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ABSTRACT: 
 
In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only 
the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing 
area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the 
post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A 
set of state of the art features have been used in the tests: colour features (HSV), textural features (GLCM) and 3D geometric features. 
For classification purposes Conditional Random Field (CRF) has been used: the unary potential was determined using the Random 
Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature 
configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental 
results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed 
using the overall accuracy, where by post classification have an accuracy of up to 62.6% and the pre classification change detection 
have an accuracy of 46.5%. These results represent a first useful indication for future works and developments.  
 
 

1. INTRODUCTION 

The increase rate of urban growth in recent years has immensely 
transformed the urban landscapes all over the world. Urban 
growth leads to congestion of the immediate surroundings, as 
well as causes adverse effects including pollution and other 
processes that directly or indirectly cause Global Warming 
(Laidley, 2016). Due to this concern, Change Detection studies 
of urban systems has become an integral part in Urban and 
Regional Planning domains (Xu, Vosselman, & Oude Elberink, 
2015). Change detection is one of the important image analysis 
techniques as it provides information about how the area have 
been changed/transformed in a specific time interval. The 
importance of change detection is mainly for monitoring and 
controlling the land cover and land use changes, city management 
and updating of the geographical information of a certain area 
(Liu et al., 2003).  
The acquisition of high resolution images using satellite is 
currently the most common way to deal with change detection 
projects. However, satellite images suffer from some challenges 
including not having a direct control of their quality, being 
affected by weather conditions and, last but not least, not being 
flexible in terms of resolution and acquisition time. The increase 
of new technology such as Unmanned Aerial Vehicle (UAV) 
could give therefore a big impact to the development of change 
detection techniques due to its flexibility on data acquisition. 
The use of UAVs for the acquisition of very high resolution 
images has become a common platform in the geomatics field 
(Nex & Remondino, 2014), and proven to be good for urban area 
change detection up to the building level (Qin, 2014). When 
comparing to the past airborne sensors, UAVs have the same 
advantages such as the possibility of acquiring data in a small 
area at an affordable cost and they require lower costs in 
recruitment of staff as explained by Xuan (2011) and hardware 
(though they require a certified pilot in most of the countries!). 

Most of the monitoring activities require data to be captured 
repeatedly in order to have multi temporal information. This kind  
data can be easily generated using UAVs. These platforms can 
easily deliver the updated images of on an area in rapid 
development (i.e. constructions take place every day). The multi-
temporal integration of these images can be used for monitoring 
the progresses of the site with a change detection analysis. 
However, the manual generation of such change maps is time 
consuming and not feasible with practical needs. An automated 
approach for change detection using UAV images is therefore 
necessary. In this regard, this paper wants to present the first tests 
performed on this task. The classification and change detection 
presented use the DSM and orthophoto from different epochs in 
input. Conventional post-classification and pre-classification 
change detection techniques as well as well-known state of the 
art features have been considered in order to better realize the 
challenges in the achievement of this challenging task.  
The Conditional Random Field (CRF) model has been then used 
for classification purpose which is termed to have a good ability 
to smoothen the classification results. The unary potential of CRF 
was defined using a supervised Random Forest (RF) classifier 
which was trained to distinguish four classes. Fully Connected 
CRF was then used to define the pairwise potential of the CRF.  
 

 
Orthophoto 

 
DSM 

Figure 1: orthophoto and DSM for epoch one. 
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The dataset used in this research was collected with very high 
resolution (5 cm Ground Sampling Distance) over a building 
construction site. Eight different epochs have been considered for 
this purpose. DSM and orthophoto were generated using the 
Pix4D software and have been already registered following the 
procedures proposed by Aicardi et al. (2016). 
 
 

2. RELATED WORKS 

2.1. Change detection 

In literature, many change detection methods using different 
methods have been reported in the last three decades. In (Afify, 
2011) and (Frauman and Wolff, 2006) different change detection 
methods including image differencing, image rationing, principal 
component analysis, change vector analysis and post 
classification are described.  
Change detection algorithms are usually categorised in two main 
typologies (Dinand et al., 2013): (i) Algebra change detection 
that includes image differencing, image rationing, image 
regression, vegetation index differencing, change vector analysis 
and background subtraction techniques and (ii) Classification 
based change detection that includes post classification 
comparison, spectral temporal analysis, unsupervised change 
detection and hybrid change detection.  
Algebra change detection is a pixel based change detection 
method where changes are detected pixel by pixel. Despite its 
simplicity, algebra change detection have some challenges and 
limitations such as the difficulty to define the “from-to”  class 
changes as it requires a careful threshold selection. 
On the other hand, classification based change detection method 
is the one which involve any kind of classification for either 
separate image or combination of images. Among the most used 
classification change detection methods, the post classification 
change detection technique is one of the most commonly used. 
Post classification consists of a classification of images captured 
in different epochs followed by the overlay of those images and 
the analysis of the class changes from one epoch to another (El-
Hattab, 2016). Post classification can be supervised or 
unsupervised as it depends on the presence of reference data for 
the area to be analysed (H. Liu & Zhou, 2010). Supervised 
change detection has an advantage in providing the qualitative 
(change map) and quantitative (change statistics) for the analysed 
images, but sometimes unsupervised change detection is 
preferred due to the lack of data to be used as base information 
or reference (Ghosh, Mishra, & Ghosh, 2011; Leichtle, Geiß, 
Lakes, & Taubenböck, 2017). Though post classification change 
detection suffers from error propagation from the classification 
output, it is still the method that have been used by many 
researchers (Afify, 2011; Liu and Zhou, 2010; Wu et al., 2017). 
Post classification change detection techniques have the 
advantage of providing the change information as from which 
class a pixel have been changed. Change information can be then 
presented in a change matrix showing what has been changed 
between two dates (Théau, 2012). Post classification requires 
sufficient training samples during the training of the classifier in 
order to have a good classification accuracy. The final accuracy 
of the change detection depends on the accuracy of the classified 
images used as input for change detection (Lu, Mausel, 
Brondízio, & Moran, 2004). 
The pre-classification change detection method lays into the 
classification-based techniques. Pre-classification change 
detection technique consists of analysing the changes between 
the features (Peiman, 2011) followed with the classification of 
those changes. (Frauman and Wolff, 2006) explains that the 
quality of the output from pre classification change detection 

technique depends mostly on the quality of the image used as 
input.  
 
2.2. Conditional Random Field 

Conditional random field is a popular classification/segmentation 
technique that takes into consideration the use of contextual 
information with the aim of producing the better classification 
results (Li & Yang, 2016). The lack of contextual information in 
the classification process often lead to noisy classified images. 
Conditional random field can be divided in two part; (i) Unary 
potential and (ii) Pairwise potential. Unary potential is the term 
that represents the relationship of the pixel label and the observed 
data, while the pairwise potential is the term that defines the 
relationship of the pixel label, its neighbours and the observed 
data. The general CRF can be defined as: 
 
𝐸𝐸(𝑋𝑋) = ∑ ∅𝑖𝑖(𝑥𝑥𝑖𝑖) + ∑ ∅𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�(𝑖𝑖,𝑗𝑗)∈𝑁𝑁𝑖𝑖∈𝑉𝑉                    (1) 
 
Where the unary potential is given by ∅𝒊𝒊(𝒙𝒙𝒊𝒊) and pairwise 
potential is defined by ∅𝒊𝒊𝒊𝒊(𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋).  
 
2.2.1. Unary Potential. The unary potential is the term that 
provides the relationship between the label of the pixel and its 
observation data. It can be computed for each pixel and defines 
the probability of a label to be assigned in a particular pixel. The 
unary potential is usually reported in the form of negative log 
likelihood (see Equation 2) as it represents the conditional 
probability density that is used to minimize the function. 
 
∅𝑖𝑖(𝑥𝑥𝑖𝑖) = −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖|𝐼𝐼)                                                   (2) 
 
The unary potential is computed from the chosen classifier (Yang 
& Förstner, 2011). Different classifiers can be used to define the 
unary potential of CRF including Textonboost classifier (Li & 
Yang, 2016), Fuzzy-C-means classifier (Cao, Li, & Shang, 2016; 
Zhou et al., 2016) and Random Forest (Sun et al., 2017; Yang & 
Förstner, 2011), among the others.  
In this research unary potential was defined using Random Forest 
as it has been termed as the robust classifier and gave good 
classification results in a similar application in Yang and Förstner 
(2011). Random Forest has an ability to handle large dataset with 
higher computational load and still produces good results 
(Chehata et al., 2009; Sun et al., 2017). This algorithm has been 
compared with other classifiers like SVM, maximum likelihood 
just to mention few of them in different studies and it was found 
to perform better (Feng, Liu, & Gong, 2015; J. Liu et al., 2016; 
Sesnie et al., 2010; Sun et al., 2017).  
 
2.2.2.  Pairwise potential. The output from the unary potential 
contains a lot of noise due to the lack of contextual information. 
Pairwise potential that makes use of contextual information is 
then used to smoothen the classification output. Pairwise 
potential defines how the pixel is related to their neighbouring 
pixels (Cao, Zhou, et al., 2016). This relationship can be in a short 
range that includes 4 connected CRF or 8 connected CRF or in a 
longer range which includes fully connected CRF. In Fully 
Connected CRF pixel label is defined by finding the relationship 
between the interest pixel and all the other pixels of the image. 
In this paper, it was decided to use a pairwise potential defined 
by the Fully Connected CRF (Krähen and Koltun, 2011). As 
explained by Krähen and Koltun (2011) pairwise potential for the 
fully connected CRF is defined as: 
 
∅𝒊𝒊𝒊𝒊(𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋) = 𝜇𝜇(𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗)∑ 𝑤𝑤(𝑚𝑚)𝑘𝑘(𝑚𝑚)�𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑗𝑗� 𝐾𝐾

𝑚𝑚=1                         (3) 
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where 𝜇𝜇 is the label compatibility function, 𝑤𝑤(𝑚𝑚) is the weight of 
the Gaussian function and 𝑘𝑘(𝑚𝑚) is the Gaussian kernel consisting 
of smoothening kernel and appearance kernel (Krähen & Koltun, 
2011) as it is shown in equation 4 and 5 respectively. The 
smoothness kernel is used to remove the small pixels that appear 
to be isolated from other class labels and appearance kernel 
combines the nearby pixels that have the same colour as they are 
supposed to belong to the same class.  
  

𝑘𝑘(1)�𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑗𝑗� = 𝑤𝑤(1) exp �− �𝑝𝑝𝑖𝑖−𝑝𝑝𝑗𝑗�
2

2𝜃𝜃𝛾𝛾2
�                                                  (4) 

 

𝑘𝑘(2)�𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑗𝑗� = 𝑤𝑤(2) exp �− �𝑝𝑝𝑖𝑖−𝑝𝑝𝑗𝑗�
2

2𝜃𝜃𝛾𝛾2
− �𝐼𝐼𝑖𝑖−𝐼𝐼𝑗𝑗�

2

2𝜃𝜃𝛽𝛽
2 �                           (5) 

 
From the two equations above, 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑗𝑗 are positional vector, 𝐼𝐼𝑖𝑖 
and 𝐼𝐼𝑗𝑗  are colour vector, 𝜃𝜃𝛾𝛾 and  𝜃𝜃𝛽𝛽 are parameters used to control 
the degree of nearness and similarity, while  𝑤𝑤(1) and 𝑤𝑤(2) are 
weights used to combine the two kernels. 
 
2.3. Accuracy assessment 

In this study, the accuracy of the method was defined using the 
Overall Accuracy (OA) together with the Intersect over Union 
(IoU) score. OA and IoU was computed using the equation 6 and 
equation 7 respectively. 
 

𝑂𝑂𝑂𝑂 = ∑𝑇𝑇𝑇𝑇
∑𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

                                                                        (6) 

 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                                                        (7) 

 
where TP (true positive) means the cases that was correctly 
classified, FP (false positive) are the negative pixels that were 
incorrectly classified as positive pixels and FN (false negative) 
are the negative pixels that was correctly classified as negative. 
 

3. DATASET AND METHODOLOGY 

3.1. Dataset 

The orthophoto and DSM generated from UAV images acquired 
in the construction area in Lausanne (Switzerland) were used. 
The analysed area is approximately 32,830m2. The images were 
acquired in eight different epochs with a sampling distance of 
about 5cm and processed using the Pix4D software for 
orthophoto and DSM generation. Four different classes have 
been defined: asphalt (road, railway), buildings (roof and 
concrete), vegetation and bare soil.  

  

 vegetation     road      building    baresoil 
Figure 2: orthophoto image with corresponding ground truth. 

By using ENVI 5.3 + IDL 8.5 software, the ground truth for all 
of the epochs and the changes between adjacent epochs were 
digitized using visual inspection. The algorithms were 
implemented in Matlab R2016a. Figure 2 shows the orthophoto 
image and the corresponding ground truth of epoch 2. 
 
3.2. Methodology 

Two change detection techniques were applied in this paper. The 
first approach was pre-classification change detection technique 
and the second approach was post-classification change 
detection. In the following sections a detailed description of the 
implemented methods is given.  
 
3.2.1.  Pre-classification change detection: Pre-classification 
change detection technique was the first method to be 
implemented. This technique extracts features first, then 
generates the changes from the features of two consecutive 
epochs and finally classifies the changes in order to provide a 
change map, as shown in Figure 3.  
 

 
Figure 3: flow chart showing the steps involved in pre-

classification change detection. 

 
Feature extraction. For the classification purposes features were 
extracted from orthophoto and DSM as well. From the 
orthophoto spectral features and textural features were extracted 
while geometrical features were extracted from the DSM. In 
detail, the spectral features extracted were HSV features and 
GLCM textural features while several geometric were extracted 
from DSM. HSV are simply hue, saturation and value that 
according to (Wu et al., 2015) give better results in image 
classification than RGB colour space. Textural features are 
features that has spatial distribution information of tonal 
variations within an image and that can be categorized as being 
fine, coarse, smooth, rippled, mulled, irregular or lineated as 
described by (Haralick et al., 1973). The common method for 
textural feature extraction is the use of the grey level co-
occurrence matrix (GLCM) (Mohanaiah et al., 2013). The 
geometric features extracted from the DSM are linearity, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-651-2018 | © Authors 2018. CC BY 4.0 License.

 
653



planarity and normalised DSM (nDSM). Planarity and linearity 
features are computed from eigenvalues within the local 
neighbourhood (Chehata et al., 2009) while the nDSM was 
simply inferred considering local minimum height values in the 
DSM as the considered area was relatively flat and this 
approximation showed good results.  
Change detection. After feature extraction, the change between 
features was defined and the change map was produced and then 
classified using the Conditional Random Field model. 
Random forest. Random forest was used to define the unary part 
of the CRF. 50 trees were defined as optimal after some tests. 
From the total of eight epochs, the first four of them were used to 
train the classifier and the remaining four was used to test it. This 
was to simulate a real case of a fast monitoring where no new 
ground truth is available and the classification is performed on 
older information. 
Fully connected CRF. The results by Random Forest classifier 
were then refined using fully connected CRF. The parameters for 
the smoothening and appearance kernel of the fully connected 
CRF were defined testing several configuration in the training 
epochs. The best parameters (providing the best accuracies) were 
then chosen selecting the tests with the best accuracies. In 
particular, the positional standard deviation was set to 40 and the 
colour standard deviation was equal to 5. Also the weight for the 
fully connected CRF was tuned and found that 0.5 gave better 
results.  
 
3.2.2. Post-classification change detection: Post-classification 
change detection was the second method to be implemented. This 
method involves feature extraction, classification of each epoch 
using CRF followed by change detection from those classified 
images. The workflow for the post classification change 
detection is as shown in Figure 4. 

 
Figure 4: flow chart showing the steps involved in post 

classification change detection 

Please note that the “change in class” reported in both Figure 3 
and Figure 4 refers to the cases where the change define a 
geometric change in the same class too (i.e. a new floor is added 
to the same building region). 
The same features described in the first method were also used in 
post-classification change detection technique in order to allow a 
fair comparison. Thanks to these features, the classification of 
each epoch separately was executed using a CRF model.  As in 
the previous method, the unary part of the CRF model was 
defined by Random Forest and the pairwise part was defined by 

the fully connected CRF. The training for the Random Forest was 
performed using the first four epochs leaving the last four epochs 
for testing to have comparable results in the two methods.  
Change detection. After the classification of the four testing 
epochs, the results of two adjacent epochs were compared and the 
change was detected from the overlaid data.  
 

4. RESULTS  

Different tests on both the methods were performed in order to 
preliminary assess the performance of these methods. In this 
work, different feature configurations were considered too.  Since 
each epoch was classified in four classes, the expected change 
detection map was supposed to have up to 16 different classes. 
 
4.1. Pre classification 

The first experiment for the classification method was using only 
2D features from orthophoto, and the second experiment was 
performed using both 2D and 3D features together.  
 

2D features Ground truth 

  
Epoch 6 - Epoch 5 

  
Epoch 7 - Epoch 6 

  
Epoch 8 - Epoch 7 

  
Figure 5: pre classification change detection using only 2D 

features.  

 
The results of the first experiment are shown in Figure 5 while 
the corresponding accuracies are reported in table 1. In figure 5 
the different changes are coded with different colours. In 
particular, rd, veg, bld and bs refer to the road, vegetation, 
building and bare soil classes respectively. Changes in the land 

no change 
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use are given (in the second line of the legend) as a combination 
of the these four classes (i.e. bs-bld, etc.).  
 

 OA (%) IoU (%) 
Change 1 44.2 5.9 
Change 2 41.8 6.4 
Change 3 31.5 3.4 

Table 1: pre classification accuracy using only 2D. 
 
The results of the second experiment are shown in Figure 6, 
followed by the corresponding accuracy assessment in Table 2. 
 

2D & 3D features Ground truth 

  
Change 1 - Epoch 6 - Epoch 5 

  
Change 2 - Epoch 7 - Epoch 6 

  
Change 3 - Epoch 8 - Epoch 7 

  
Figure 6: pre classification change detection using 2D and DSM 

features. 
 
As largely expected, it can be observed that pre-classification 
method using both 2D and 3D features gives better accuracy 
compared with same method only using 2D features. 
 

 OA (%) IoU (%) 
Change 1 41.3 5.3 
Change 2 46.5 7.3 
Change 3 39.7 7.1 

Table 2: pre classification accuracy using 2D and DSM features. 
 

4.2. Post classification change detection 

In this method, each epoch has been classified independently, as 
in the first case, two different feature configurations have been 
considered. One example (for Epoch 5) of the classification only 
with 2D features are depicted in Figure 7, together with their 
corresponding accuracies. In this Figure, the intermediate results 
provided by the only Random Forest (i.e. unary-term) and their 
improvement thanks to the Fully Connected CRF are shown too.  
The use of 3D features in classification process largely increases 
the accuracy as it can be shown in Figure 8.  
 

Random Forest Fully connected CRF 

 
OA=50.4%       IoU=34.9% 

 
OA=57.9%     IoU=42.4% 

 vegetation     road      building    baresoil 
Figure 7: classification result for Epoch 5 using 2D features. 

 
The results delivered by the only the Random Forest are strongly 
affected by noise while the fully connected CRF is able to 
smoothen the classification outputs as demonstrated in both 
Figure 7 and Figure 8. This improvements are also confirmed by 
a large increase in the Overall Accuracy and Intersect over Union 
values. 
 

Random Forest Fully connected CRF 

 
OA=59.7%     IoU=42.2% 

 
OA=66.3%    IoU=47.6% 

  

 vegetation     road      building    baresoil 
Figure 8: classification result of Epoch 5 using 2D and 3D 

features. 
 
The final classification results of all the epochs are reported in 
Figure 9 with their respective ground truth. These results suggest 
that the classification is usually very accurate in correspondence 
of the vegetation and the roads in most epochs, while bare soil 
and buildings (mostly built in concrete) are very often mixed 
because of the similar feature responses.  
The OA and IoU values for each epoch are reported in Table 3: 
the classifications of the unary term alone and after the fully 
connected CRF are given. The IoU of each class considered in 
the classification is given in Table 4 too. 
 

 

no change 
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 Random Forest FCCRF 
 OA (%) IoU (%) OA (%) IoU (%) 

Epoch 5 59.7 42.2 66.3 47.6 
Epoch 6 62.1 42.3 70.5 49.3 
Epoch 7 63.1 45.1 76.1 59.6 
Epoch 8 59.1 39.3 72.1 49.4 
Table 3: accuracy assessment using 4 epochs for training. 

 

Classified map Ground truth 

  
Epoch 5 

  
Epoch 6 

  
Epoch 7 

  
Epoch 8 

vegetation     road      building    baresoil 
Figure 9: classification of the last four epoch with CRF model. 

 
Change detection was obtained by overlaying the corresponding 
classified images. Figure 10 shows the change detection map 
from epoch 5 to epoch 8 compared to their ground truth. Their 
OA and IoU are reported in Table 5. 
 

Class Epoch5 Epoch6 Epoch7 Epoch8 
Road 46.8 60.9 61.8 57.5 

Building 43.3 60.9 60.5 59.7 
Vegetation 75.3 57.1 73.1 72.1 

Bare soil 25.1 18.3 43.2 8.1 
Table 4: IoU accuracy in percentage for each class. 

Change map Ground truth 

  
Change 1 - Epoch6 - Epoch5 

  
Change 2 - Epoch7 - Epoch6 

  
Change 3 - Epoch8 - Epoch7 

  
Figure 10: post-classification change detection map. 

 
 OA (%) IoU (%) 
Change 1 58.0 13.5 
Change 2  62.6 14.3 
Change 3 60.3 19.0 

Table 5: change detection accuracy. 
In Table 6, the IoU of each the 16 change classes are reported: 
the values for all the three change detections are given. 
 

Class Change1 Change2 Change3 
Bs-rd 0.1 0.1 16.8 

veg-rd 5.7 0.7 19.8 
bld-rd 0.0 0.1 2.4 

rd 56.9 62.6 60.1 
bs-bld 6.3 0.0 4.0 

veg-bld 0.4 0.1 0.1 
bld 38.2 50.5 54.1 

rd-bld 0.2 0.2 1.7 
bs-veg 1.0 2.0 8.7 

veg 83.9 79.0 82.3 
bld-veg 0.1 0.1 29.2 
rd-veg 0.4 2.6 1.0 

bs 20.5 17.9 7.7 
veg-bs 0.3 6.0 15.3 
bld-bs 0.0 6.7 0.0 
rd-bs 1.7 0.6 0.0 

Table 6: IoU accuracy in % for each change class. 

no change 
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According to the epochs considered in the change detection, the 
results presented in Figure 6 demonstrate that the approach is 
somehow able to detect them correctly, although their accuracy 
is still very low.  

 

5. DISCUSSION 

The experiments performed using different sets of features 
confirmed that the combined use of 2D and 3D information can 
improve the classification and change detection results. The 
classification accuracy increased up to 11% when both set of 
features are used.  
Random Forest delivers noisy data in all the performed tests 
while Fully Connected CRF reduces the noise to a big extent 
resulting  into a much smoother boundary classified map. 
However, the results are generally quite poor in all the performed 
tests. The pre-classification change detection seems to be unable 
to capture the variability of the classes in the different epochs 
reporting low accuracies overall and completely missing changes 
between classes with similar spectral values (like bare soil and 
buildings).  
Some more promising results have been obtained in the post- 
classification change detection that outperformed the pre- 
classification method, achieving  an Overall Accuracy 21% 
higher than the accuracy of the other method. Beside the still 
modest results, the post-classification method allows to detect all 
the 16 possible combinations of changes: this makes that 
approach more suitable than the pre-classification (that detected 
only 5 typologies of changes).  
As expected, the training performed on the first 4 epochs 
provides better results in the first testing epochs (epochs 5 and 
epoch 6) but degrades their quality in the later epochs. In this 
regard, the use of this training configuration was an additional 
challenge of the preformed classifications.  
The adopted features seems insufficient to handle the reliable 
classification of the data. Although vegetation is the easiest class 
to be detect in the different epochs, it also suffers from a seasonal 
variability that can often affect the detection of changes (i.e. 
different colours in winter and summer acquisitions). The 
different illumination conditions and the use of new materials in 
the construction site in the later epochs represent an additional 
unsolved challenge for this change detection. The relatively small 
radiometric differences of bare soil, buildings and roads and the 
continuous changes in the terrain position (due to piles and 
displacement of ground) as well as the large planar shapes of 
large regions (i.e. roofs, roads, bare soil) made often very 
challenging to correct distinction of the changes.  
 
 

6. CONCLUSIONS AND FUTURE WORKS 

In this paper two different approaches for change detection have 
been designed and tested. The developed approaches were based 
on the use of the CRF, adopting a Random Forest classifier as 
unary term and a fully connected implementation for the 
smoothing term. Eight different epochs where considered in the 
performed tests: the first epochs were entirely used for training 
while the other for testing. This challenging configuration was 
chosen to be closer to the practical case of the repeated and fast 
construction site monitoring.  
The achieved results were quite modest in both methods, even if 
the post-classification strategy seems to be the only promising for 
future improvements. This approach is able to detect all the 
possible typologies of changes, although with a very variable 
accuracy. The Fully Connected CRF helps to improve the 

boundaries of the classified regions, removing the majority of the 
noise in the classification.  
The very high resolution of the data allows to capture small 
details in the scene: this probably represents the biggest challenge 
faced in this work. The seasonal variability of the vegetation, the 
different illumination conditions and the presence of new 
materials in the later epochs represent additional challenges to be 
faced.  
In this regard, the used features are insufficient to capture the 
large heterogeneity of the scene. A more extended set of features 
as well as the use of CNN approaches in the unary term could be 
the next directions to take to get improvements in the results.  
Different ways to train the classifier will be also used: in 
particular, few samples from the epoch to classify will be added 
in order to see if this can improve the final results.   
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