
ETALON IMAGES: UNDERSTANDING THE CONVOLUTION NEURAL NETWORKS

Vladimir V. Molchanov1, Boris V. Vishnyakov1, Vladimir S. Gorbatsevich1, Yury V. Vizilter1

1 FGUP «State Research Institute of Aviation Systems», Russia, 125319, Moscow, Viktorenko street, 7 (vmolchanov, vishnyakov,

gvs, viz)@gosniias.ru

Commission II, WG II/5

KEY WORDS: CNN, deep learning, manifold learning, affine transformations, graphs, etalons

ABSTRACT:

In this paper we propose a new technic called etalons, which allows us to interpret the way how convolution network makes its

predictions. This mechanism is very similar to voting among different experts. Thereby CNN could be interpreted as a variety of

experts, but it acts not like a sum or product of them, but rather represent a complicated hierarchy. We implement algorithm for etalon

acquisition based on well-known properties of affine maps. We show that neural net has two high-level mechanisms of voting: first,

based on attention to input image regions, specific to current input, and second, based on ignoring specific input regions. We also make

an assumption that there is a connection between complexity of the underlying data manifold and the number of etalon images and

their quality.

1. INTRODUCTION

For the last past years in computer vision society there were

introduced tremendous variety of different neural networks

architectures (Redmon et al., 2016), (Girshick, 2015), (He et al.,

2016). There are different ideas behind these nets, which are

explained by intuition and a good guess rather than strict theory,

but the core blocks all of them are the same – they all utilize

convolution and pooling layers. Such first CNNs as AlexNet and

VGG, using only simple convolutions and pooling blocks

without any additional connections (that exist in ResNet and

DenseNet), haven’t shown such good quality, compared to the

modern CNN architectures. But they have demonstrated the

ability to fit data and to outperform previous state of the art

algorithms. Given this, it is rather obvious that a good start point

for deep neural network understanding is the first, simple CNNs.

To analyze CNN behavior, we select MNIST challenge and one

of the common nets with good results on it (LeNet (LeCun et al.,

1988), but we use its slight modification, replacing sigmoid

activation units with ReLU). This net has simple consecutive

convolution and pooling layers with ReLU activation functions.

It also has 10 output neurons for final predictions (each neuron

predicts class specific probability for input digit). The schematic

network’s figure present in Fig. 1.

For explaining the notion of etalon it’s useful to consider CNN

from functional point of view. According this interpretation CNN

represent parametric family of functions which depends on net

architecture and neuron’s activation functions. During training

network parameters are tuned and as a result we get one instance

form this family. For our particular network with ReLU

activations if we don’t take into account the last SoftMax layer,

then whole network represents the piecewise linear function in

high dimensional input space. Each input image lies in some flat

region where network behaves like affine transformation. This

means that there is small neighborhood around any input image

where CNN behaves like an affine transformation. Its size and

topology depend on the complexity and form of the data

manifold. As known CNN gives effective implicit representation

of this manifold and etalons give way to look at it.

Figure 1. Schematic view of LeNet. We exclude SoftMax layer

from further consideration

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

707

2. RELATED WORKS

For now, deep learning methods, especially based on deep neural

networks, play an important role in information processing of

visual data. At the heart of these models lies a hypothesis, that

deep models can be exponentially more efficient at representing

some functions than their shallow counterparts (Bengio, 2009).

There is no strong theoretical justification, but there is a lot of

practical experiments and promising results. It based on

assumption that higher layers in a deep model can use features,

constructed by the previous layers in order to build more complex

functions and not to learn low level features again. For example,

in CNNs for image classification (object detections and other

vision tasks), first layer can learn Gabor filters that are capable to

detect edges of different orientation. These edges are then put

together at the second layer to form part-of-object shapes. On

higher layers, these part-of-object shapes are combined further to

obtain detectors for more complex part-of-object shapes or

objects. Such a behavior is empirically illustrated, for instance,

in (Zeiler and Fergus, 2013), (Lee et al. 2009). On the other hand,

a shallow model has to construct detectors of target objects based

only on the detectors learnt by the first layer.

There are also some theoretical justifications which prove the

possibility for Deep Neural Nets to reconstruct functions with

exponential number of regions. One example of such work is

(Montufar et al., 2014). In this work authors investigate deep feed

forward neural net with piecewise linear activation units. The

intermediary layers of these models are able to map several

pieces of their inputs into the same output. The layer-wise

composition of the functions computed in this way re-uses low-

level computations exponentially often as the number of layers

increases. As a result, deep networks are able to identify an

exponential number of input neighborhoods by mapping them to

a common output of some intermediary hidden layer. The

computations of the activations of this intermediary layer are

replicated many times, once in each of the identified

neighborhoods. This allows the networks to compute very

complex looking functions even when they are defined with

relatively few parameters. There are also some works dedicated

to understanding how neural networks perceive images.

One well known method, described in work (Zeiler and Fergus,

2013), shows the way of getting regions in input image which are

responsible for activation one or other neuron. In our work we try

to investigate the other side of the problem. We concentrate on

the mechanism which neural net obtains during training to

perform its tasks (in this work we consider the classification

task). We don’t consider the problem of representation capability,

however we suppose that there is a connection between

complexity of the underlying data manifold and the number of

etalon images and their quality. We guess that analyzing etalons

can give some insight into problem of under and overfitting and

models comparison based on last ones. Our work is similar to

work (Zeiler and Fergus, 2013) in sense of visualization of

regions, which neural network concentrates on.

However, etalon images aren’t regions in input image. They are

affine maps, defined on the input space and represents the

behavior of the network on particular image.

3. METHODS

3.1 Image etalon definition

As was mentioned above, we consider CNN without last SoftMax

layer. The output of such net is 10-dimensional vector with

unnormalized class scores (one for each digit class). Let 𝑥 be any

input example – a vector of size 𝑚 (for our consideration we

flatten it’s dimensions but one can take in mind that it is a

grayscale picture with spatial sizes), 𝑁𝐸𝑇 – the function,

represented by CNN that we describe earlier. According to

introduction part, if we use ReLU as an activation function, for

activated neurons we can write network transformation for vector

𝑋 as:

𝑁𝐸𝑇(𝑋) = 𝐴𝑓𝑓𝑋(𝑋) = 𝑊𝑋
𝑁𝐸𝑇 ∗ 𝑋 + 𝑏𝑋

𝑁𝐸𝑇 (1)

where 𝐴𝑓𝑓𝑋 = affine transformation specific to 𝑋

 𝑊𝑋
𝑁𝐸𝑇 = transformation matrix of the 𝐴𝑓𝑓𝑋

 𝑏𝑋
𝑁𝐸𝑇 = bias of the 𝐴𝑓𝑓𝑋

 ∗ = matrix product

This transformation take place between input space of images

(m-dimensional) and output 10 dimensional space (class specific

unnormalized scores), so 𝑊𝑋
𝑁𝐸𝑇 is a 10 × 𝑚 matrix. Next we

emphasize very simple fact which is important for further study:

if we consider the whole net as an affine transformation, then we

can treat any neuron as an affine map from input space to the real

line ℝ. We show this for the output neuron from the last layer,

but, as we will see further, this is also valid for all other neurons

in any layer.

Let us look at one neuron 𝑝 from the 10 output neurons and

denote its output as 𝑁𝐸𝑇(𝑋)𝑝. For this neuron we can do all the

steps above and write its affine map:

𝑁𝐸𝑇(𝑋)𝑝 = 〈(𝑊𝑋)𝑝, 𝑋〉 + (𝑏𝑋)𝑝 (2)

where (𝑊𝑋)𝑝 = transformation matrix specific to neuron p

(𝑏𝑋)𝑝= bias term specific to neuron p like in (1)

〈⋅〉 = scalar product.

For output neurons there is obvious relationship between

matrixes and biases terms in equations (2) and (1). It is easy to

see that (𝑊𝑋)𝑝 is just row 𝑝 in matrix 𝑊𝑋
𝑁𝐸𝑇 and also (𝑏𝑋)𝑝 is

p-th component in vector 𝑏𝑋
𝑁𝐸𝑇. Then we can write:

(𝑊𝑋)𝑝 = (𝑊𝑋
𝑁𝐸𝑇)𝑝, (𝑏𝑋)𝑝 = (𝑏𝑋

𝑁𝐸𝑇)𝑝 (3)

As was mentioned above such affine function could be defined

for any neuron in CNN.

We call (𝑊𝑋)𝑝 an etalon image for the input image 𝑋 and the

neuron 𝑝, because it has the same dimensions as the input vector

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

708

𝑋. The work of the whole CNN can be presented as the scalar

product between the image and its etalon. Despite the fact that

each neuron has its own etalon for every image, effective number

of etalons depends on the data manifold complexity and also on

the training algorithm and network architecture. But if we

suppose that network architecture isn’t too overabundant and

train procedure is affective then first factor is dominant.

Consequently, for more complicated dataset we shall have more

etalons, and CNNs should have capacity to keep all of them, and

that is exactly what they are good at, according to many practical

and some theoretical results (Montufar, 2014). In the next

paragraph we’ll give you more constructive view on etalons and

it would be clear that CNN can keep the large number of them.

That’s why etalons are another argument why CNN outperforms

previous methods.

3.2 Etalon subgraph

In this paper we develop a method for getting the etalon from an

input image. This method is based on another etalon

interpretation like a subgraph in CNN. We can consider a neural

net as graph, where neurons are vertexes and interlayer

connections are edges. When a new image is passed to the

network input, it goes successively through all layers. One can

interpret this as some kind of flow, spreading through the

network graph. But in contrast to classical flow, where there are

sources and stokes, we don’t have stokes here, however this

interpretation is helpful. There is also one important point,

connected with ReLU activations: the flow spreads through only

some subgraph with non-zero activations. When ReLU gives us

zero activation, it does not affect all further calculations, so we

can freeze edges between this neuron and successive layer.

Summarizing all the above, each etalon can be associated with its

own subgraph.

For better understanding how it works, let us consider the

following example. Net structure is shown in the picture below

(Fig.2). For simplicity we consider an example with two-

dimensional input and two fully connected layers (activation

functions are ReLU).

X1 X2

Y1 Y2 Y3

Z1 Z2

α11

α12

α13 α21

α22

α23

β11
β12 β21 β22 β31 β32

b1 b2 b3

b4 b5

Input

Output

Figure 2. vector X = (X1, X2) is passed as an input to the CNN.

We marked in red connections, that are active for a current

input. One can see that connections with Y2 are inactive,

because Y2 = 0 (ReLU(⋅) = 0) and does not affect the final

outcome.

Let us take the vector 𝑋 = (𝑋1, 𝑋2) as an input and calculate the

network output on it. Suppose that activation 𝑌2 argument is less

than 0, so 𝑌2 = ReLU(⋅) = 0 and does not affect the result. We

also assume that 𝑍2 argument is also less than 0. Then we have:

𝑌1 = ReLU(𝛼11𝑋1 + 𝛼21𝑋2 + 𝑏1) = 𝛼11𝑋1 + 𝛼21𝑋2 + 𝑏1

𝑌2 = 0

𝑌3 = ReLU(𝛼13𝑋1 + 𝛼23𝑋2 + 𝑏3) = 𝛼13𝑋1 + 𝛼23𝑋2 + 𝑏3

𝑍1 = ReLU(𝛽11𝑌1 + 𝛽31𝑌3 + 𝑏4) = 𝛽11𝑌1 + 𝛽31𝑌3 + 𝑏4

𝑍2 = 0

 (4)

where 𝛼𝑖𝑗 and 𝛽𝑙𝑘 = weights of the corresponding neurons,

 𝑏𝑠 = biases of the neurons.

After putting 𝑌1, 𝑌2 expressions in the formula for 𝑍1 calculation,

we have:

 𝑍1 = 〈(
𝛽11𝛼11 + 𝛽31𝛼13

𝛽11𝛼21 + 𝛽31𝛼23
) , (

𝑋1

𝑋2
)〉 + (𝛽11𝑏1 + 𝛽31𝑏3 + 𝑏4) (5)

where (𝑊𝑋)𝑍1
= (

𝛽11𝛼11 + 𝛽31𝛼13

𝛽11𝛼21 + 𝛽31𝛼23
) = matrix of the affine

map,

 (𝑏𝑋)𝑍1
= 𝛽11𝑏1 + 𝛽31𝑏3 + 𝑏4 = bias of the affine map.

As a result we get the explicit view of the 𝑍1 neuron affine map

for the given input, according to equation (2). One can see the

relation between affine map and subgraph, which is obtained as

a result of the input vector passing through the network. This

graph only includes those neurons, that have non-zero activations

and its highlighted with red connections in Fig. 2. It is rather

obvious that all the results are valid for CNN because they are

just specific type of fully connected networks with most of the

connections equal to zero. We can conclude that one possible

way of getting neuron etalons is through reconstructing the graph

of its affine map. In next section we describe how to do this.

3.3 Etalon acquisition

The above results prove that if subgraph and input vector are

known, then it is possible to reconstruct the etalon image.

However, in arbitrary CNN it is rather difficult to get separate

components of an etalon image altogether simultaneously. But it

is possible to get these components separately. We know that

network processes any image as scalar product between its etalon

and image itself plus bias term. Using linearity of the scalar

product, we can write down next statement for the input image 𝑋

and any neuron 𝑝:

〈(𝑊𝑋)𝑝, 𝑋〉 = (𝜔1 , 𝜔2, … , 𝜔𝑚)𝑝 ⋅ (𝑋1, 𝑋2, … , 𝑋𝑚)𝑇 =

∑ 𝑋𝑖 ⋅ (𝜔1, 𝜔2, … , 𝜔𝑚)𝑝 ⋅ 𝑒𝑖
𝑚
𝑖=1 (6)

where 𝑒𝑖 = the basis coordinate vector (coordinate image)

with component 𝑖, equal to 1, having all other

components equal to 0,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

709

(𝑊𝑋)𝑝 = (𝜔1 , 𝜔2, … , 𝜔𝑚)𝑝 is the etalon image for the

neuron 𝑝 of the input image 𝑋(we flatten etalon as input

image).

From (6) we can conclude that if we feed coordinate vector 𝑒𝑖 as

input, then we get component 𝜔𝑖 of the etalon vector (𝑊𝑋)𝑝.

However we note that simply feeding this vector does not make

sense because there is no guaranty that etalon subgraphs for

image 𝑋 and coordinate image 𝑒𝑖 are coincide. But if we freeze

all connections in the network except those, which belong to

subgraph of the (𝑊𝑋)𝑝 etalon and pass 𝑒𝑖 through the network,

we get reliable result.

It is obvious that for freezing we need to know etalon subgraph

for image 𝑋. In principle it is not a problem, because we can track

active connections in layers to form our graph structure and know

the graph, then perform calculations for each coordinate image 𝑒𝑖

using simple traverse of the graph. However, we decided to go

the other way and freeze unused connections (those where ReLU

equals to zero) on the flight. It is very easy – we can set

activations of one particular neuron to zero to freeze its

connections. Then they will not affect further computations, and

it is equivalent to removing these connections.

3.4 Etalon reconstruction algorithm

In this section we propose an algorithm for etalon reconstruction,

which outputs etalon image (𝑊𝑋)𝑝 for the input image 𝑋 and the

neuron 𝑝. You can see the algorithm 1 steps in Fig. 3.

Algorithm 1. Etalon reconstruction for input image 𝑋

 and neuron 𝑝

Input: image 𝑋, network 𝑁𝐸𝑇, neuron 𝑝

1. pass 𝑋 to 𝑁𝐸𝑇 and remember non-zero activations

2. nullify biases of all neurons in 𝑁𝐸𝑇

3. for each coordinate image 𝑒𝑖 do:

3.1 pass 𝑒𝑖 to 𝑁𝐸𝑇 zeroing all activations

which were stored in step 2

3.2 save neuron 𝑝 activation to 𝑖-th

component of the (𝑊𝑋)𝑝

Output: etalon image (𝑊𝑋)𝑝

Figure 3. Etalon reconstruction algorithm for input image 𝑋 and

neuron 𝑝

Here we comment all steps in details.

 Algorithm 1 requires input image 𝑋, neuron 𝑝 and

network 𝑁𝐸𝑇

 Algorithm 1 returns (𝑊𝑋)𝑝 etalon image for 𝑋 and 𝑝

 In step 1 we pass input image 𝑋 to network 𝑁𝐸𝑇 and

remember those activations that aren’t equal zero. We

implement two layers – first ReLU, and second

Pooling. ReLU layer – remembers those activations

which are positive (active) in step 1 and during passing

coordinate images 𝑒𝑖 in step 3 this layer set to zero all

activations except those that were stored. Pooling layer

follows similar logic – it remembers neurons that were

active (neurons with max values) in step 1, and in step

3 use activations of these neurons as outputs ignoring

max pooling operation.

 In step 2 we nullify all biases in the network, because

they influence the neuron activations and, as a result,

we’ll get incorrect values for components of the (𝑊𝑋)𝑝

(which would be equal to the sum of 𝑖-th component

and bias term). However, from equations (2), (5) we

see that affine transformation has two independent

parts – one for linear transformation and other for

translation (bias term). Consequently, we can zero

biases for reconstruction etalon image.

 In step 3.1 we pass each coordinate image and

according to our implementation of ReLU and Pooling

layers they flow through required subgraph.

 In step 3.2 we take activation of the given neuron 𝑝

which equals to 𝑖-th component of the etalon image

For better insight we visualize the work of algorithm 1 on a

simple example of etalon reconstruction for 𝑍1 neuron. We also

assume that 𝑍2 argument is also less than 0. For simplicity the net

from Fig 2. was taken again, and the same proposals are

suggested: it is a simple fully connected net with two layers and

two-dimensional input 𝑋 = (𝑋1, 𝑋2). Suppose that activation 𝑌2

argument is less than 0, so 𝑌2 = ReLU(⋅) = 0 and does not

affect the result. According to step 1 input image 𝑋 = (𝑋1, 𝑋2) is

passed to the net, and we remember non-zero activations (see Fig.

4).

X1 X2

Y1 Y2 Y3

Z1 Z2

α11

α12

α13 α21

α22

α23

β11
β12 β21 β22 β31 β32

b1 b2 b3

b4 b5

Input

Output

Figure 4. vector X = (X1, X2) is passed as an input to the CNN.

We marked in red connections, that are active for a current

input. Since neurons 𝑌2, 𝑍2 activations are zero, their

connections are freezed.

Then in step 2 we zero all biases:

𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 𝑏5 = 0 (7)

In steps 3, 3.1, 3.2 we pass all coordinate images 𝑒𝑖. For this

example there are only two:

𝑒1 = (1,0), 𝑒2 = (0,1) (8)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

710

For 𝑒1, according to system (4), we have the first component of

𝑍1 (see Fig. 5):

𝑌1 = ReLU(𝛼11 ∗ 1 + 𝛼21 ∗ 0) = 𝛼11

𝑌3 = ReLU(𝛼13 ∗ 1 + 𝛼23 ∗ 0) = 𝛼13

𝑍11
= ReLU(𝛽11𝑌1 + 𝛽31𝑌3 + 𝑏4) = 𝛽11 ∗ 𝛼11 + 𝛽31 ∗ 𝛼13

 (9)

Comparing (5) with (9), we see that for 𝑒1 coordinate image

neuron 𝑍1 activation contains first component of the (𝑊𝑋)𝑍1

etalon image.

1 0

Y1 Y2 Y3

Z1 Z2

α11 α13 α21 α23

β11 β31

b1 b3

b4

Input

Output

Figure 5. Feeding the first coordinate vector (1,0) to get the first

component of the etalon (𝑊𝑋)𝑍1
. Components that were frizzed

during step 1 of the algorithm 1 aren’t shown.

After feeding 𝑒2 coordinate image we get next result for second

component of the 𝑍1 (see Fig 6.):

𝑍12 = 𝛽11𝛼21 + 𝛽31𝛼23 (10)

Summarizing equations (9) and (10), we can reconstruct etalon

image (𝑊𝑋)𝑍1
:

(𝑊𝑋)𝑍1
= (

𝛽11𝛼11 + 𝛽31𝛼13

𝛽11𝛼21 + 𝛽31𝛼23
)

In this algorithm we don’t reconstruct bias term in (2), however

it is straightforward to do. Between steps 1 and 2 in algorithm 1

we can feed zero vector to the net, which gives us bias as

activation value of the neuron 𝑝. Indeed, according to system (4),

if vector (0,0) is passed to the net, we have:

𝑌1 = ReLU(𝛼11 ∗ 0 + 𝛼21 ∗ 0 + 𝑏1) = 𝑏1

𝑌3 = ReLU(𝛼13 ∗ 1 + 𝛼23 ∗ 1 + 𝑏3) = 𝑏3

𝑍1 = ReLU(𝛽11𝑌1 + 𝛽31𝑌3 + 𝑏4) = 𝛽11𝑏1 + 𝛽31𝑏3 + 𝑏4

 (11)

Comparing (5) and (11), we see neuron 𝑍1 activation contains

bias term of the (𝑊𝑋)𝑍1
 etalon image affine map. But for etalon

images this doesn’t make sense, so we ignore this step.

0 1

Y1 Y2 Y3

Z1 Z2

α11 α13 α21 α23

β11 β31

b1 b3

b4

Input

Output

Figure 6. feeding the second coordinate vector (0,1) to get the

second component of the etalon (𝑊𝑋)𝑍1
. Components that were

frizzed during step 1 of the algorithm 1 aren’t shown.

3.5 Etalon reconstruction algorithm limitations

This algorithm is time consuming – for LeNet network with input

image’s resolution 𝑛 × 𝑛 we need to make 𝑛2 forward passes.

Cutting subgraph from network and performing calculations with

it can reduce computation cost because of reducing the number

of active connections, but neural nets use effective

implementation of their operations in CUDA. In addition, we also

need perform 𝑛2 forward passes. One possible solution is try to

reconstruct etalon for one forward pass. It could be done by

noting that convolution operation could be represented as linear

mapping. ReLU activations after each mapping just nullifies

some rows of transformation matrix of that mapping (concrete

rows depends on input image). As a result, we can consider

network as a product of affine mapping (different for each

image). Multiplying all affine transformation, we’ll get another

one which rows represent etalon images. However, representing

convolution operation as matrix product requires a lot of

memory. We didn’t investigate this way in practice.

4. EXPERIMENTAL RESULTS

4.1 LeNet etalon reconstruction

As was mentioned above, we choose LeNet for our experiments.

We experimented with different images and show our results in

Fig. 11. For experiments we concentrate on penultimate layer and

visualize etalons for each neuron from this layer for different

input images. As a result, for each image there are ten etalon

images (one per each neuron). For better interpretation we

consider several examples.

From example 1 we can see, that neural net tries to give attention

to definite regions of input image and does it depending on the

input. In the next example we show another mechanism, which

is reversed to mentioned above.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

711

In example 2 we demonstrate another mechanism, different from

example 1. Here, our net is strongly sure that particular image

doesn’t belong to given class, it simply votes against it, and again

we see that it concentrates its attention on concrete regions.

Example 1: Input image class – 0 (Fig. 7.)

Figure 7

For this image here we visualize etalon images from several

neurons (Fig. 8)

image 0 62 5

Figure 8. Etalon images for neurons 0, 2, 5, 6

Numbers in captions are neurons, responsible for

corresponding image class. White spots in etalon images can

be interpreted as most important regions in input image on

which neural net concentrates its attention. And, vice versa,

black spots are regions which net prefers to ignore. We

highlighted with red those regions that neural net makes

attention on. From neuron 0 etalon image one can conclude

that net tries to concentrate its attention on places which are

responsible for zero number. Also it should be emphasized

that it is not a simple tracking of most possible regions, but it

is specific for concrete input picture. There are many possible

zeros in train set which are located near boundaries, but net

puts some weights on positions, that are specific to concrete

image. From the other hand, if we look at neuron etalon 5

image, then one can conclude that the net has some

imagination. From this picture we can see how our net tries

to propose possible look of number 5 in this image. We see

that it tries to use bottom part of zero number in the picture

to draw number five. On neurons 2 and 6 we see similar

behavior. However, when this etalons images multiplied with

input one it is easy to see, that biggest response is for zero

etalon image.

Example 2: Input images classes – 4, 6 (Fig. 9.)

Figure 9

For this example, we take two images from classes 4, 6 and

visualize etalon images for neurons 0 and 1 correspondently

(Fig. 10).

Figure 10.

We highlighted with red those regions which neural net tries

to ignore. From neuron zero etalon image you can see, that net

votes against this class. It puts very low weights on places

where number four is located and, as a result, this class has

very small score. The same situation we can see for etalon

image of neuron one when number six is processed – neural

net is completely sure that this picture can’t below to class

one, so it votes against it.

5. CONCLUSIONS

In this work we represent a new notion – etalon images, which

are defined as affine maps for any neuron and given input image.

From the construction point of view etalons can be considered as

subgraphs in the whole neural network graph. We implement

algorithm for their acquisition based on well-known properties of

the affine maps. Their analyses have shown that neural net has

two high-level mechanisms of voting: first, based on attention to

the input image regions and specific to current input, and second,

based on ignoring specific input regions. We also suppose that

there is a connection between complexity of the underlying data

manifold and the number of etalon images and their quality. We

guess that analyzing etalons can give some insight into problem

of under and overfitting and models comparison. We concentrate

on these problems in our future works.

6. ANKNOLEGMENTS

This work was supported by Russian Science Foundation (RSF)

under Grant 16-11-00082; by Russian Foundation

For Basic Research (RFBR) under Grant 16-08-01260 А.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

712

Input 0 1 2 3 4 5 6 7 8 9

Figure 11. First column contains ten input images of the different classes from MNIST dataset. Rows from 1 to 10 contains their

etalon images, row 𝑖 contains etalon image of the corresponding neuron (each neuron has its own class for which it is responsible

for). For example, neuron 8 for digit 8 has very clear etalon - one can see specific cross-figure of the digit 8.

7. REFERENCES

Bengio Y., 2009. Learning deep architectures for AI.

Foundations and trends in Machine Learning, 2(1): pp.1-127.

Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li., 2015. Empirical

Evaluation of Rectified Activations in Convolutional Network.

eprint arXiv:1505.00853

Girshick R., 2015. Fast R-CNN In: 2015 IEEE International

Conference on Computer Vision (ICCV), pp. 1440-1448.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning

for image recognition. In: 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), NV, 2016, pp. 770-778.

https://doi.org/10.1109/CVPR.2016.90

Lee H., Grosse R., Ranganath R., and A. Y. Ng., 2009.

Convolutional deep belief networks for scalable unsupervised

learning of hierarchical representations. In: International

Conference on Machine Learning.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

713

LeCun Y., Bottou L., Bengio Y., and Haffner P., 1998. Gradient-

based learning applied to document recognition In: Proceedings

of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov 1998.

https://doi.org/10.1109/5.726791

Montúfar G., Pascanu K., Cho K., Bengio Y., 2014. On the

Number of Linear Regions of Deep Neural Networks. In:

Proceeding NIPS'14, Volume 2, pp. 2924-2932.

Redmon J., Divvala S., Girshick R., Farhadi A., 2016. You only

look once: Unified, real-time object detection. In: 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), NV, 2016, pp. 779-788.

Zeiler M.D., Fergus R., 2014. Visualizing and Understanding

Convolutional Networks. In: Fleet D., Pajdla T., Schiele B.,

Tuytelaars T. (eds) Computer Vision – ECCV 2014. Lecture

Notes in Computer Science, vol 8689. Springer, Zurich, pp. 818-

833.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

714

