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ABSTRACT: 

 

To date multi-temporal 3D point clouds from close-range sensing are used for landslide and erosion monitoring in an operational 

manner. Morphological changes are typically derived by calculating distances between points from different acquisition epochs. The 

identification of the underlying processes resulting in surface changes, however, is often challenging, for example due to the 

complex surface structures and influences from seasonal vegetation dynamics. We present an approach for object-based 3D landslide 

monitoring based on topographic LiDAR point cloud time series separating specific surface change types automatically. The 

workflow removes vegetation and relates surface changes derived from a point cloud time series directly to (i) geomorphological 

object classes (landslide scarp, eroded area, deposit) and (ii) to individual, spatially contiguous objects (such as parts of the landslide 

scarp and clods of material moving in the landslide). We apply this approach to a time series of nine point cloud epochs from a slope 

affected by two shallow landslides. A parameter test addresses the influence of the registration error and the associated level of 

detection on the magnitude of derived object changes. The results of our case study are in accordance with field observations at the 

test site as well as conceptual landslide models, where retrogressive erosion of the scarp and downslope movement of the sliding 

mass are major principles of secondary landslide development. We conclude that the presented methods are well suited to extract 

information on geomorphological process dynamics from the complex point clouds and aggregate it at different levels of abstraction 

to assist landslide and erosion assessment. 
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1. INTRODUCTION 

Landslides and erosion represent major challenges for natural 

hazard management and sustainable agriculture in mountain 

areas (Turner et al., 1996; Alewell et al., 2015). Being a specific 

type of gravitational mass movements, landslides shape the 

landscape and they can cause damage on humans and 

infrastructure (Kjekstad and Highland, 2009; Petley, 2012). 

Furthermore, these processes lead to a loss of soil and degrade 

agricultural land (Wiegand and Geitner, 2010; Alewell et al., 

2015). These problems concern both the occurrence of new 

landslides and the reactivation and secondary erosion of 

existing ones. 

For an informed decision making and mitigation, monitoring of 

these processes provides vital information. Detailed 3D point 

clouds from state-of-the-art close-range sensing techniques, 

such as terrestrial laser scanning (TLS; Jaboyedoff et al., 2012; 

Scaioni et al., 2014; Vericat et al., 2014) or structure-from-

motion multi-view-stereo (SfM-MVS) image matching (Lucieer 

et al., 2014; Scaioni et al., 2015; Stumpf et al., 2015), are well 

suited for landslide and erosion monitoring tasks. 

Several case studies have quantified geomorphological surface 

changes with multi-temporal point clouds, e.g. via a calculation 

of distances between points from different acquisitions (epochs) 

(Lague et al., 2013; Stumpf et al., 2015; Fey and Wichmann, 

2017). Usually, the detected changes are analysed based on the 

unstructured point clouds representing a continuous surface for 

each epoch, leaving the interpretation of changes to a human 

expert. This interpretation, i.e. the identification of the 

underlying process for changes, however, is often challenging, 

for example due to the complex surface structures and 

influences from vegetation dynamics. 

We present an approach for object-based 3D landslide 

monitoring with LiDAR point clouds for separating different 

surface change types. The highly automated workflow removes 

vegetation and relates surface changes derived from a point 

cloud time series directly to (i) geomorphologically meaningful 

object classes (‘landslide scarp’, ‘eroded area’, ‘deposit’) and 

(ii) to individual objects (such as parts of the landslide scarp 

and clods of material moving in the landslide). 

 

2. TEST SITE AND DATA 

We apply the presented approach with a time series of nine TLS 

point cloud epochs from a slope affected by two shallow 

landslides (Fig. 1). This test site is located in the Schmirn valley 

(Tyrol, Austria) at about 1700 m a.s.l., facing south-west with a 

slope gradient of approximately 35°. The landslide scars, 

excluding the rather diffuse runout zones, are at maximum 

20 x 30 m in size and have a maximum depth of approximately 

2 m. Accordingly, the main (shallow) mass movements, as well 

as secondary erosion processes, are restricted to Quaternary 
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deposits overlying the Bündner Schist bedrock (Wiegand et al., 

2013; Mayr et al., 2014). 

The lower part of the landslides’ surroundings is used as a 

meadow and the upper part as an occasional pasture. Larch trees 

(Larix decidua) and shrubs are scattered over some sections of 

the slope. Furthermore, a few small rock cliffs in the lower part 

add to the geometric and semantic complexity of the scene, 

making it a well-suited site for testing new methods for 

surveying and environmental monitoring. 

Historical orthophotos indicate an expansion of the eroded 

landslide areas since their initial development, which was 

triggered by a heavy precipitation event in 1965. The coarse 

spatial and temporal resolution of the orthophotos, however, 

does not reveal the detailed mechanisms resulting in this 

ongoing erosion and preventing a revegetation and stabilisation 

of the eroded areas. Striving for an enhanced process 

understanding of such landslides, monitoring methods based on 

TLS are implemented by conducting scans twice a year from 

2011 to 2015. To reduce occlusions, the scans were acquired 

from two different positions in the flat valley bottom, at a 

distance of approximately 200 to 350 m from the investigated 

slope section. For the first five epochs an Optech Ilris-3D 

scanner, and for the next four epochs a Riegl VZ-6000 scanner 

was used. Since both TLS instruments operate at different 

wavelengths, intensity features cannot be used comparatively 

within the time series of point clouds in a straight forward 

manner and would require correction (e.g. Kashani et al., 2015). 

Geo-referencing and registration into a common reference 

system was done using four spherical targets, surveyed by 

DGNSS (differential global navigation satellite system), and 

iterative closest point adjustment at stable parts of the slope 

(ICP; Besl and McKay, 1992). For homogenization of point 

density and reduction of data volume, all nine point clouds have 

been thinned by a 3D block filter (3 cm blocks), retaining only 

the point closest to each block centre. 

 

3. WORKFLOW AND METHODS 

The presented work builds upon an automated landslide 

classification pipeline for 3D point clouds as a basis for object 

monitoring (Mayr et al., 2017). From this as a starting point our 

contribution is now progressing towards the identification and 

characterisation of landslide changes within the entire time 

series of classified point clouds by 4D object-based analysis. 

The workflow for (i) classification and (ii) multi-temporal 

analysis of objects in the point cloud time series is implemented 

with Python scripts, combined with the free open-source 

geographical information system (GIS) SAGA (System for 

Automated Geoscientific Analysis; Conrad et al., 2015) and the 

proprietary SAGA add-on Laserdata LIS (Rieg et al., 2014). 

 

3.1 Point cloud classification 

The classification approach (see Mayr et al., 2017) exclusively 

exploits geometric point cloud features. It avoids the use of 

colour or LiDAR intensity since these features are not always 

available in sufficiently high quality and consistency (see 

Sect. 2). Thus, the workflow starts with calculating geometric 

point cloud features (such as 2D z-range, 3D/2D density ratio, 

slope, standard deviation from a plane, omnivariance, and 

geometric curvature) each at three different scales (i.e. 

neighbourhoods of radius 0.2, 0.4 and 1.0 m). The next step is a 

segmentation by seeded region growing to partition the point 

clouds into morphologically homogeneous subsets, aiming at 

oversegmentation and subsequent merging by classification. 

 

The resulting segments are labelled with the seven classes 

‘scarp’, ‘eroded area’, ‘deposit’, ‘rock outcrop’ and different 

classes of vegetation (‘low grass’, ‘high grass’, ‘medium and 

high vegetation’) via two sequential classification steps (Fig. 1 

(bottom)). First, a supervised classification by a random forest 

classifier (Breiman, 2001) using the geometric features is 

applied to the segments from the initial oversegmentation. The 

classifier is trained and validated with one manually labelled 

point cloud epoch, using one selected landslide of the test site 

for training and validation, respectively. After the training 

phase, the classifier is applied to label the entire time series of 

nine point cloud epochs. Subsequently, certain errors in this 

classification are corrected based on approximated landslide 

shapes (reconstructed for each epoch) and topological rules. 

 

The approximated reconstruction of landslide shapes i) 

identifies the main scarp segments and ii) considers that 

material from below these segments moved downward (directed 

by gravity). Hence, a (raster terrain model based) hydrological 

flow routing algorithm defines the process trajectories initiated 

from the main scarp segments (stopping only at the lower 

boundary of the area-of-interest). These trajectories roughly 

delimit the area affected by the landslide process. For a simple 

topology (inside vs. outside the landslide process zone) rules 

are defined. These rules reclassify and correct for instance 

misclassified ‘erosion’ segments outside the two landslides. A 

detailed description of the point cloud classification methods is 

provided in Mayr et al. (2017). 

 

 

 
Figure 1. Terrestrial laser scanning at the test site (top) and a 

labelled point cloud with two landslides L1 and L2 (bottom). 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-691-2018 | © Authors 2018. CC BY 4.0 License.

 
692



 

 

3.2 Point cloud deformation calculation 

Before analysing the deformation between point cloud epochs, 

all points labelled as ‘medium and high vegetation’ (see 

Sect. 3.1) are removed. Subsequently, a normal vector is 

calculated for each point, applying a RANSAC-like (Fischler 

and Bolles, 1981) robust plane fitting approach for the point set 

within a spherical neighbourhood of 0.4 m radius around the 

central point. 

 

For each time step, the local distance between the points of two 

subsequent point cloud epochs A and B is calculated along the 

surface normal direction in 3D space, using a variant of the 

Multiscale Model to Model Cloud Comparison (M3C2) method 

(Lague et al., 2013; Fey and Wichmann, 2017; see also sketches 

therein). In our experiment, the parameters for this distance 

calculation have been determined empirically, as given in the 

following description. For each point a in the point cloud from 

epoch A, the nearest points in the point cloud from epoch B 

both along the normal vector and along the flipped normal 

vector of point a are determined and the one which is closest to 

point a is used as point b. This search is constrained by a 

cylinder centred on the normal vector, with radius d/2 = 0.2 m 

and length L = 2 m. For both points (a and b) and their 

respective neighbour points within a specified fitting radius D/2 

= 0.5 m least-squares fitted planes are computed, using only 

points with a maximum deviation of 45° from the search point’s 

(a or b) normal vector orientation.  

 

Finally, a signed 3D distance is measured from point a 

(projected on its fitted plane) along the normal (or flipped 

normal) of point a to the intersection with the fitted plane of 

point b. In case the intersection point is in the direction of the 

normal of point a, the surface of point cloud A is behind (or 

below or inside) that of point cloud B and the sign is negative. 

A positive sign indicates that the surface of A is in front of (or 

above or outside) the surface of B. 

 

3.3 Object changes 

The next step identifies geomorphologically meaningful objects 

by aggregating spatially connected segments of the same class 

(from the initial oversegmentation). This object modelling is 

constrained by the 3D distance, calculated in the previous step, 

to distinguish deforming parts of the landslide from stable parts. 

The resulting objects are spatially contiguous and discrete 

entities, each belonging to one of the seven object classes. 

 

Finally, the mean 3D deformation is calculated (i) per object 

and (ii) per class, from the “real” deformations (i.e. with a 

magnitude larger than the level of detection (LOD); see 

Sect. 3.4) attached to each point by the distance calculation 

step, including a sign (indicating the direction of surface 

change). This is done separately for each time step and for each 

landslide of the test site, i.e. split by a coarsely defined area-of-

interest polygon layer. The resulting object-based and class-

based changes are attached as attributes to the point cloud 

epochs and exported as a table for further time series analysis 

and detailed visualisation of changes. 

 

3.4 Level of detection and analysis of parameters 

The applied distance calculation method (Lague et al., 2013; 

Fey and Wichmann, 2017) also estimates a spatially variable 

level of detection at the 95% confidence interval (LOD95). This 

LOD95 helps to differentiate between “real” changes and data 

noise or systematic errors, and is calculated as 

 

𝐿𝑂𝐷95 = ±1.96√(
𝜎𝐴²

𝑛𝐴
) + (

𝜎𝐵²

𝑛𝐵
) + 𝑟𝑒𝑔  (1) 

 

where A, B = point cloud epochs 

 σ²  = plane fitting variance 

 n = number of points in the fitting  

  neighbourhood 

 reg = registration error. 

 

Depending on the knowledge regarding the registration 

accuracy, either a constant or a spatially variable registration 

error reg can be used. In our experiment we calculate with a 

fixed registration error, thus the spatial variability of the LOD95 

depends exclusively on the plane fitting variance and the 

number of points in the fitting neighbourhood. These two 

variables in turn depend on the local surface roughness, the 

point density and the neighbourhood radius for fitting the plane. 

We use a conservative estimate for the registration error reg = 

0.10 m (and reg = 0.06 m, respectively, for the deformations 

displayed in Fig. 5 to enhance the visibility). 

 

Additionally, we calculate the distances within a defined range 

of values for the registration error (reg) starting from 0.2 m to 

0.16 m with 0.2 m steps. The resulting object-based 3D 

deformations are aggregated and investigated exemplarily for 

the ‘landslide scarp’ class to illustrate the sensitivity of the 

class-based change analysis towards reg (see Sect. 4.2). 

 

4. RESULTS AND DISCUSSION 

4.1 Object changes and interpretation 

During the monitoring period, the sliding mass of the right 

landslide L2 has been reactivated once (in the fourth time step, 

between 2013/05/23 and 2013/10/13; Fig. 2). This is indicated 

by a deformation, i.e. lowering of the surface in the upper, 

erosional area due to erosion or downward movement (negative 

deformations) and accumulation of material (positive 

deformations) in the depositional area. This process was likely 

triggered by intense rainfall in early summer 2013. 

Contrastingly, these parts of the landslide remained stable 

during the rest of the monitoring period. In upcoming analyses, 

time series from a nearby rain gauge will be integrated to assess 

such relations between detailed process dynamics and potential 

hydro-meteorological triggers or drivers. 

 

The scarps of both landslides have been subject to retrogressive 

erosion (negative deformations; Figs. 3 - 5), with clods of 

material (turf and soil) episodically breaking-off and sliding or 

toppling downward and being deposited in the landslide area 

(positive deformations). This has resulted in an expansion of the 

eroded area, predominantly in uphill direction. The deposition 

of material is less well represented by positive 3D deformations 

(Figs. 2 (bottom) and 3). This corresponds with the field 

observation that the deposition of clods of soil is a more 

diffusive process, which tends to be accompanied by a 

disintegration of such objects and dispersal on a larger area, 

thus resulting in surface changes that are often beyond the level 

of detection (i.e. their absolute value is smaller than the LOD95, 

which in turn depends on the registration error). The ongoing 

erosion, transport and deposition of material within the 

landslides prevent the establishment of a continuous grass cover 

and thus soil formation, at least in the eroded area. 
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At landslide L1, the main type of change during the monitoring 

period concerns the objects of the class ‘landslide scarp’ 

(Figs. 3, 5 (top)). Recurring scarp erosion is contrasted by 

stability of other object classes. Fig. 4 shows an oblique view 

and a transect of a subset from the second point cloud epoch 

(2012/05/02). The mean 3D surface deformation per object 

(compared to the previous epoch) highlights the erosion (red) of 

‘landslide scarp’ objects and their deposition (blue) a few 

metres downslope within the landslide. 

 

 

 
Figure 2 (top). Oblique view of the point cloud coloured by 

mean 3D deformation per object between 2013/05/23 and 

2013/10/13, showing movement of the sliding mass at landslide 

L2. (bottom) Cumulative mean 3D deformation of the eroded 

area and the deposit of landslide L2 for the point cloud time 

series. 

 

 
Figure 3. Cumulative mean 3D deformation per class for 

landslide L1 (reg = 0.1 m). 

 

 

 

Figure 4. Scarp erosion and deposition of material between 

epochs t1 (2011/10/12) and t2 (2012/05/02). (a) Oblique view of 

the landslide L1 coloured by mean deformation per object. (b) 

Transect coloured by mean deformation per object. (c) Transect 

overlaying the points of both epochs coloured by their class 

labels (classes irrelevant for the transect are greyed out in the 

legend). 
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4.2 Level of detection – Parameter sensitivity and impact on 

the object-based change 

The parameter sensitivity was tested using a range of 

registration error values for the deformation calculation between 

point cloud epochs. Larger registration errors increase the 

LOD95 (Eq. 1) and, accordingly, result in more (per-point) 

deformations being excluded from class- and object-based 

aggregation, as they are below the local LOD95. 

 

 reg [m] 

0.04 0.10 

Epoch 2 8 9 8 

Date 2012/05/02 2015/06/24 2015/10/30 2015/06/02 

LOD95 

[m] 

min 0.079 0.079 0.079 0.197 

max 0.123 0.141 0.141 0.259 

mean 0.081 0.082 0.081 0.200 

sd 0.002 0.002 0.001 0.002 

Table 1. Descriptive statistics per point cloud epoch for the 

LOD95 calculated with two different registration errors (reg). 

 

The test results reflect this effect, with smaller registration 

errors resulting in a smaller LOD95, hence a lower threshold for 

acceptance of deformations as “real” change and accordingly 

higher magnitudes of mean 3D deformations per class for some 

epochs (Tab. 1 and Fig. 5). For epoch 8, for instance, the 

conservative estimate reg = 0.10 m resulted in an average level 

of detection LOD95mean = 0.200 m (and a standard deviation 

LOD95sd = 0.002 m). If the same registration error is assumed, 

the spatial variability within each point cloud epoch as well as 

the variability between point clouds is small, at least for the 

investigated analysis scale, defined by the applied fitting radius 

D/2 and neighbourhood size for normal vector calculation (low 

standard deviations; Tab. 1). 

 

Note that the per-object or per-class deformations still can be 

considerably smaller than the LOD95, as each object or class can 

contain points without change or change below the LOD95. This 

effect, however, is limited to some extent by the integration of 

the 3D distance as a criterion for object modelling (see Sect. 3.1 

and 3.2). 

 

 

 

 
Figure 5. Cumulative mean 3D deformation of the ‘landslide scarp’ class for landslides L1 (top) and L2 (bottom), with different 

registration errors (reg) used for calculating the LOD95 and, accordingly, filtering “real” change. 

 

For some time steps, the class- and object-based deformations 

calculated with from different reg values, and hence LOD95, 

vary systematically. The results obtained with larger registration 

error values (e.g. reg = 0.1 m) appear to represent only 

generalized process dynamics. In contrast, the results calculated 

with smaller values of reg show higher magnitudes of mean 3D 

deformation per class. 

 

In this context, it has to be considered whether these 

deformations that point to “real” changes, which are of interest 
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for geomorphological interpretation, and how much of the 

signal must be attributed to data noise or systematic 

(registration) errors. This highlights the importance of a 

registration error assessment to estimate the level of detection 

realistically. Particularly in complex natural environments the 

conditions for this are often non-optimal, due to a lack of well-

distributed, large, planar and stable areas with different surface 

orientations (cf. Fey & Wichmann, 2016). Recent 

methodological developments aim at the automated selection of 

stable areas to use during registration (Wujanz et al, 2016) and 

the assessment of uncertainties of deformation measurements 

(Fey & Wichmann, 2017; Kromer et al, 2017). These are 

important considerations, also with prospect to the processing 

of longer point cloud time series, where user guided registration 

as well as visual inspections of (intermediate) results become 

less feasible. 

 

5. CONCLUSIONS 

This contribution is one of the first works attempting to analyse 

point cloud time series automatically to monitor landslides at 

the level of semantically meaningful objects. The presented 

methods extract information on geomorphological process 

dynamics from the point clouds and aggregate it at different 

levels of abstraction. The resulting data products and their 

visualisations demonstrate the potential for a monitoring of 

individual objects within a landslide system (parts of the scarp 

collapsing or clods of material moving downslope) as well as of 

more generally aggregated change trends for certain object 

classes (e.g. ‘scarp’, ‘eroded area’, ‘deposit’). Reducing the 

spatial complexity of the point cloud can shift the focus to the 

temporal dimension to easily identify specific time steps where 

significant changes occurred (cf. Fig. 3), and then, for these 

time steps, back to the highly detailed spatial representation of 

the point cloud (cf. Fig. 4). This kind of semantic 3D scene 

interpretation will be particularly beneficial for larger datasets 

(such as time series with many epochs and large, complex point 

clouds) where the automated analysis workflow and the 

resulting visualisations assist the interpreter to grasp a quick, 

yet detailed overview of the most important changes, their 

timing and character. 

The results of our analysis for the presented case study are in 

accordance with field observations at the test site as well as 

conceptual landslide models, where retrogressive erosion of the 

scarp and downslope movement of the sliding mass are major 

principles of secondary landslide development. Therefore, we 

conclude that object-based analysis of point cloud time series is 

a powerful approach to i) break-down the spatio-temporal 

complexity inherent to many environmental processes and ii) 

exploit the high level of detail and accuracy of laser scanning. 

By linking 3D surface deformation measurements with 

contextual, semantic information, the approach contributes to 

bridging the gap from real-world surveys to conceptual process 

models. In future, such methods will assist landslide experts to 

systematically interpret the measured changes from a 

geomorphological point of view. In combination with an 

investigation of drivers (such as rainfall thresholds, slope 

surface morphometry and soil structure), this will enhance 

landslide and erosion process understanding and assessment. 
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