single-frequency receiver is

called to estimate the pose. Absolute GPS (aGPS) of smartphones

provide accuracies in the range of 10 to 15 m and can increase up

to 60 m due to shading effects [Blum et al., 2013]. Furthermore,

it is important to consider that the error for altitude estimation is

nearly three times worse than for lateral pose estimation [Liu et

al., 2014]. Open Water Levels offers the possibility to include

third party tools like Google Maps or Google Elevation via ap-

plication programming interfaces (APIs) to allow for user-driven

pose estimation and height optimization using the additional dig-

ital elevation models (DEMs).

5.2.2 Generation of artificial images A set of coloured 3D

points, which are maintained in a central database, has to be cho-

sen considering the initial guess of extrinsic parameters before

starting the actual rendering. A bounding box can be calculated

with a defined depth from the projection center if camera position

and orientation parameters describing the uncertainties of pose

estimation are utilised.

Virtual images are generated projecting the 3D point cloud at a

defined image plane. Thereby, the method is enhanced using a

pyramid approach, reducing artefacts due to falsely projected ob-

scured points (e.g. points behind windows or opposite facades).

Although the virtual rendering serves as two-dimensional repre-

sentation of the object scene generated from a specific perspec-

tive, real depth information is still present. Thus, using the pro-

jected image points and their original 3D representation, remain-

ing gaps due to point cloud sparsity and virtual image resolution

can be filled to generate a realistic visualisation. A nearest neigh-

bour search is applied in object space, using the 3D information

of image points located in close proximity to the gap to retrieve

colors with a weighted average constraint by the neighbour dis-

tances. Figure 2 shows a rendered object scene at the Weißeritz,

using an initial guess of exterior orientation captured during im-

age acquisition (see figure 4).

5.2.3 Image-to-geometry registration The original image

and the virtually generated image are aligned in the last pro-

cessing step, allowing for exterior camera geometry estimation

to enable the determination of water levels. Open Water Levels

establishes an online connection to enable server-based image-to-

geometry registration. Afterwards, a small file archive is gener-

ated containing the time lapse master image, a text file with the

image coordinates of the derived water line and a JavaScript Ob-

ject Notation (JSON) file containing camera ”meta“ information

(f.e. the sensor-based rotation matrix and coordinates of the pro-

jection center obtained by GNSS as well as intrinsic information

like the focal length or the view angles). If no server connec-

tion is possible, the entire 3D data needs to be downloaded on the

device [Kehl et al., 2017]. Figure 3 illustrates the client-server

architecture [Niemann, 1995].

Due to the use of true 3D data in virtual image rendering, feature
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Figure 3. Workflow of event-based camera gauging using smartphones.

Figure 4. Gauging of the Weißeritz. Average image mode.

based matching approaches are applicable also to align true and

synthetic images and thus allowing for the usage of true images

from the 3D point set. SiftGPU, implemented in VisualSFM, is

running on a remote working station for feature detection, de-

scription and matching. Outliers are detected applying funda-

mental matrix calculation in combination with Random Sampling

Consensus (RANSAC). A synthetic image contains several gap

filling pixels that do not originate from true 3D points. Thus,

only matched features with assigned information in the spatial

domain are considered when a Direct Linear Transform (DLT) is

used to estimate the exterior camera parameters. This approach

can be described as a non-linear PnP problem, optimized via the

Levenberg-Marquardt algorithm that is implemented in OpenCV

3.0.0 [Kaehler and Bradski, 2016]. Thereby, intrinsic camera pa-

rameters are adjusted, minimizing the re-projection error of the

individual feature points. For an initial guess of camera parame-

ters, the focal length of the fixed lens is used, which is specified

by the manufacturer. Furthermore, the principle point as well as

the lens distortion are assumed to be zero.

In a last step, the water line is projected into object space using

the optimised parameters. Thereby, a knn search, implementing

distance thresholding, is applied to find the closest points in the

spatial domain for each point of the measured 2D water line. To

obtain a single value for the prevalent water stage, either mean,

or median heights are used. Prior mean or median calculation, a

3D line fit is performed to eliminate potential outliers. Finally,

feedback about the stage measurement are offered to the client.

The Raspberry Pi implementation does not rely on the calcula-

tion of virtual images due to the referencing within a local refer-

ence system, which is sufficient for water level estimation at pre-

defined stable gauge locations. Thus, section 5.2.1 and 5.2.2 are

not considered for the single board computer cameras. However,

image to object space transformations are also performed for the

fixed low-cost cameras at Triebenbach and Wesenitz to retrieve

the filtered river stage information from the 2D waterline.

6. EVALUATION

As described above, water levels, captured at the reference gaug-

ing stations, are used to evaluate the camera-based water stage

measurements of both approaches (smartphone and simple cam-

era circuit board). Reference data is available every 15 minutes

for 24 hours.

Using the smartphone-based approach, the Weißeritz was moni-

tored for one week two times per day, i.e. in the morning and in

the afternoon. Regarding the stationary observed rivers Trieben-

bach and Wesenitz, water stages are obtained every 60 minutes

and every 30 minutes, respectively, for at least six weeks, as long

as day light was sufficient. At the Weißeritz, the smartphone-

gauging period was characterised by events of low precipitation

and thus low flow conditions.

Figure 5 shows the deviations of conventional and camera-based

gauging systems based on the median. Thereby, accuracies

higher than 5 mm and 1 cm could be achieved at the Trieben-

bach and Wesenitz, respectively. Furthermore, the median devia-

tion is less than 3 cm at the Weißeritz using the smartphone-based

approach.

image-based water line estimation Some of the water lev-

els estimated with the image-based approach are associated with

the shore area due to too low spatio-temporal resolution. Fur-

thermore, vegetation covering the shore, waving or swimming

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-543-2018 | © Authors 2018. CC BY 4.0 License.

 
548



grasses, and sensor-related image noise cause textural noise,

which impedes a precise water line analysis. Beside these non-

systematic error sources, the resolved water line is highly corre-

lated with image resolution and object to camera distance. Thus,

the water level might be systematically underestimated especially

if shallow water is very close to the shore. In contrast, conven-

tional measurement systems are installed with a setup that min-

imizes the influence of the water surface and environmental fac-

tors. During the short observation periods, waves close to the

shore often result in water stages being overestimated with the

camera-based approach.

smartphone-based gauging Unlike the Raspberry Pi gauging

systems, the relationship between smartphone image space and

object space has to be established prior the water line can be

calculated. Regarding the registration of an image in the object

space, utilized feature matches need to be well-distributed in im-

age and object space. Otherwise, the adjustment of exterior and

interior camera parameters might be adjusted at a false local ex-

treme value. Furthermore, features solely lying on a planar sur-

face can result in an erroneous focal length estimation and thus

scale-dependent errors in object space.

Figure 5. Deviations of water gauges (see table 1).

7. OUTLOOK

The paper demonstrates the successful implemenatation of

camera-based water stage measurement systems to perform sta-

tionary and on the fly water gauging. The introduced approach

requires 3D surface models or point clouds, of the observed

river reach or cross section, which can hinder the usage of the

method. However, Google Street View recently performed first

river cruises to cover the shores of River Negro in Amazon,

Brazil5, that can be globally expanded to capture river morpholo-

gies and thus be available for the image-based water level calcu-

lations. Furthermore, autonomous river mapping tools are devel-

oped in-house to capture small- and medium-scale catchments,

also providing the necessary data for camera-gauges [Sardemann

et al., 2018].
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