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ABSTRACT: 

In this paper we propose a new technic called etalons, which allows us to interpret the way how convolution network makes its 

predictions. This mechanism is very similar to voting among different experts. Thereby CNN could be interpreted as a variety of 

experts, but it acts not like a sum or product of them, but rather represent a complicated hierarchy. We implement algorithm for etalon 

acquisition based on well-known properties of affine maps. We show that neural net has two high-level mechanisms of voting: first, 

based on attention to input image regions, specific to current input, and second, based on ignoring specific input regions. We also make 

an assumption that there is a connection between complexity of the underlying data manifold and the number of etalon images and 

their quality. 

1. INTRODUCTION 

 

For the last past years in computer vision society there were 

introduced tremendous variety of different neural networks 

architectures (Redmon et al., 2016), (Girshick, 2015), (He et al., 

2016). There are different ideas behind these nets, which are 

explained by intuition and a good guess rather than strict theory, 

but the core blocks all of them are the same – they all utilize 

convolution and pooling layers. Such first CNNs as AlexNet and 

VGG, using only simple convolutions and pooling blocks 

without any additional connections (that exist in ResNet and 

DenseNet), haven’t shown such good quality, compared to the 

modern CNN architectures. But they have demonstrated the 

ability to fit data and to outperform previous state of the art 

algorithms. Given this, it is rather obvious that a good start point 

for deep neural network understanding is the first, simple CNNs. 

 

To analyze CNN behavior, we select MNIST challenge and one 

of the common nets with good results on it (LeNet (LeCun et al., 

1988), but we use its slight modification, replacing sigmoid 

activation units with ReLU). This net has simple consecutive 

convolution and pooling layers with ReLU activation functions. 

It also has 10 output neurons for final predictions (each neuron 

predicts class specific probability for input digit). The schematic 

network’s figure present in Fig. 1. 

 

For explaining the notion of etalon it’s useful to consider CNN 

from functional point of view. According this interpretation CNN 

represent parametric family of functions which depends on net 

architecture and neuron’s activation functions. During training 

network parameters are tuned and as a result we get one instance 

form this family. For our particular network with ReLU 

activations if we don’t take into account the last SoftMax layer, 

then whole network represents the piecewise linear function in 

high dimensional input space. Each input image lies in some flat 

region where network behaves like affine transformation. This 

means that there is small neighborhood around any input image 

where CNN behaves like an affine transformation. Its size and 

topology depend on the complexity and form of the data 

manifold. As known CNN gives effective implicit representation 

of this manifold and etalons give way to look at it.  

 

Figure 1. Schematic view of LeNet. We exclude SoftMax layer 

from further consideration 
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2. RELATED WORKS 

 

For now, deep learning methods, especially based on deep neural 

networks, play an important role in information processing of 

visual data. At the heart of these models lies a hypothesis, that 

deep models can be exponentially more efficient at representing 

some functions than their shallow counterparts (Bengio, 2009). 

There is no strong theoretical justification, but there is a lot of 

practical experiments and promising results. It based on 

assumption that higher layers in a deep model can use features, 

constructed by the previous layers in order to build more complex 

functions and not to learn low level features again. For example, 

in CNNs for image classification (object detections and other 

vision tasks), first layer can learn Gabor filters that are capable to 

detect edges of different orientation. These edges are then put 

together at the second layer to form part-of-object shapes. On 

higher layers, these part-of-object shapes are combined further to 

obtain detectors for more complex part-of-object shapes or 

objects. Such a behavior is empirically illustrated, for instance, 

in (Zeiler and Fergus, 2013), (Lee et al. 2009). On the other hand, 

a shallow model has to construct detectors of target objects based 

only on the detectors learnt by the first layer. 

 

There are also some theoretical justifications which prove the 

possibility for Deep Neural Nets to reconstruct functions with 

exponential number of regions. One example of such work is 

(Montufar et al., 2014). In this work authors investigate deep feed 

forward neural net with piecewise linear activation units. The 

intermediary layers of these models are able to map several 

pieces of their inputs into the same output. The layer-wise 

composition of the functions computed in this way re-uses low-

level computations exponentially often as the number of layers 

increases. As a result, deep networks are able to identify an 

exponential number of input neighborhoods by mapping them to 

a common output of some intermediary hidden layer. The 

computations of the activations of this intermediary layer are 

replicated many times, once in each of the identified 

neighborhoods. This allows the networks to compute very 

complex looking functions even when they are defined with 

relatively few parameters. There are also some works dedicated 

to understanding how neural networks perceive images.  

 

One well known method, described in work (Zeiler and Fergus, 

2013), shows the way of getting regions in input image which are 

responsible for activation one or other neuron. In our work we try 

to investigate the other side of the problem. We concentrate on 

the mechanism which neural net obtains during training to 

perform its tasks (in this work we consider the classification 

task). We don’t consider the problem of representation capability, 

however we suppose that there is a connection between 

complexity of the underlying data manifold and the number of 

etalon images and their quality. We guess that analyzing etalons 

can give some insight into problem of under and overfitting and 

models comparison based on last ones. Our work is similar to 

work (Zeiler and Fergus, 2013) in sense of visualization of 

regions, which neural network concentrates on.  

However, etalon images aren’t regions in input image. They are 

affine maps, defined on the input space and represents the 

behavior of the network on particular image.  

 

3. METHODS 

 

3.1 Image etalon definition 

As was mentioned above, we consider CNN without last SoftMax 

layer. The output of such net is 10-dimensional vector with 

unnormalized class scores (one for each digit class). Let 𝑥 be any 

input example – a vector of size 𝑚 (for our consideration we 

flatten it’s dimensions but one can take in mind that it is a 

grayscale picture with spatial sizes), 𝑁𝐸𝑇 – the function, 

represented by CNN that we describe earlier. According to 

introduction part, if we use ReLU as an activation function, for 

activated neurons we can write network transformation for vector 

𝑋 as: 

𝑁𝐸𝑇(𝑋) =  𝐴𝑓𝑓𝑋(𝑋) =  𝑊𝑋
𝑁𝐸𝑇 ∗ 𝑋 + 𝑏𝑋

𝑁𝐸𝑇             (1) 

 

where 𝐴𝑓𝑓𝑋 = affine transformation specific to 𝑋 

 𝑊𝑋
𝑁𝐸𝑇 = transformation matrix of the 𝐴𝑓𝑓𝑋 

 𝑏𝑋
𝑁𝐸𝑇 = bias of the 𝐴𝑓𝑓𝑋 

 ∗ = matrix product 

 

This transformation take place between input space of images 

(m-dimensional) and output 10 dimensional space (class specific 

unnormalized scores), so  𝑊𝑋
𝑁𝐸𝑇 is a 10 × 𝑚 matrix. Next we 

emphasize very simple fact which is important for further study: 

if we consider the whole net as an affine transformation, then we 

can treat any neuron as an affine map from input space to the real 

line ℝ. We show this for the output neuron from the last layer, 

but, as we will see further, this is also valid for all other neurons 

in any layer. 

 

Let us look at one neuron 𝑝 from the 10 output neurons and 

denote its output as 𝑁𝐸𝑇(𝑋)𝑝. For this neuron we can do all the 

steps above and write its affine map: 

 

𝑁𝐸𝑇(𝑋)𝑝 =  〈(𝑊𝑋)𝑝, 𝑋〉 + (𝑏𝑋)𝑝    (2) 

 

where (𝑊𝑋)𝑝 = transformation matrix specific to neuron p 

(𝑏𝑋)𝑝= bias term specific to neuron p like in (1) 

〈⋅〉 = scalar product.  

 

For output neurons there is obvious relationship between 

matrixes and biases terms in equations (2) and (1). It is easy to 

see that (𝑊𝑋)𝑝 is just row 𝑝 in matrix 𝑊𝑋
𝑁𝐸𝑇 and also  (𝑏𝑋)𝑝 is 

p-th component in vector 𝑏𝑋
𝑁𝐸𝑇. Then we can write: 

(𝑊𝑋)𝑝 = (𝑊𝑋
𝑁𝐸𝑇)𝑝, (𝑏𝑋)𝑝 = (𝑏𝑋

𝑁𝐸𝑇)𝑝      (3) 

As was mentioned above such affine function could be defined 

for any neuron in CNN.  

We call (𝑊𝑋)𝑝 an etalon image for the input image 𝑋 and the 

neuron 𝑝, because it has the same dimensions as the input vector 
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𝑋. The work of the whole CNN can be presented as the scalar 

product between the image and its etalon. Despite the fact that 

each neuron has its own etalon for every image, effective number 

of etalons depends on the data manifold complexity and also on 

the training algorithm and network architecture. But if we 

suppose that network architecture isn’t too overabundant and 

train procedure is affective then first factor is dominant. 

Consequently, for more complicated dataset we shall have more 

etalons, and CNNs should have capacity to keep all of them, and 

that is exactly what they are good at, according to many practical 

and some theoretical results (Montufar, 2014). In the next 

paragraph we’ll give you more constructive view on etalons and 

it would be clear that CNN can keep the large number of them. 

That’s why etalons are another argument why CNN outperforms 

previous methods. 

3.2 Etalon subgraph 

In this paper we develop a method for getting the etalon from an 

input image. This method is based on another etalon 

interpretation like a subgraph in CNN. We can consider a neural 

net as graph, where neurons are vertexes and interlayer 

connections are edges. When a new image is passed to the 

network input, it goes successively through all layers. One can 

interpret this as some kind of flow, spreading through the 

network graph. But in contrast to classical flow, where there are 

sources and stokes, we don’t have stokes here, however this 

interpretation is helpful. There is also one important point, 

connected with ReLU activations: the flow spreads through only 

some subgraph with non-zero activations. When ReLU gives us 

zero activation, it does not affect all further calculations, so we 

can freeze edges between this neuron and successive layer. 

Summarizing all the above, each etalon can be associated with its 

own subgraph. 

For better understanding how it works, let us consider the 

following example. Net structure is shown in the picture below 

(Fig.2). For simplicity we consider an example with two-

dimensional input and two fully connected layers (activation 

functions are ReLU).  

X1 X2

Y1 Y2 Y3

Z1 Z2

α11 

α12 

α13 α21 

α22 

α23 

β11 
β12 β21 β22 β31 β32

b1 b2 b3

b4 b5

Input

Output

 

 

Figure 2. vector X = (X1, X2) is passed as an input to the CNN. 

We marked in red connections, that are active for a current 

input. One can see that connections with Y2 are inactive, 

because Y2 = 0 (ReLU(⋅) = 0) and does not affect the final 

outcome. 

 

Let us take the vector 𝑋 = (𝑋1, 𝑋2) as an input and calculate the 

network output on it. Suppose that activation 𝑌2 argument is less 

than 0, so 𝑌2 = ReLU(⋅)  =  0 and does not affect the result. We 

also assume that 𝑍2 argument is also less than 0. Then we have: 

 

      

𝑌1 = ReLU(𝛼11𝑋1 + 𝛼21𝑋2 + 𝑏1) =  𝛼11𝑋1 + 𝛼21𝑋2 + 𝑏1

𝑌2 = 0

𝑌3 = ReLU(𝛼13𝑋1 + 𝛼23𝑋2 + 𝑏3) =  𝛼13𝑋1 + 𝛼23𝑋2 + 𝑏3

𝑍1 = ReLU(𝛽11𝑌1 + 𝛽31𝑌3 + 𝑏4) =  𝛽11𝑌1 + 𝛽31𝑌3 + 𝑏4

𝑍2 = 0

    (4) 

 

where 𝛼𝑖𝑗 and 𝛽𝑙𝑘 = weights of the corresponding neurons, 

 𝑏𝑠 = biases of the neurons. 

 

After putting 𝑌1, 𝑌2 expressions in the formula for 𝑍1 calculation, 

we have: 

       𝑍1 = 〈(
𝛽11𝛼11 + 𝛽31𝛼13

𝛽11𝛼21 + 𝛽31𝛼23
) , (

𝑋1

𝑋2
)〉 + (𝛽11𝑏1 + 𝛽31𝑏3 + 𝑏4)     (5) 

where  (𝑊𝑋)𝑍1
= (

𝛽11𝛼11 + 𝛽31𝛼13

𝛽11𝛼21 + 𝛽31𝛼23
) = matrix of the affine 

map, 

 (𝑏𝑋)𝑍1
= 𝛽11𝑏1 + 𝛽31𝑏3 + 𝑏4 = bias of the affine map. 

As a result we get the explicit view of the 𝑍1 neuron affine map 

for the given input, according to equation (2). One can see the 

relation between affine map and subgraph, which is obtained as 

a result of the input vector passing through the network. This 

graph only includes those neurons, that have non-zero activations 

and its highlighted with red connections in Fig. 2. It is rather 

obvious that all the results are valid for CNN because they are 

just specific type of fully connected networks with most of the 

connections equal to zero. We can conclude that one possible 

way of getting neuron etalons is through reconstructing the graph 

of its affine map. In next section we describe how to do this. 

3.3 Etalon acquisition 

The above results prove that if subgraph and input vector are 

known, then it is possible to reconstruct the etalon image. 

However, in arbitrary CNN it is rather difficult to get separate 

components of an etalon image altogether simultaneously. But it 

is possible to get these components separately. We know that 

network processes any image as scalar product between its etalon 

and image itself plus bias term. Using linearity of the scalar 

product, we can write down next statement for the input image 𝑋 

and any neuron 𝑝: 

〈(𝑊𝑋)𝑝, 𝑋〉 = (𝜔1 , 𝜔2, … , 𝜔𝑚)𝑝 ⋅ (𝑋1, 𝑋2, … , 𝑋𝑚)𝑇 =

∑ 𝑋𝑖 ⋅ (𝜔1, 𝜔2, … , 𝜔𝑚)𝑝 ⋅ 𝑒𝑖
𝑚
𝑖=1                                 (6) 

 

where 𝑒𝑖 = the basis coordinate vector (coordinate image) 

with component 𝑖, equal to 1, having all other 

components equal to 0,  
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(𝑊𝑋)𝑝 = (𝜔1 , 𝜔2, … , 𝜔𝑚)𝑝 is the etalon image for the 

neuron 𝑝 of the input image 𝑋(we flatten etalon as input 

image).  

From (6) we can conclude that if we feed coordinate vector 𝑒𝑖 as 

input, then we get component 𝜔𝑖 of the etalon vector (𝑊𝑋)𝑝. 

However we note that simply feeding this vector does not make 

sense because there is no guaranty that etalon subgraphs for 

image 𝑋 and coordinate image 𝑒𝑖 are coincide. But if we freeze 

all connections in the network except those, which belong to 

subgraph of the (𝑊𝑋)𝑝 etalon and pass 𝑒𝑖 through the network,  

we get reliable result.  

 

It is obvious that for freezing we need to know etalon subgraph 

for image 𝑋. In principle it is not a problem, because we can track 

active connections in layers to form our graph structure and know 

the graph, then perform calculations for each coordinate image 𝑒𝑖 

using simple traverse of the graph. However, we decided to go 

the other way and freeze unused connections (those where ReLU 

equals to zero) on the flight. It is very easy – we can set 

activations of one particular neuron to zero to freeze its 

connections. Then they will not affect further computations, and 

it is equivalent to removing these connections.  

 

3.4 Etalon reconstruction algorithm 

 

In this section we propose an algorithm for etalon reconstruction, 

which outputs etalon image (𝑊𝑋)𝑝 for the input image 𝑋 and the 

neuron 𝑝. You can see the algorithm 1 steps in Fig. 3. 

 

Algorithm 1. Etalon reconstruction for input image 𝑋  

        and neuron 𝑝 

Input: image 𝑋, network 𝑁𝐸𝑇, neuron 𝑝 

1. pass 𝑋 to 𝑁𝐸𝑇 and remember non-zero activations 

2. nullify biases of all neurons in 𝑁𝐸𝑇  

3. for each coordinate image 𝑒𝑖 do: 

3.1 pass 𝑒𝑖 to 𝑁𝐸𝑇 zeroing all activations 

which were stored in step 2 

3.2 save neuron 𝑝 activation to 𝑖-th 

component of the (𝑊𝑋)𝑝 

Output: etalon image  (𝑊𝑋)𝑝 

 

Figure 3. Etalon reconstruction algorithm for input image 𝑋 and 

neuron 𝑝 

 

Here we comment all steps in details. 

 Algorithm 1 requires input image 𝑋, neuron 𝑝 and 

network 𝑁𝐸𝑇 

 Algorithm 1 returns (𝑊𝑋)𝑝 etalon image for 𝑋 and 𝑝 

 In step 1 we pass input image 𝑋 to network 𝑁𝐸𝑇 and 

remember those activations that aren’t equal zero. We 

implement two layers – first ReLU, and second 

Pooling. ReLU layer – remembers those activations 

which are positive (active) in step 1 and during passing 

coordinate images 𝑒𝑖 in step 3 this layer set to zero all 

activations except those that were stored. Pooling layer 

follows similar logic – it remembers neurons that were 

active (neurons with max values) in step 1, and in step 

3 use activations of these neurons as outputs ignoring 

max pooling operation. 

 In step 2 we nullify all biases in the network, because 

they influence the neuron activations and, as a result, 

we’ll get incorrect values for components of the (𝑊𝑋)𝑝 

(which would be equal to the sum of 𝑖-th component 

and bias term). However, from equations (2), (5) we 

see that affine transformation has two independent 

parts – one for linear transformation and other for 

translation (bias term). Consequently, we can zero 

biases for reconstruction etalon image. 

 In step 3.1 we pass each coordinate image and 

according to our implementation of ReLU and Pooling 

layers they flow through required subgraph. 

 In step 3.2 we take activation of the given neuron 𝑝 

which equals to 𝑖-th component of the etalon image 

For better insight we visualize the work of algorithm 1 on a 

simple example of etalon reconstruction for 𝑍1 neuron. We also 

assume that 𝑍2 argument is also less than 0. For simplicity the net 

from Fig 2. was taken again, and the same proposals are 

suggested: it is a simple fully connected net with two layers and 

two-dimensional input 𝑋 = (𝑋1, 𝑋2). Suppose that activation 𝑌2 

argument is less than 0, so 𝑌2 = ReLU(⋅)  =  0 and does not 

affect the result. According to step 1 input image 𝑋 = (𝑋1, 𝑋2) is 

passed to the net, and we remember non-zero activations (see Fig. 

4). 

 

X1 X2

Y1 Y2 Y3

Z1 Z2

α11 

α12 

α13 α21 

α22 

α23 

β11 
β12 β21 β22 β31 β32

b1 b2 b3

b4 b5

Input

Output

 

 

Figure 4. vector X = (X1, X2) is passed as an input to the CNN. 

We marked in red connections, that are active for a current 

input. Since neurons 𝑌2, 𝑍2 activations are zero, their 

connections are freezed. 

 

Then in step 2 we zero all biases: 

 

𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 𝑏5 = 0   (7) 

 

In steps 3, 3.1, 3.2 we pass all coordinate images 𝑒𝑖. For this 

example there are only two:  

𝑒1 = (1,0), 𝑒2 = (0,1)    (8) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-707-2018 | © Authors 2018. CC BY 4.0 License.

 
710



 

For 𝑒1, according to system (4), we have the first component of 

𝑍1 (see Fig. 5): 

𝑌1 = ReLU(𝛼11 ∗ 1 + 𝛼21 ∗ 0) =  𝛼11

𝑌3 = ReLU(𝛼13 ∗ 1 + 𝛼23 ∗ 0) =  𝛼13

𝑍11
= ReLU(𝛽11𝑌1 + 𝛽31𝑌3 + 𝑏4) =  𝛽11 ∗ 𝛼11 + 𝛽31 ∗ 𝛼13

 (9) 

 

Comparing (5) with (9), we see that for 𝑒1 coordinate image 

neuron 𝑍1 activation contains first component of the (𝑊𝑋)𝑍1
 

etalon image. 

 

1 0

Y1 Y2 Y3

Z1 Z2

α11 α13 α21 α23 

β11 β31 

b1 b3

b4

Input

Output

 

 

Figure 5. Feeding the first coordinate vector (1,0) to get the first 

component of the etalon (𝑊𝑋)𝑍1
. Components that were frizzed 

during step 1 of the algorithm 1 aren’t shown. 

 

After feeding 𝑒2 coordinate image we get next result for second 

component of the 𝑍1 (see Fig 6.):  

 

𝑍12 = 𝛽11𝛼21 + 𝛽31𝛼23    (10) 

 

Summarizing equations (9) and (10), we can reconstruct etalon 

image (𝑊𝑋)𝑍1
:  

 

(𝑊𝑋)𝑍1
= (

𝛽11𝛼11 + 𝛽31𝛼13

𝛽11𝛼21 + 𝛽31𝛼23
) 

 

In this algorithm we don’t reconstruct bias term in (2), however 

it is straightforward to do. Between steps 1 and 2 in algorithm 1 

we can feed zero vector to the net, which gives us bias as 

activation value of the neuron 𝑝. Indeed, according to system (4), 

if vector (0,0) is passed to the net, we have: 

 

𝑌1 = ReLU(𝛼11 ∗ 0 + 𝛼21 ∗ 0 + 𝑏1) =  𝑏1

𝑌3 = ReLU(𝛼13 ∗ 1 + 𝛼23 ∗ 1 + 𝑏3) =  𝑏3

𝑍1 = ReLU(𝛽11𝑌1 + 𝛽31𝑌3 + 𝑏4) =  𝛽11𝑏1 + 𝛽31𝑏3 + 𝑏4

 (11) 

 

Comparing (5) and (11), we see neuron 𝑍1 activation contains 

bias term of the (𝑊𝑋)𝑍1
 etalon image affine map. But for etalon 

images this doesn’t make sense, so we ignore this step. 

0 1

Y1 Y2 Y3

Z1 Z2

α11 α13 α21 α23 

β11 β31 

b1 b3

b4

Input

Output

 

 

Figure 6. feeding the second coordinate vector (0,1) to get the 

second component of the etalon (𝑊𝑋)𝑍1
. Components that were 

frizzed during step 1 of the algorithm 1 aren’t shown. 

 

3.5 Etalon reconstruction algorithm limitations 

 

This algorithm is time consuming – for LeNet network with input 

image’s resolution 𝑛 × 𝑛 we need to make 𝑛2 forward passes. 

Cutting subgraph from network and performing calculations with 

it can reduce computation cost because of reducing the number 

of active connections, but neural nets use effective 

implementation of their operations in CUDA. In addition, we also 

need perform 𝑛2 forward passes. One possible solution is try to 

reconstruct etalon for one forward pass. It could be done by 

noting that convolution operation could be represented as linear 

mapping. ReLU activations after each mapping just nullifies 

some rows of transformation matrix of that mapping (concrete 

rows depends on input image). As a result, we can consider 

network as a product of affine mapping (different for each 

image). Multiplying all affine transformation, we’ll get another 

one which rows represent etalon images. However, representing 

convolution operation as matrix product requires a lot of 

memory. We didn’t investigate this way in practice. 

 

4. EXPERIMENTAL RESULTS 

 

4.1 LeNet etalon reconstruction 

 

As was mentioned above, we choose LeNet for our experiments. 

We experimented with different images and show our results in 

Fig. 11. For experiments we concentrate on penultimate layer and 

visualize etalons for each neuron from this layer for different 

input images. As a result, for each image there are ten etalon 

images (one per each neuron). For better interpretation we 

consider several examples. 

 

From example 1 we can see, that neural net tries to give attention 

to definite regions of input image and does it depending on the 

input. In the next example we show another mechanism, which 

is reversed to mentioned above. 
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In example 2 we demonstrate another mechanism, different from 

example 1. Here, our net is strongly sure that particular image 

doesn’t belong to given class, it simply votes against it, and again 

we see that it concentrates its attention on concrete regions.  

 

Example 1: Input image class – 0 (Fig. 7.) 

 

 
Figure 7 

 

For this image here we visualize etalon images from several 

neurons (Fig. 8) 

 

image 0 62 5

 
 

Figure 8. Etalon images for neurons 0, 2, 5, 6 

 

Numbers in captions are neurons, responsible for 

corresponding image class. White spots in etalon images can 

be interpreted as most important regions in input image on 

which neural net concentrates its attention. And, vice versa, 

black spots are regions which net prefers to ignore. We 

highlighted with red those regions that neural net makes 

attention on. From neuron 0 etalon image one can conclude 

that net tries to concentrate its attention on places which are 

responsible for zero number. Also it should be emphasized 

that it is not a simple tracking of most possible regions, but it 

is specific for concrete input picture. There are many possible 

zeros in train set which are located near boundaries, but net 

puts some weights on positions, that are specific to concrete 

image. From the other hand, if we look at neuron etalon 5 

image, then one can conclude that the net has some 

imagination. From this picture we can see how our net tries 

to propose possible look of number 5 in this image. We see 

that it tries to use bottom part of zero number in the picture 

to draw number five. On neurons 2 and 6 we see similar 

behavior. However, when this etalons images multiplied with 

input one it is easy to see, that biggest response is for zero 

etalon image. 

 

 

 

 

 

 

 

 

Example 2: Input images classes – 4, 6 (Fig. 9.) 

 

 
 

Figure 9 

 

For this example, we take two images from classes 4, 6 and 

visualize etalon images for neurons 0 and 1 correspondently 

(Fig. 10).  

 

 
Figure 10. 

 

We highlighted with red those regions which neural net tries 

to ignore. From neuron zero etalon image you can see, that net 

votes against this class. It puts very low weights on places 

where number four is located and, as a result, this class has 

very small score. The same situation we can see for etalon 

image of neuron one when number six is processed – neural 

net is completely sure that this picture can’t below to class 

one, so it votes against it.  

 

5. CONCLUSIONS 

 

In this work we represent a new notion – etalon images, which 

are defined as affine maps for any neuron and given input image. 

From the construction point of view etalons can be considered as 

subgraphs in the whole neural network graph. We implement 

algorithm for their acquisition based on well-known properties of 

the affine maps. Their analyses have shown that neural net has 

two high-level mechanisms of voting: first, based on attention to 

the input image regions and specific to current input, and second, 

based on ignoring specific input regions. We also suppose that 

there is a connection between complexity of the underlying data 

manifold and the number of etalon images and their quality. We 

guess that analyzing etalons can give some insight into problem 

of under and overfitting and models comparison. We concentrate 

on these problems in our future works. 
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Figure 11. First column contains ten input images of the different classes from MNIST dataset. Rows from 1 to 10 contains their 

etalon images, row 𝑖 contains etalon image of the corresponding neuron (each neuron has its own class for which it is responsible 

for). For example, neuron 8 for digit 8 has very clear etalon - one can see specific cross-figure of the digit 8. 
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