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ABSTRACT: 

 

In recent years, extensive research has been conducted to automatically generate high-accuracy and high-precision road orthophotos 

using images and laser point cloud data acquired from a mobile mapping system (MMS). However, it is necessary to mask out non-

road objects such as vehicles, bicycles, pedestrians and their shadows in MMS images in order to eliminate erroneous textures from 

the road orthophoto. Hence, we proposed a novel vehicle and its shadow detection model based on Faster R-CNN for automatically 

and accurately detecting the regions of vehicles and their shadows from MMS images. The experimental results show that the maximum 

recall of the proposed model was high—0.963 (intersection-over-union>0.7) —and the model could identify the regions of vehicles 

and their shadows accurately and robustly from MMS images, even when they contain varied vehicles, different shadow directions, 

and partial occlusions. Furthermore, it was confirmed that the quality of road orthophoto generated using vehicle and its shadow masks 

was significantly improved as compared to those generated using no masks or using vehicle masks only.  

 

1. INTRODUCTION 

In recent years, with the widespread application of the mobile 

mapping system (MMS), it has become possible to collect images 

and point cloud data efficiently on road and surrounding 

environment. High-definition road orthophoto is one of the most 

important products generated using images and point cloud data 

acquired by MMSs. In contrast to aerial surveys, an MMS 

acquires images and point cloud data from a position that is very 

close to the road surface; therefore it is possible to generate a very 

high-definition road orthophoto, e.g., a road orthophoto with 1-

cm resolution. Road orthophotos have been widely applied in 

various fields. For example, we use road orthophotos as the 

background of digital maps, or extract road edges, road signs or 

road cracks from a road orthophoto. 

 

A method for generation of road orthophotos using images and 

point cloud data acquired from MMSs has already been proposed 

in our previous research (Sakamoto et al., 2012). Firstly, the point 

cloud of the road surface are extracted from the point cloud data 

by applying a filtering technique. A 3D triangulated irregular 

network (TIN) model is then generated using the road surface 

point cloud to represent the topography of the road surface. 

Finally, the RGB values at each pixel of the road orthophoto are 

calculated using a texturing technique. Furthermore, in our 

subsequent study (Li et al., 2017), erroneous vehicle textures 

have been efficiently removed from road orthophotos using 

vehicle masks, which are detected automatically from MMS 

images by Faster R-CNN. However, the shadows of the vehicles 

are left as black spots in the road orthophoto, which is undesirable. 

 

We proposed a novel detection model for vehicle and its shadow 

(VaS) to accurately and automatically detect both of the VaS 

regions from MMS images for the purpose of removing 

erroneous textures that appear in road orthophotos, which are 

generated using images and point cloud data acquired from 

MMSs. 

2. METHODOLOGY 

In this chapter, we first describe how to generate a road 

orthophoto using VaS masks, then analyse the features of a VaS 

detection model suitable for the above application, and finally 

explain our proposed VaS detection model. 

 

2.1 Road Orthophoto Generation Using VaS Masks 

Figure 2 illustrates the difference between two texturing 

processes, with and without VaS masks. In the former process, 

the RGB values of a pixel in the road orthophoto are generally 

obtained from the image, which has the highest resolution at the 

corresponding position. In contrast, in the latter process, the 

textures are obtained only from the areas excluding the masks, in 

order to generate a high-quality road orthophoto with no 

erroneous textures.  

 

2.2  Features of VaS Detection for Road Orthophoto 

Generation 

As shown in Figure 3, two methods are available for VaS 

detection: (1) the detection of the region of VaS separately, and 

(2) the detection of the region that includes both of the VaS. We 

select the latter method for the reasons mentioned below. 

 

In this study, the shadows that are required to be detected are only 

of moving objects such as vehicles. This is because, if the shadow 

regions of fixed objects such as buildings and poles are used as 

masks in the texturing process, the corresponding areas in the 

road orthophoto become occlusions. However, in the former 

method, it seems to be difficult to distinguish the shadows of 

moving objects from those of fixed objects. Hence, we select the 

latter method that involves the detection of the VaS as one region. 

Furthermore, the latter method has an advantage in the 

preparation of the ground truth. Because we need to create only 

one bounding box for each VaS. 
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Figure 1. Generation of high-definition road orthophoto using 

images and point clouds acquired from MMSs 

 

 

 
Figure 2. Road orthophoto generation  

without and with the use of VaS masks 

 

 

 
Figure 3. Two available methods for detecting VaS 

  

The requirements for object detection depend on applications. In 

the case of this study, the objects to be detected are VaSs located 

within a certain distance from the camera, e.g., 10 m. In order to 

obtain a high-resolution road orthophoto, it is necessary to 

acquire textures from the region of the images having a resolution 

that is equal to or higher than those of the road orthophoto. Hence, 

it is unnecessary to detect small VaSs located in the regions that 

are far from the camera. It is also necessary to accurately detect 

the VaS regions. Part of the VaS region that are not included in 

the detection region are at a risk of being used as textures of the 

road orthophoto. 

 

2.3 Proposed VaS Detection Model 

Based on the analysis in the previous section, we propose a highly 

accurate VaS detection model based on Faster R-CNN. 

The existing object-detection methods include one-stage 

methods, such as You Only Look Once (YOLO) (Redmon et al., 

2016), Single Shot MultiBox Detector (SSD) (Liu et al., 2016) 

and two-stage methods such as Fast R-CNN (Girshick, R., 2015) 

and Faster R-CNN (Ren et al., 2015). The former detects objects 

directly in an input image, and the latter first roughly proposes 

candidates from an input image, and then corrects the 

classification and region of the candidates to obtain an accurate 

result. In general, the former has a high processing speed while 

the latter has a high detection accuracy. The generation of road 

orthophotos generally occurs at the post-processing stage, and 

thus, there is no critical requirement for a high processing speed. 

Hence, we select Faster R-CNN as the base model for VaS 

detection to achieve high accuracy of detection of the VaS region. 

 

 
Figure 4. Faster R-CNN and proposed model 

 

As shown on the left side of Figure 4, Faster R-CNN first 

performs several convolution and pooling processes on the input 

image to generate a feature map. Next, candidate regions are 

proposed using region proposal network (RPN) on the feature 

map. Finally, after pooling the range, which are corresponded to 

the candidate region, from the feature map by region of interest 

(RoI) pooling, the processes of classification and region 

correction are performed based on the feature map of the proposal 

through two fully connected (FC) layers. The details may be 

referred to in the original paper.  
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We propose a novel VaS detection model (right side of Figure 4) 

based on Faster R-CNN in order to improve the accuracy of 

detection and especially the accuracy of bounding box. 

 

2.3.1 RoIAlign 

As described above, in the RoI pooling, processing is performed 

to extract the range corresponding to the candidate region from 

the feature map to the predetermined size. However, a pooling is 

performed for integer pixels in the RoI pooling, when the range 

of the candidate region on the feature map is not an integer pixel, 

an adjustment is made in order to obtain an integer pixel for that 

range. Owing to this adjustment in the RoI pooling, a deviation 

occurs between the candidate region and the actual feature 

extraction range, which may result in a lowering of the accuracy 

of the detection region. 

 

To solve the above problem, He et al. (2017) have proposed 

RoIAlign. While pooling processing have to be performed in 

integer pixel units in RoI pooling, the pooling process is extended 

to allow it to cope with a subpixel unit by using an interpolation 

method in RoIAlign. As a result, RoIAlign completely matches 

the candidate region and the extraction range in the feature map. 

In this research, we adopt RoIAlign instead of RoI pooling for 

the purpose of improving the accuracy of detection of the VaS 

regions. 

 

2.3.2 Enhancement of Network Performance with Respect to 

the Bounding Box 

According to the research by Ren et al. (2016), the network of the 

second stage (the network of the grey background in Figure 4) 

greatly affects the detection accuracy. Therefore, in this research, 

the following two improvements were made for enhancing the 

performance of the network. 

① A convolution layer with a kernel size of 3 × 3 pixels and 

512 channels was added before the first FC layer. 

② An FC layer with 1024 nodes was added before outputting 

the bounding box. 

The purpose of the first improvement is to extract more 

appropriate features and that of the second is to enhance the 

performance of the network with respect to the bounding box. 

 

2.3.3 Weight of Losses 

In the training phase, it was possible to obtain ideal results by 

adjusting the weight of the losses. We assign more weight to the 

loss of the bounding box than those of others in order to improve 

the accuracy of the bounding box rather than that of the 

classification.  

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1 Experimental Data 

Images and point cloud data were obtained from MMS by 

traveling on four courses over a total of 2.4 km for experiments. 

The size of the images was 2,400 × 2,000 pixels, and the 

resolution after 10 m was approximately 1 cm. In addition, the 

images were captured at intervals of 2 m. Moreover, the density 

of the point cloud, which was acquired using a 2D laser scanner 

manufactured by SICK Corporation, was approximately 100 

points/m2 on the road surface. 

 

Regarding the training data, 100 consecutive images were 

selected from each course, and a total of 400 images were 

prepared for the training. In order to increase the number of 

training images, nine types of images were created by adjusting 

the saturation (S) and value (V) to 0.7, 1.0 and 1.5 times for the 

original images in the HSV color space. Hence, 3,600 images 

were used in the training process. Furthermore, 140 images were 

used as the test data, which included 100 images selected from 

the above experimental images and 40 images selected from 

different experiment data. The latter test images were used to 

evaluate the generalization performance of the trained model. 

The ground truths were created manually and targeted at VaSs 

within 10 m from the camera to generate a road orthophoto with 

a 1-cm resolution. 

 

3.2 VaS Detection from MMS Images 

First, the proposed model of VaS detection was trained using 

3600 training images. In the case of the input images, the multi-

scale images were utilized at the training stage. Specifically, 

while maintaining the aspect ratio of the original image, the 

length of the short side was randomly set as either 600, 800, 1000, 

1200 or 1500 pixels each time. Furthermore, in the inference 

stage, fixed size images of 1,200 × 1,000 pixels were used. The 

weight of the bounding box loss was set as 4.0, while the weight 

of the other losses were set as 1.0. The hyper-parameters for the 

training were set as shown in Table 1, and Caffe (Jia et al., 2014) 

is adopted as the framework. In addition, we adopted transfer 

learning for efficient training, and the object detection model, 

which has been trained using MS COCO data set 

(http://cocodataset.org), was used as a pre-trained model. As 

shown in Figure 5, the training loss decreased steadily and 

eventually converged to almost 0.1. 

 

 

Items values 

Optimization Stochastic Gradient Descent 

Learning rate 0.001 (set as 1/10 per 20,000 iterations) 

Maximum iteration 60,000 

Momentum 0.9 

Weight decay 0.0005 

Table 1. Hyper-parameter settings 

 

 

 

Figure 5. Training loss 

 

Next, we applied the trained model to 140 test images to detect 

VaS regions, and then verified the accuracy by comparing the 

obtained results with the ground truth. The result of detection was 

regarded as a success only if the intersection-over-union (IoU) 

between the region of detection and those of the corresponding 

ground truth was over 0.7. As shown in Figure 6, the average 

precision (AP) was 0.895, breakeven point was 0.828, and 

maximum recall was 0.963, which show that very high accuracy 

is realized.  

 

However, it should be noted that the precision is underestimated 

As described above, as the detection targets are the VaSs within 

10 m from the camera, when VaSs that are far from the camera 

are detected, they are considered as false positives (Figure 7). 

Therefore, for models with a higher performance that can detect 
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small VaSs in the distance, a lower evaluated precision is 

obtained. Similarly, the AP and breakeven point are also 

underestimated for these models. Therefore, in this research, the 

maximum recall is used as an evaluation index. In fact, in the 

detection results of 140 test images obtained using the proposed 

model, there were only six false positives outside the VaS areas. 

Hence, in the application to the generation of a road orthophoto—

as in this research—the maximum recall is considered to be 

appropriate as the evaluation index of the detection result.  

 

 

 

Figure 6. Precision-Recall curves (IoU > 0.7) 

 

 

Figure 7. Results of VaS detection obtained using proposed 

model (cyan box: detection results, and yellow box: ground truth) 

 

 

Figure 8 shows some representative examples of the VaS 

detection results obtained using the proposed model. From those 

successful cases (blue-bordered images in Figure 8), it was 

confirmed that the proposed model can accurately detect the VaS 

regions from MMS images without being affected by the type of 

vehicles, shadow directions, partial occlusions, etc. Further, even 

in an extreme case wherein only a very small part of a VaS has 

appeared, the proposed model was found to be robust in detection. 

Furthermore, from examples of the failure cases (red-bordered 

images in Figure 8), it can be observed that there is a misdetection 

of a large track, over-detection of a motorbike, and an inaccurate 

detection region, which must be addressed in future research. 

 

3.3 Generation of Road Orthophoto 

A road orthophoto was generated using VaS masks created based 

on the VaS region detected using our proposed model. Only the 

detection results with a probability greater than 0.5 were used. 

For comparison, a road orthophoto without the use of a mask and 

a road orthophoto with the use of vehicle masks were generated. 

 

Firstly, as shown in the upper part of Figure 9, it was confirmed 

that parts of the vehicles were used as a texture in the road 

orthophoto that was generated without the use of a mask. 

Moreover, in the road orthophoto generated using vehicle masks, 

the vehicle textures that appeared in the above road orthophoto 

were eliminated but the shadows of the vehicle were retained as 

black spots (middle part of Figure 9). In the case of the use of the 

VaS masks (lower part of Figure 9), it was confirmed that the 

erroneous textures were completely removed from the road 

orthophoto. The comparison shows that the proposed method is 

extremely effective in the generation of a high-quality road 

orthophoto. 

 

4. CONCLUSION 

A novel VaS detection model was proposed for eliminating the 

erroneous textures from the high-definition road orthophoto 

generated using images and point cloud data acquired through 

MMSs. In the proposed model, we attempted to improve the 

accuracy of detection, especially the accuracy of detection of the 

VaS regions, through the introduction of several improvements 

based on Faster R-CNN. For the purpose of evaluation, the 

proposed model was applied to the experimental images to detect 

VaSs from MMS images. A high-definition road orthophoto was 

then generated using the VaS masks, which were created from 

the regions detected using our proposed model automatically. 

The experimental results show that the maximum recall of the 

proposed model was very high—0.963 (IoU > 0.7) and also very 

robust against variations in the vehicle types, shadow directions, 

and existence of partial occlusions. Furthermore, it was 

confirmed that the quality of the road orthophoto generated using 

VaS masks was significantly better than the road orthophoto 

generated using vehicle masks only. 

 

In future works, bikes, bicycles, pedestrians etc. are also required 

to be detected in MMS images in addition to vehicles for the 

purpose of eliminating erroneous textures from a road orthophoto. 

Moreover, it is necessary to detect the exact region of the target 

objects in order to reduce the area of the road surface included in 

the detected regions. As such over-detected regions of the road 

surface could lower the resolution of the obtained road 

orthophoto or cause the occurrence of occlusions in extreme 

cases. 
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Figure 8. Results of VaS detection obtained using our proposed model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of road orthophotos obtained (1) without the use of a mask, (2) using vehicle masks, and (3) using VaS masks 
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